Chapter Four: Real functions with real variable

4.1 Generalities

Definition 4.1

We call a real function of a real variable every application f of a subset D of \mathbb{R} on set \mathbb{R}.
D is called the domain of definition for f.
We call the graph of the function f the subset of \mathbb{R}^{2} which we denote by Γ_{f}, and defined as follows: $\Gamma_{f}=\left\{(x ; y) \in \mathbb{R}^{2} ; x \in D \wedge y=f(x)\right\}$ or $\Gamma_{f}=\{(x ; f(x)) ; x \in D\}$.

The image of the domain D by f is denoted by $f(D)$ where: $f(D)=\{y \in \mathbb{R} ; \exists x \in D: y=f(x)\}$.
Definition 4.2 Let $f: D \rightarrow \mathbb{R}$ be a function.
We say that the function f is bounded from above (bounded from below, respectively) if, and only if, the set $f(D)$ is bounded from above (bounded from below, respectively)

So, $(f$ is bounded from above $) \Leftrightarrow(\exists M \in \mathbb{R} ; \forall x \in D: f(x) \leq M)$.
,$(f$ is bounded from below $) \Leftrightarrow(\exists m \in \mathbb{R} ; \forall x \in D: f(x) \geq M)$.
We say that the function f is bounded if, and only if, it is bounded from above and from below.
So, $(f$ is bounded $) \Leftrightarrow\left(\exists M \in \mathbb{R}_{+}^{*} ; \forall x \in D:|f(x)| \leq M\right)$.

Remark 4.1

If the function f is bounded on D, then the part $f(D)$ is bounded on \mathbb{R}. It accepts an upper bound and a lower bound, which we denote by $\operatorname{Sup}_{D} f$ and $\operatorname{In} f_{D} f$ respectively.

Definition 4.3 Let $f: D \rightarrow \mathbb{R}$ be a function.
We say that f is increasing over D (strictly increasing, respectively) if and only if $\forall x ; y \in D: x<y \Rightarrow f(x) \leq f(y)(\forall x ; y \in D: x<y \Longrightarrow f(x)<f(y)$, respectively $)$.

We say that f is decreasing over D (strictly decreasing, respectively) if and only if $\forall x ; y \in D: x<y \Rightarrow f(x) \geq f(y)(\forall x ; y \in D: x<y \Longrightarrow f(x)>f(y)$, respectively).

We say that f is constant over D if and only if $\forall x ; y \in D: x \neq y \Longrightarrow f(x)=f(y)$.

Definition 4.4 Let $f: D \rightarrow \mathbb{R}$ be a function.
We say that f have a local maximum (local minimum, respectively) at point x_{0} of D if:
$\exists \alpha \in \mathbb{R}_{+}^{*} ; \forall x \in D:\left|x-x_{0}\right|<\alpha \Rightarrow f(x) \leq f\left(x_{0}\right)\left(f(x) \geq f\left(x_{0}\right)\right.$, respectively $)$.
And if $\forall x \in D: f(x) \leq f\left(x_{0}\right)\left(f(x) \geq f\left(x_{0}\right)\right.$, respectively) we say that f have an absolute maximum (absolute minimum, respectively) at x_{0}.

4.2 limit of a function

4.2.1 Finite limit

Definition 4.5

We say a subset of \mathbb{R} is a $\overbrace{\text { neighborhood }}^{J}$ for a point x_{0} of \mathbb{R} if it contains an open interval that includes x_{0}. And we symbolize it with $V_{x_{0}}$.

Let f be a function, defined on a neighborhood $V_{x_{0}}$ of point x_{0}.
We say that the function f has a limit $\ell(\ell \in \mathbb{R})$ at point x_{0} if, and only if, $\forall \varepsilon>0 ; \exists \delta>0 ; \forall x \in \mathrm{~V}_{x_{0}}: 0<\left|x-x_{0}\right|<\delta \Rightarrow|f(x)-\ell|<\varepsilon$, we write $\lim _{x \rightarrow x_{0}} f(x)=\ell$.

Remark

We say that f does not accept the number ℓ as a limit at x_{0} if and only if

$$
\exists \varepsilon>0 ; \forall \delta>0 ; \exists x \in V_{x_{0}}: 0<\left|x-x_{0}\right|<\delta,|f(x)-\ell| \geq \varepsilon
$$

proposition 4.1

If $\lim _{x \rightarrow x_{0}} f(x)=\ell \neq 0$, then there exists a domain of the form $] x_{0}-\alpha, x_{0}[\cup] x_{0}, x_{0}+\alpha[$, with $\alpha>0$, such that $f(x)$ has the same sign as ℓ.

Proof

For $\varepsilon=|\ell|$, then $\exists \alpha>0 ; \forall x \in V_{x_{0}}: 0<\left|x-x_{0}\right|<\alpha \Rightarrow|f(x)-\ell|<|\ell|$ from him

$$
\begin{aligned}
x \in] x_{0}-\alpha, x_{0}[\cup] x_{0}, x_{0}+\alpha[& \Rightarrow\left\{\begin{array}{l}
2 \ell<f(x)<0 ; \ell<0 \\
0<f(x)<2 \ell ; \ell>0
\end{array}\right. \\
& \Rightarrow f(x) \text { has the same sign as } \ell .
\end{aligned}
$$

Examples

1) Let $f: x \rightarrow 5 x-7$ Be a function, using the definition prove that: $\lim _{x \rightarrow 2} f(x)=3$.

Since f is defined on \mathbb{R}, we can take $\mathrm{V}_{2}=\mathbb{R} .\left(\mathrm{V}_{2}\right.$ is a neighborhood of point 2)
Let $\varepsilon \in \mathbb{R}_{+}^{*}$, we have $\forall x \in \mathbb{R}$:

$$
\begin{gathered}
|f(x)-3|<\varepsilon \Leftrightarrow|5 x-7-3|<\varepsilon \\
\Leftrightarrow|x-2|<\frac{\varepsilon}{5}
\end{gathered}
$$

So it is enough to take $\delta=\frac{\varepsilon}{5}$ to achieve the following:

$$
\forall \varepsilon>0 ; \exists \delta>0 ; \forall x \in \mathbb{R}: 0<|x-2|<\delta \Rightarrow|f(x)-3|<\varepsilon
$$

2) Let $f: x \rightarrow x \rightarrow \frac{1}{x+1}$ Be a function, using the definition prove that: $\lim _{x \rightarrow 1} f(x)=\frac{1}{2}$..

Since f is defined on $\mathbb{R}-\{1\}$, we can take $\mathrm{V}_{1}=\left[0 ;+\infty\left[. .\left(\mathrm{V}_{1}\right.\right.\right.$ is a neighborhood of point 2)
Let $\varepsilon \in \mathbb{R}_{+}^{*}$, we have

$$
\forall x \in \mathrm{~V}_{1}:\left|f(x)-\frac{1}{2}\right|=\left|\frac{1}{x+1}-\frac{1}{2}\right|=\frac{|x-1|}{2|x+1|}<\frac{|x-1|}{2} .
$$

Therefore, it suffices to take $\frac{|x-1|}{2}<\varepsilon$ to be $\left|f(x)-\frac{1}{2}\right|<\varepsilon$, from which

$$
\begin{aligned}
& \left|\frac{x-1}{2}\right|<\varepsilon \Leftrightarrow|x-1|<2 \varepsilon \text {. So it is enough to take } \delta=2 \varepsilon \text { to achieve the following: } \\
& \forall \varepsilon>0 ; \exists \delta>0 ; \forall x \in \mathrm{~V}_{1}: 0<|x-1|<\delta \Rightarrow\left|f(x)-\frac{1}{2}\right|<\varepsilon .
\end{aligned}
$$

Definition 46

Let f be a function defined in the interval $\left.\mathrm{V}_{x_{0}}=\right] x_{0}, \mathrm{~b}[$, we say that f have the limit ℓ from the right at x_{0} if and only if

$$
\forall \varepsilon>0 ; \exists \delta>0 ; \forall x \in \mathrm{~V}_{x_{0}}: \quad 0<x-x_{0}<\delta \Longrightarrow|f(x)-\ell|<\varepsilon
$$

we write $\lim _{x \rightarrow x_{0}} f(x)=\ell$ or $\lim _{x \rightarrow x_{0}^{+}} f(x)=\ell$.
Let f be a function defined in the interval $\left.\mathrm{V}_{x_{0}}=\right] a, x_{0}[$, we say that f have the limit ℓ from the left at x_{0} if and only if

$$
\forall \varepsilon>0 ; \exists \delta>0 ; \forall x \in \mathrm{~V}_{x_{0}}:-\delta<x-x_{0}<0 \Longrightarrow|f(x)-\ell|<\varepsilon
$$

we write $\lim _{x \rightarrow x_{0}} f(x)=\ell$ or $\lim _{x \rightarrow x_{0}^{-}} f(x)=\ell$.

Proposition 4.2

A function f has a limit at x_{0} if and only if it accepts right and left limits at x_{0} and this limits are equal.

Example

Let the function f defined on \mathbb{R} by $f(x)=\left\{\begin{array}{lll}3 x-1 & \text { if } & x \leq 1 \\ \frac{6}{x+2} & \text { if } & x>1\end{array}\right.$.
Prove that: $\lim _{x \rightarrow 1} f(x)=2$ and $\lim _{x \rightarrow 1} f(x)=2$ what do you conclude.

1) Let $\left.\left.V_{1}=\right]-\infty ; 1\right]$ and $\varepsilon \in \mathbb{R}_{+}^{*}$, we have

$$
\begin{aligned}
\forall x \in V_{1}:|f(x)-2|<\varepsilon & \Leftrightarrow|3 x-3|<\varepsilon \\
|3 x-3|<\varepsilon & \Leftrightarrow 0<|x-1|<\frac{\varepsilon}{3} \\
& \Leftrightarrow 0<-x+1<\frac{\varepsilon}{3} \\
& \Leftrightarrow-\frac{\varepsilon}{3}<x-1<0
\end{aligned}
$$

It is enough to take $\delta=\frac{\varepsilon}{3}$ to achieve the following:

$$
\forall \varepsilon>0 ; \exists \delta>0 ; \forall x \in \mathrm{~V}_{1}: 0<1-x<\delta \Rightarrow|f(x)-2|<\varepsilon
$$

Let $V_{1}=\left[1 ;+\infty\left[\right.\right.$ and $\varepsilon \in \mathbb{R}_{+}^{*}$, we have

$$
\forall x \in \mathrm{~V}_{1}:|f(x)-2|=\frac{2|x-1|}{x+2}<\frac{2}{3}|x-1|
$$

So

$$
\frac{2}{3}|x-1|<\varepsilon \Leftrightarrow|x-1|<\frac{3}{2} \varepsilon \Leftrightarrow 0<x-1<\frac{3}{2} \varepsilon
$$

It is enough to take $\delta=\frac{3 \varepsilon}{2}$ to achieve the following:

$$
\forall \varepsilon>0 ; \exists \delta>0 ; \forall x \in \mathrm{~V}_{1}: 0<x-1<\delta \Rightarrow|f(x)-2|<\varepsilon
$$

Conclusion: Since $\lim _{x \rightarrow 1^{-}} f(x)=\lim _{x \rightarrow 1^{+}} f(x)=2 f$ accepts a limit at 1 , which is 2 .

Theorem 4.1

If a function f accepts a limit at x_{0}, then this limit is unique.

Proof

Let f accept two different limits ℓ and ℓ^{\prime} where $\ell>\ell^{\prime}$.
for $\varepsilon=\frac{\ell-\ell^{\prime}}{2} ; \exists \delta_{1}, \delta_{2}>0 ; \forall x \in \mathrm{~V}_{x_{0}}$:

$$
0<\left|x-x_{0}\right|<\delta_{1} \Rightarrow|f(x)-\ell|<\varepsilon=\frac{\ell-\ell^{\prime}}{2}
$$

and

$$
0<\left|x-x_{0}\right|<\delta_{2} \Rightarrow\left|f(x)-\ell^{\prime}\right|<\varepsilon=\frac{\ell-\ell^{\prime}}{2}
$$

For $\delta=\min \left\{\delta_{1}, \delta_{2}\right\}$ Then $\forall x \in V_{x_{0}}$:

$$
\begin{aligned}
0<\left|x-x_{0}\right|<\delta & \Rightarrow\left|\ell-\ell^{\prime}\right|=\left|f(x)-\ell-\left(f(x)-\ell^{\prime}\right)\right| \\
& \Rightarrow\left|\ell-\ell^{\prime}\right|<\varepsilon+\varepsilon=2 \varepsilon \\
& \Rightarrow\left|\ell-\ell^{\prime}\right|<\left|\ell-\ell^{\prime}\right|
\end{aligned}
$$

This is a contradiction. So $\ell=\ell^{\prime}$

4.2.2 Limit of a function using sequences

Theorem 4.2

Let $f: D \rightarrow \mathbb{R}$ be a function and $x_{0} \in D$. The following two conditions are equivalent.

1) $\lim _{x \rightarrow x_{0}} f(x)=\ell$.
2) For all sequence $\left(x_{n}\right)$ where $\forall n \in \mathbb{N}: x_{n} \in D \wedge x_{n} \neq x_{0}$ then:

$$
\left(\lim _{n \rightarrow+\infty} x_{n}=x_{0}\right) \Rightarrow\left(\lim _{n \rightarrow+\infty} f\left(x_{n}\right)=\ell\right)
$$

Proof

Necessary condition:

We impose $\lim _{x \rightarrow x_{0}} f(x)=\ell$ and let $\left(x_{n}\right)$ sequence where $\forall n \in \mathbb{N}: x_{n} \in D \wedge x_{n} \neq x_{0}$ and $\lim _{\mathrm{n} \rightarrow \infty} x_{n}=$ x_{0}. Let us prove that: $\lim _{n \rightarrow+\infty} f\left(x_{n}\right)=\ell$.

For $\varepsilon>0$ then $\exists \delta>0 ; \forall x \in V_{x_{0}}: 0<\left|x-x_{0}\right|<\delta \Rightarrow|f(x)-\ell|<\varepsilon$. So
$\exists \mathrm{N} \in \mathbb{N} ; \forall n \in \mathbb{N}: n>\mathrm{N} \Rightarrow\left|x_{n}-x_{0}\right|<\delta \Rightarrow\left|f\left(x_{n}\right)-\ell\right|<\varepsilon$.
So $\forall \varepsilon>0 ; \exists \mathrm{N} \in \mathbb{N} ; \forall n \in \mathbb{N}$: $n>\mathrm{N} \Rightarrow\left|f\left(x_{n}\right)-\ell\right|<\varepsilon$.So $\lim _{n \rightarrow+\infty} f\left(x_{n}\right)=\ell$.

Sufficient condition: We now assume that for every sequence $\left(x_{n}\right)$ where
$\forall n \in \mathbb{N}: x_{n} \in D \wedge \mathrm{x}_{n} \neq x_{0}$ then $\left(\lim _{n \rightarrow+\infty} x_{n}=x_{0}\right) \Longrightarrow\left(\lim _{n \rightarrow+\infty} f\left(x_{n}\right)=\ell\right)$.
Let us prove that $\lim _{x \rightarrow x_{0}} f(x)=\ell$. Assume that $\lim _{x \rightarrow x_{0}} f(x) \neq \ell$ that is
$\exists \varepsilon>0 ; \forall \delta>0 ; \exists x \in \mathrm{~V}_{x_{0}}: 0<\left|x-x_{0}\right|<\delta$ and $|f(x)-\ell| \geq \varepsilon$.
and for $\delta=\frac{1}{n}$ then $\forall n \in \mathbb{N}^{*} ; \exists x_{n} \neq x_{0}$ and $x_{n} \in \mathrm{~V}_{x_{0}}:\left|x_{n}-x_{0}\right|<\frac{1}{n}$ and $\left|f\left(x_{n}\right)-\ell\right| \geq \varepsilon$.
So $\lim _{n \rightarrow+\infty} x_{n}=x_{0}$ and $\lim _{n \rightarrow+\infty} f\left(x_{n}\right) \neq \ell$ (this is a contradiction).

Remark

To prove that a function f has no limit at x_{0}, it is enough to find two sequences $\left(x_{n}\right)$ and $\left(x_{n}^{\prime}\right)$ that converge towards x_{0} but $\lim _{n \rightarrow \infty} f\left(x^{\prime}{ }_{n}\right) \neq \lim _{n \rightarrow \infty} f\left(x_{n}\right)$ Or we are looking for a sequence $\left(x_{n}\right)$ that converges toward x_{0} but the sequence $\left(f\left(x_{n}\right)\right)_{n \in \mathbb{N}}$ diverges.

Example

Prove that the function $f: x \rightarrow \cos \frac{1}{x}$ does not accept a limit at 0 .
Let the sequences $\left(x_{n}\right)$ and $\left(x^{\prime}{ }_{n}\right)$ where $\forall n \in \mathbb{N}^{*}: x_{n}=\frac{1}{2 \pi n+\frac{\pi}{2}}, \quad x_{n}^{\prime}=\frac{1}{2 \pi n+\pi}$.
We have $\lim _{n \rightarrow \infty} x_{n}=\lim _{n \rightarrow \infty} x^{\prime}{ }_{n}=0$ On the other hand: $\forall n \in \mathbb{N}^{*}: f\left(x^{\prime}{ }_{n}\right)=-1 ; f\left(x_{n}\right)=0$.

So

$\lim f\left(x_{n}^{\prime}\right)=-1 ; \lim f\left(x_{n}\right)=0$ So: $\lim f\left(x_{n}^{\prime}\right) \neq \lim f\left(x_{n}\right)$ i.e. f does not accept a limit at 0.

4.2.3 Infinite limits

We say a subset of \mathbb{R} is a $\overbrace{\text { neighborhood }}$ of $+\infty(-\infty$, respectively) if it contains an open interval of the form $] a,+\infty\left[(]-\infty, b\left[\right.\right.$, respectively) And we symbolize it with $\mathrm{V}_{+\infty}\left(\mathrm{V}_{-\infty}\right.$, respectively).

Definitions

$$
\begin{aligned}
& \left(\forall \varepsilon>0 ; \exists A>0 ; \forall x \in V_{+\infty}: x>A \Rightarrow|f(x)-\ell|<\varepsilon\right) \Leftrightarrow\left(\lim _{x \rightarrow+\infty} f(x)=\ell\right) \\
& \left(\forall \varepsilon>0 ; \exists A>0 ; \forall x \in V_{-\infty}: x<-A \Rightarrow|f(x)-\ell|<\varepsilon\right) \Leftrightarrow\left(\lim _{x \rightarrow-\infty} f(x)=\ell\right) \\
& \left(\forall A>0 ; \exists \delta>0 ; \forall x \in V_{x_{0}}:\left|x-x_{0}\right|<\delta \Rightarrow f(x)>A\right) \Leftrightarrow\left(\lim _{x \rightarrow x_{0}} f(x)=+\infty\right)
\end{aligned}
$$

$$
\begin{aligned}
& \left(\forall A>0 ; \exists \delta>0 ; \forall x \in V_{x_{0}}:\left|x-x_{0}\right|<\delta \Rightarrow f(x)<-A\right) \Leftrightarrow\left(\lim _{x \rightarrow x_{0}} f(x)=-\infty\right) \\
& \left(\forall A>0 ; \exists B>0 ; \forall x \in V_{+\infty}: x>B \Rightarrow f(x)>A\right) \Leftrightarrow\left(\lim _{x \rightarrow+\infty} f(x)=+\infty\right) \\
& \left(\forall A>0 ; \exists B>0 ; \forall x \in V_{+\infty}: x>B \Rightarrow f(x)<-A\right) \Leftrightarrow\left(\lim _{x \rightarrow+\infty} f(x)=-\infty\right) \\
& \left(\forall A>0 ; \exists B>0 ; \forall x \in V_{-\infty}: x<-B \Rightarrow f(x)>A\right) \Leftrightarrow\left(\lim _{x \rightarrow-\infty} f(x)=+\infty\right) \\
& \left(\forall A>0 ; \exists B>0 ; \forall x \in V_{-\infty}: x<-B \Rightarrow f(x)<-A\right) \Leftrightarrow\left(\lim _{x \rightarrow-\infty} f(x)=-\infty\right)
\end{aligned}
$$

Examples

1) Prove that $\lim _{x \rightarrow \infty} \frac{2 x}{x-1}=2$.

The function $x \rightarrow \frac{2 x}{x-1}$ is defined on $\left.V_{+\infty}=\right] 1 ;+\infty\left[\right.$, for $\varepsilon \in \mathbb{R}_{+}^{*}$ we have

$$
\forall x \in V_{+\infty}:|f(x)-2|<\varepsilon \Leftrightarrow \frac{2}{|x-1|}<\varepsilon \Leftrightarrow \frac{2}{x-1}<\varepsilon \Leftrightarrow x>\frac{2}{\varepsilon}+1
$$

Therefore, it is sufficient to choose $B=\frac{2}{\varepsilon}+1$ to obtain:

$$
\forall \varepsilon>0 ; \exists B \in \mathbb{R}_{+}^{*} ; \forall x \in V_{+\infty}: x>B \Rightarrow|f(x)-2|<\varepsilon
$$

2) Prove that $\lim _{x \rightarrow 1} \frac{2 x}{x-1}=-\infty$.

Let $\left.\mathrm{V}_{1}=\right] 0 ; 1\left[\right.$, for $A \in \mathbb{R}_{+}^{*}$ we have

$$
\begin{aligned}
\forall x \in \mathrm{~V}_{1}: f(x)< & -A \Leftrightarrow \frac{2 x}{x-1}<-A \Leftrightarrow 2+\frac{2}{x-1}<-A \\
& \Leftrightarrow 0>x-1>\frac{2}{-A-2} \\
& \Leftrightarrow-\frac{2}{A+2}<x-1<0
\end{aligned}
$$

Therefore, it is sufficient to choose $\delta=\frac{2}{A+2}$ to obtain:

$$
\forall A>0 ; \exists \delta \in \mathbb{R}_{+}^{*} ; \forall x \in V_{1}: 0<1-x<\delta \Rightarrow f(x)<-A
$$

4.2.4 Operation on limits

Theorem 4.3

Let f and g be functions defined on the neighborhood $V_{x_{0}}$, with the possible exception of x_{0}, where

$$
\forall x \in \mathrm{~V}_{x_{0}}: f(x)<g(x)
$$

1) If $\lim _{x \rightarrow x_{0}} f(x)=\ell$ and $\lim _{x \rightarrow x_{0}} g(x)=\ell^{\prime}$ then $\ell \leq \ell^{\prime}$.
2)) If $\lim _{x \rightarrow x_{0}} f(x)=+\infty$ then $\lim _{x \rightarrow x_{0}} g(x)=+\infty$.
2) $\lim _{x \rightarrow x_{0}} g(x)=-\infty$ then $\lim _{x \rightarrow x_{0}} f(x)=-\infty$.

Let f, g and h be functions defined on the neighborhood $V_{x_{0}}$, with the possible exception of x_{0}, where $\forall x \in \mathrm{~V}_{x_{0}}: h(x)<f(x)<g(x)$ and $\lim _{x \rightarrow x_{0}} g(x)=\lim _{x \rightarrow x_{0}} h(x)=\ell$, then

$$
\lim _{x \rightarrow x_{0}} f(x)=\ell
$$

Proof
Assume that $\forall x \in \mathrm{~V}_{x_{0}}: f(x)<g(x)$ and $\lim _{x \rightarrow x_{0}} f(x)=\ell, \lim _{x \rightarrow x_{0}} g(x)=\ell^{\prime}$ and suppose that $\ell>\ell^{\prime}$. For $\varepsilon=\frac{\ell-\ell^{\prime}}{2}$ then

$$
\begin{aligned}
& \exists \delta_{1}>0: 0<\left|x-x_{0}\right|<\delta_{1} \Rightarrow|f(x)-\ell|<\varepsilon \Rightarrow \frac{\ell+\ell^{\prime}}{2}<f(x)<\frac{3 \ell-\ell^{\prime}}{2} \\
& \exists \delta_{2}>0: 0<\left|x-x_{0}\right|<\delta_{2} \Rightarrow\left|g(x)-\ell^{\prime}\right|<\varepsilon \Rightarrow \frac{3 \ell^{\prime}-\ell}{2}<g(x)<\frac{\ell^{\prime}+\ell^{\prime}}{2}
\end{aligned}
$$

Bu taking $\delta=\min \left\{\delta_{1}, \delta_{2}\right\}$ then $0<\left|x-x_{0}\right|<\delta \Longrightarrow g(x)<\frac{\ell+\ell^{\prime}}{2}<f(x)$ this is contradiction the hypothesis. $\forall x \in \mathrm{~V}_{x_{0}}: f(x)<g(x)$.

Theorem 4.4

If f and g are functions defined in the neighborhood $\mathrm{V}_{x_{0}}$, with the possible exception of x_{0}, and have the limits ℓ, ℓ^{\prime}, at x_{0} respectively, then the functions $f+g, f g, \lambda f,|f|$ it has the limits $\ell+\ell^{\prime}, \lambda \ell, \ell \ell^{\prime},|\ell|$, at x_{0} respectively. And if $\ell^{\prime} \neq 0$, then the function $\frac{1}{g}$ it has the limit $\frac{1}{\ell^{\prime}}$ at x_{0}.
Proof (Let us prove the last case)
Assume that $\lim _{x \rightarrow x_{0}} g(x)=\ell^{\prime} \neq 0$ for $\varepsilon=\frac{\left|\ell^{\prime}\right|}{2}$, then

$$
\begin{aligned}
\exists \delta_{1}>0: 0<\left|x-x_{0}\right|<\delta_{1} & \Rightarrow\left|g(x)-\ell^{\prime}\right|<\frac{\left|\ell^{\prime}\right|}{2} \\
& \Rightarrow\left||g(x)|-\left|\ell^{\prime}\right|\right|<\frac{\left|\ell^{\prime}\right|}{2} \\
& \Rightarrow \frac{\left|\ell^{\prime}\right|}{2}<|g(x)|<\frac{3\left|\ell^{\prime}\right|}{2} \\
& \Rightarrow \frac{1}{|g(x)|}<\frac{2}{\left|\ell^{\prime}\right|}
\end{aligned}
$$

On the other hand we have:

$$
\forall \varepsilon>0 ; \exists \delta_{2}>0 ; \forall x \in V_{x_{0}}: 0<\left|x-x_{0}\right|<\delta_{2} \Rightarrow\left|g(x)-\ell^{\prime}\right|<\varepsilon
$$

For $\delta=\min \left\{\delta_{1}, \delta_{2}\right\}$, then

$$
.0<\left|x-x_{0}\right|<\delta \Rightarrow\left|\frac{1}{g(x)}-\frac{1}{\ell^{\prime}}\right|=\left|\frac{\ell^{\prime}-g(x)}{\ell^{\prime} g(x)}\right|<\frac{2\left|g(x)-\ell^{\prime}\right|}{\left|\ell^{\prime}\right|^{2}}<\frac{2 \varepsilon}{\left|\ell^{\prime}\right|^{2}}=\varepsilon^{\prime}
$$

4.2.5 Indeterminate form

We say that we are in the presence of an indeterminate form. If when $x \rightarrow x_{0}$

1) $f \rightarrow+\infty$ and $g \rightarrow-\infty$ then $f+g \rightarrow$ indeterminate form $+\infty-\infty$.
2) $f \rightarrow \infty$ and $g \rightarrow 0$ then $f . g \rightarrow$ indeterminate form $\infty .0$.
3) $f \rightarrow \infty$ and $g \rightarrow \infty$ then $\frac{f}{g} \rightarrow$ indeterminate form $\frac{\infty}{\infty}$.
4) $f \rightarrow 0$ and $g \rightarrow 0$ then $\frac{f}{g} \rightarrow$ indeterminate form $\frac{0}{0}$.
5) $f \rightarrow 0$ and $g \rightarrow 0$ then $f^{g} \rightarrow$ indeterminate form 0^{0}.
6) $f \rightarrow \infty$ and $g \rightarrow 0$ then $f^{g} \rightarrow$ indeterminate form ∞^{0}.
7) $f \rightarrow 1$ and $g \rightarrow \infty$ then $f^{g} \rightarrow$ indeterminate form 1^{∞}.

Remarks

1) The indeterminate forms $\infty .0, \frac{\infty}{\infty}$ can be reduced to the form $\frac{0}{0}$. by writing $\frac{f}{g}=\frac{\frac{1}{g}}{\frac{1}{f}}$ in (3) and $f . g=$ $\frac{g}{\frac{1}{f}}$ in (2)/
2) The indeterminate forms $0^{0}, \infty^{0}, 1^{\infty}$ can be reduced to the form $\infty .0$ by passing the logarithm.

Examples Calculate the limits: 1) $\lim _{x \rightarrow-1} \frac{x^{2}+3 x+2}{x^{4}+1}$, 2) $\lim _{x \rightarrow \infty} x \ln \frac{x+1}{x-2}$, 3) $\lim _{x \rightarrow \infty}\left(\frac{x+1}{x-2}\right)^{x}$.

4.2.6 Cauchy's criterion for functions:

Theorem 4.4

A function f has a finite limit at x_{0} if and only if
$\forall \varepsilon>0 ; \exists \delta>0 ; \forall x^{\prime}, x^{\prime \prime} \in \mathrm{V}_{x_{0}}:\left(0<\left|x^{\prime}-x_{0}\right|<\delta\right.$ and $\left.0<\left|x^{\prime \prime}-x_{0}\right|<\delta\right) \Rightarrow$

$$
\left|f\left(x^{\prime}\right)-f\left(x^{\prime \prime}\right)\right|<\varepsilon
$$

Proof
Necessary condition Assume that $\lim _{x \rightarrow x_{0}} f(x)=\ell$, then

$$
\forall \varepsilon>0 ; \exists \delta>0 ; \forall x^{\prime}, x^{\prime \prime} \in V_{x_{0}}:\left(0<\left|x^{\prime}-x_{0}\right|<\delta \text { and } 0<\left|x^{\prime \prime}-x_{0}\right|<\delta\right) \Longrightarrow
$$

$$
\left|f\left(x^{\prime}\right)-\ell\right|<\frac{\varepsilon}{2} g\left|f\left(x^{\prime \prime}\right)-\ell\right|<\frac{\varepsilon}{2} .
$$

So

$$
\begin{aligned}
\left|f\left(x^{\prime}\right)-f\left(x^{\prime \prime}\right)\right|=\left|f\left(x^{\prime}\right)-\ell-\left(f\left(x^{\prime \prime}\right)-\ell\right)\right| & <\left|f\left(x^{\prime}\right)-\ell\right|+\left|\left(f\left(x^{\prime \prime}\right)-\ell\right)\right| \\
& <\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon
\end{aligned}
$$

Sufficient condition Assume that $\forall \varepsilon>0 ; \exists \delta>0 ; \forall x^{\prime}, x^{\prime \prime} \in V_{x_{0}}$:

$$
\left(0<\left|x^{\prime}-x_{0}\right|<\delta, 0<\left|x^{\prime \prime}-x_{0}\right|<\delta\right) \Rightarrow\left|f\left(x^{\prime}\right)-\ell\right|<\frac{\varepsilon}{2} g\left|f\left(x^{\prime \prime}\right)-\ell\right|<\frac{\varepsilon}{2} .
$$

Let $\left(x_{n}\right)$ be a sequence of $\mathrm{V}_{x_{0}}$ elements where $\forall n \in \mathbb{N}$: $x_{n} \neq x_{0}$ and $\lim _{n \rightarrow \infty} x_{n}=x_{0}$.
So for $\delta>0$, then $\exists \mathrm{N}_{0} \in \mathbb{N}$: $\forall n \in \mathbb{N} ; n>\mathrm{N}_{0} \Rightarrow\left|x_{n}-x_{0}\right|<\delta$.
So $\forall p, q \in \mathbb{N}$: $p>\mathrm{N}_{0}$ and $q>\mathrm{N}_{0} \Rightarrow 0<\left|x_{p}-x_{0}\right|<\delta$ and $0<\left|x_{q}-x_{0}\right|<\delta$

$$
\Rightarrow\left|f\left(x_{p}\right)-f\left(x_{q}\right)\right|<\varepsilon
$$

So $\left(x_{n}\right)$ is a Cauchy sequence, and therefore convergent.
Let us now show that the limit $\lim _{n \rightarrow \infty} f\left(x_{n}\right)$ is independent of the choice of sequence $\left(x_{n}\right)$.
Let $\left(x_{n}\right)$ and $\left(x_{n}^{\prime}\right)$ where $\lim _{n \rightarrow \infty} x_{n}^{\prime}=\lim _{n \rightarrow \infty} x_{n}=x_{0}$.
So $\exists \mathrm{N} \in \mathbb{N} ; \forall n \in \mathbb{N}: n>\mathrm{N} \Rightarrow\left(0<\left|x_{n}-x_{0}\right|<\delta\right.$ and $\left.0<\left|x_{n}^{\prime}-x_{0}\right|<\delta\right)$

$$
\Rightarrow\left|f\left(x_{n}\right)-f\left(x_{n}^{\prime}\right)\right|<\varepsilon .
$$

So

$$
\lim _{n \rightarrow \infty}\left(f\left(x_{n}\right)-f\left(x_{n}^{\prime}\right)\right)=0
$$

we obtain

$$
\lim _{n \rightarrow \infty} f\left(x_{n}\right)=\lim _{n \rightarrow \infty} f\left(x_{n}^{\prime}\right)
$$

4.2.7 Comparison of functions in the neighborhood of a point - Landau notation:

Let f and g be a functions defined in the neighborhood $\mathrm{V}_{x_{0}}$ of the point x_{0}, with the possible exception of x_{0}

Definition 4.8

We say that f is negligible in front of g when $x \rightarrow x_{0}$, and we write $f=o(g)$, if

$$
\forall \varepsilon>0 ; \exists \delta>0 ; \forall x \in V_{x_{0}}: \quad 0<\left|x-x_{0}\right|<\delta \Longrightarrow|f(x)| \leq \varepsilon|g(x)|
$$

Definition 4.9

We say that f is dominated by g when $x \rightarrow x_{0}$, and we write $f=o(g)$, if

$$
\exists k>0 ; \exists \delta>0 ; \forall x \in \mathrm{~V}_{x_{0}}: \quad 0<\left|x-x_{0}\right|<\delta \Rightarrow|f(x)| \leq k|g(x)|
$$

The symbols o and O are called Landau symbols.

Corollary 4.1

If g is non-zero on $V_{x_{0}}-\left\{x_{0}\right\}$ then:

$$
\begin{aligned}
& f=o(g) \Leftrightarrow \lim _{x \rightarrow x_{0}} \frac{f(x)}{g(x)}=0 . \\
& f=O(g) \Leftrightarrow\left|\frac{f(x)}{g(x)}\right| \text { is bounded in } V_{x_{0}} .
\end{aligned}
$$

And if $g=1$, then

$$
f=o(1) \Leftrightarrow \lim _{x \rightarrow x_{0}} f(x)=0 \text { and } f=O(1) \Leftrightarrow f \text { is bounded in } V_{x_{0}}
$$

Remark We obtain a similar definition for $x_{0}=+\infty$ and $x_{0}=-\infty$.

Examples

1) When $x \rightarrow 0$ we have.

$$
x^{3}=o\left(x^{2}\right), x^{2} \cos \frac{1}{x}=O\left(x^{2}\right),\left(\frac{1}{x}\right)^{3}=o\left(\left(\frac{1}{x}\right)^{4}\right) .
$$

2) When $x \rightarrow+\infty$ we have
$x^{2}=o\left(x^{3}\right), x^{2} \sin x=O\left(x^{2}\right),\left(\frac{1}{x}\right)^{4}=o\left(\left(\frac{1}{x}\right)^{3}\right)$.

Theorem 4.5

1) $f=g h \Leftrightarrow f=o(g)$ where $h=o(1)$.
2) $f=g h \Leftrightarrow f=O(g)$ where $h=O(1)$.

Proof (Let's prove 1)

Necessary condition: Assume that $f=o(g)$.

We put $h(x)=\left\{\begin{array}{cc}\frac{f(x)}{g(x)}, & g(x) \neq 0 \\ 0 & , g(x)=0\end{array}\right.$.
We have $f=o(g) \Leftrightarrow \forall \varepsilon>0 ; \exists \delta>0 ; \forall x \in \mathrm{~V}_{x_{0}}: \quad 0<\left|x-x_{0}\right|<\delta \Longrightarrow|f(x)| \leq \varepsilon|g(x)|$.
First: Let us prove that $f=g h$.
If $g(x)=0$ then $0<\left|x-x_{0}\right|<\delta \Longrightarrow|f(x)| \leq \varepsilon|g(x)|=0$, we get $f=g h$.
If $g(x) \neq 0$ then $f(x)=g(x) \frac{f(x)}{g(x)}$, we get $f=g h$.
second:
Let us show that $h=o(1)$, i:e $\forall \varepsilon>0 ; \exists \delta>0 ; \forall x \in V_{x_{0}}: \quad 0<\left|x-x_{0}\right|<\delta \Longrightarrow|h(x)| \leq \varepsilon$
If $g(x)=0$ then $h(x)=0$, i.e $|h(x)| \leq \varepsilon$
If $g(x) \neq 0$ then $|f(x)| \leq \varepsilon|g(x)|$ and from it $\left|\frac{f(x)}{g(x)}\right| \leq \varepsilon$ i.e $|h(x)| \leq \varepsilon$.
sefficient condition:
Assume that $f=g h$ and $h=o(1)$ and show that $f=o(g)$.

We have $(h=o(1)) \Leftrightarrow\left(\forall \varepsilon>0 ; \exists \delta>0 ; \forall x \in V_{x_{0}}: \quad 0<\left|x-x_{0}\right|<\delta \Longrightarrow|h(x)| \leq \varepsilon\right)$ and from there $|f(x)|=|h(x) g(x)| \leq \varepsilon|g(x)|$ i.e. $f=o(g)$.

In the same way we prove property 2.
Note: The previous two properties are summarized in the following writing.

$$
o(g)=g \cdot o(1) \text { and } O(g)=g \cdot O(1)
$$

properties

1) $f=O(g)$ and $h=O(g) \Rightarrow f+h=O(g)$.
2) $f=o(g)$ and $h=o(g) \Rightarrow f+h=o(g)$.
3) $f=o(g)$ and $h=O(1) \Rightarrow f h=o(g)$.
4) $f=o(g)$ and $h=O(g) \Rightarrow f+h=O(g)$.
5) $f=O(g)$ and $h=O(1) \Rightarrow f h=O(g)$.
6) $h=O(f)$ and $f=o(g) \Rightarrow h=o(g)$.
7) $h=o(f)$ and $f=O(g) \Rightarrow h=o(g)$.

Note: The previous properties are summarized in the following writing.

1) $O(g)+O(g)=O(g)$.
2) $o(g)+o(g)=o(g)$.
3) $o(g) O(1)=o(g)$.
4) $o(g)+O(g)=O(g)$.
5) $O(g) \cdot O(1)=O(g)$.
6) $O(o(g))=o(g)$.
7) $o(O(g))=o(g)$.

4.2.8 Equivalent functions:

Let f and g be a functions defined in the neighborhood $V_{x_{0}}$ of the point x_{0}, with the possible exception of x_{0}.

Definition 4.11

We say that f is equivalent to g for $x \rightarrow x_{0}$ and write $f \sim g$ if $f-g=o(f)$ for $x \rightarrow x_{0}$.

Results 4.1

1) $f-g=o(f) \Leftrightarrow f-g=o(g)$.
2) The relation \sim is an equivalence relation on the set of functions defined in the neighborhood $\mathrm{V}_{x_{0}}-\left\{x_{0}\right\}$ of the point x_{0}.
3) If f and g are non-zero on $\mathrm{V}_{x_{0}}-\left\{x_{0}\right\}$ then: $f \sim g \Leftrightarrow \lim _{x \rightarrow x_{0}} \frac{f(x)}{g(x)}=1$.

Theorem 4.7

Let f, g, f_{1} and g_{1} be a functions defined in the neighborhood $\mathrm{V}_{x_{0}}$ of the point x_{0}, with the possible exception of x_{0} where $f \sim f_{1}$ and $g \sim g_{1}$ for $x \rightarrow x_{0}$. If
If the limit $\lim _{x \rightarrow x_{0}} \frac{f(x)}{(x)}$ it exists then the limit $\lim _{x \rightarrow x_{0}} \frac{f_{1}(x)}{g_{1}(x)}$ olso exists and we have:

$$
\lim _{x \rightarrow x_{0}} \frac{f_{1}(x)}{g_{1}(x)}=\lim _{x \rightarrow x_{0}} \frac{f(x)}{g(x)}
$$

Proof

Since $\frac{f(x)}{g(x)}$ accepts a limit when $x \rightarrow x_{0}$, there is a neighborhood $V_{x_{0}}$ to the point x_{0}, such that g is non-zero on $\mathrm{V}_{x_{0}}-\left\{x_{0}\right\}$ and that $g \sim g_{1}$ (that is, $\left.|g(x)| \leq \varepsilon\left|g_{1}(x)\right|\right)$ then g_{1} is also non-zero on $\mathrm{V}_{x_{0}}-\left\{x_{0}\right\}$ and hence

$$
\left\{\begin{array} { l }
{ f \sim f _ { 1 } } \\
{ g \sim g _ { 1 } }
\end{array} \Rightarrow \left\{\begin{array} { l }
{ f _ { 1 } \sim f } \\
{ g _ { 1 } \sim g }
\end{array} \Rightarrow \left\{\begin{array}{l}
f_{1}=f(1+o(1)) \\
g_{1}=g(1+o(1))
\end{array} \Rightarrow \frac{f_{1}}{g_{1}}=\frac{f}{g} \frac{(1+o(1))}{(1+o(1))}\right.\right.\right.
$$

And since $\frac{(1+o(1))}{(1+o(1))}=1+o(1) \rightarrow 1$, then $\lim _{x \rightarrow x_{0}} \frac{f_{1}(x)}{g_{1}(x)}=\lim _{x \rightarrow x_{0}} \frac{f(x)}{g(x)}$.

Remark

Note: The concept of equivalent functions is used in calculating limits, especially in removing indeterminacy.

Examples

1) Calculate the limit $\lim _{x \rightarrow 0} \frac{\sqrt{4+x}-2}{\sqrt[3]{x+1}-1}$.

For $x \rightarrow 0$ we have $\sqrt{4+}-2 \sim \frac{1}{2} x$ and $\sqrt[3]{x+1}-1 \sim \frac{1}{3} x$, and from it

$$
\lim _{x \rightarrow 0} \frac{\sqrt{4+x}-2}{\sqrt[3]{x+1}-1}=\lim _{x \rightarrow 0} \frac{\frac{1}{2} x}{\frac{1}{3} x}=\frac{3}{2}
$$

2) Calculate the limit $\lim _{x \rightarrow+\infty} \frac{\sqrt{x^{2}-2 x}+x}{2+x e^{\frac{1}{x}}}$.

For $x \rightarrow+\infty$ we have $\sqrt{x^{2}-2 x}+x \sim 2 x$ and $2+x e^{\frac{1}{x}} \sim x$, and from it

$$
\lim _{x \rightarrow+\infty} \frac{\sqrt{x^{2}-2 x}+x}{2+x e^{\frac{1}{x}}}=\lim _{x \rightarrow+\infty} \frac{2 x}{x}=2 .
$$

4.3 Continuous functions:

Definition 4.12

Let f be a function defined on the neighborhood $V_{x_{0}}$ of the point x_{0}. We say that f is continuous at x_{0} if and only if: $\lim _{x \rightarrow x_{0}} f(x)=f\left(x_{0}\right)$. In other words
(f is continuous at $\left.x_{0}\right) \Leftrightarrow\left(\forall \varepsilon>0 ; \exists \delta>0 ; \forall x \in \mathrm{~V}_{x_{0}}: 0<\left|x-x_{0}\right|<\delta \Longrightarrow\left|f(x)-f\left(x_{0}\right)\right|<\varepsilon\right)$.
Let f be a function defined on the neighborhood $\mathrm{V}_{\mathrm{x}_{0}}$ from the right for the point x_{0}, we say that f is continuous at x_{0} from the right if and only if: $\lim _{x \rightarrow x_{0}} f(x)=f\left(x_{0}\right)$.

Let f be a function defined on the neighborhood $\mathrm{V}_{\mathrm{x}_{0}}$ from the left for the point x_{0}, we say that f is continuous at x_{0} from the left if and only: $\lim _{x \rightarrow x_{0}} f(x)=f\left(x_{0}\right)$.

Result 4.2

A function f is continuous at x_{0} if and only if it is continuous at x_{0} from the right and from the left

Examples

1) Let the function f defined on \mathbb{R} by $f(x)=\left\{\begin{array}{rr}\frac{\left|x^{2}-1\right|}{x-1} & \text { if } x \neq 1 \\ 2 & \text { if } x=1\end{array}\right.$.
$\lim _{x \rightarrow 1} f(x)=2=f(1) \Longrightarrow f$ is continuous at $x_{0}=1$, from the right.
$\lim _{x \rightarrow 1} f(x)=-2 \neq f(1) \Longrightarrow f$ is discontinuous at $x_{0}=1$, from the left. So f is discontinuous at $x_{0}=1$.

Definition 4.13

Le I be a interval of \mathbb{R}.
We say that a function f is continuous on the interval I if and only if it is continuous at every point in this interval. We denote the set of continuous functions on the interval I by $\mathrm{C}(I)$.
We say that the function f is continuous uniformly over the domain I if and only if

$$
\forall \varepsilon>0 ; \exists \delta>0: \forall x^{\prime}, x^{\prime \prime} \in I:\left|x^{\prime}-x "\right|<\delta \Longrightarrow\left|f\left(x^{\prime}\right)-f\left(x^{\prime \prime}\right)\right|<\varepsilon .
$$

It is clear from the definition that every uniformly continuous function in the interval I is continuous in this interval (the opposite is not always true).

4.3.1 Continuous functions in a closed interval

Theorem 4.8

Every continuous function in a closed interval $[a, b]$ is uniformly continuous in this interval.

Proof

We assume that f is continuous and uniformly discontinuous on $[a, b]$ i.e.

$$
\exists \varepsilon>0 ; \forall \delta>0: \exists x^{\prime}, x^{\prime \prime} \in[a, b]:\left|x^{\prime}-x "\right|<\delta \text { and }\left|f\left(x^{\prime}\right)-f\left(x^{\prime \prime}\right)\right| \geq \varepsilon .
$$

We put $\delta=\frac{1}{n}>0$ where $n \in \mathbb{N}^{*}$ and from it:

$$
\exists \varepsilon>0 ; \forall n \in \mathbb{N}^{*} ; \exists x_{n}^{\prime}, x_{n}^{\prime \prime} \in[a, b]:\left|x_{n}^{\prime}-x_{n}^{\prime \prime}\right|<\frac{1}{n} \text { and }\left|f\left(x_{n}^{\prime}\right)-f\left(x_{n}^{\prime \prime}\right)\right| \geq \varepsilon
$$

Since the sequence $\left(x_{n}^{\prime}\right)$ is bounded, according to the BOLZANO-WEIERSTRASS theorem, then a subsequence $\left(x_{n_{k}}^{\prime}\right)$ can be extracted from it that converges towards \bar{x} from $[a, b]$ and since
$\forall k \in \mathbb{N}:\left|x_{n_{k}}^{\prime}-x_{n_{k}}^{\prime \prime}\right|<\frac{1}{n_{k}}$, the partial sequence $\left(x_{n_{k}}^{\prime \prime}\right)$ also converges towards \bar{x}, and since f is continuous at \bar{x}, then $\lim _{k \rightarrow \infty}\left(f\left(x_{n_{k}}^{\prime}\right)-f\left(x_{n_{k}}^{\prime \prime}\right)\right)=f(\bar{x})-f(\bar{x})=0$. This is a contradiction because $\forall k \in \mathbb{N}:\left|f\left(x_{n_{k}}^{\prime}\right)-f\left(x_{n_{k}}^{\prime \prime}\right)\right| \geq \varepsilon$.

Theorem 4.9

Every continuous function on the closed interval $[a, b]$, is bounded.

Proof

Assume that f continuous and unbounded on the interval $[a, b]$, i.e. $\forall n \in \mathbb{N} ; \exists x_{n} \in$ $[a, b]:\left|f\left(x_{n}\right)\right|>n$.
Since the sequence $\left(x_{n}\right)$ is bounded, it is possible to extract from it a partial sequence $\left(x_{n_{k}}\right)$ that converges towards \bar{x} from $[a, b]$. Since f is continuous at \bar{x}, then $\lim _{k \rightarrow \infty}\left|f\left(x_{n_{k}}\right)\right|=|f(\bar{x})|$.

This is a contradiction because $\forall k \in \mathbb{N}:\left|f\left(n_{k}\right)\right|>n_{k} \geq k$, and hence $\lim _{k \rightarrow \infty}\left|f\left(x_{n_{k}}\right)\right|=+\infty$.
Theorem 4.10
Any continuous function on a closed interval $[a ; b]$ reaches its upper and lower bounds at least once, that is to say there is at least x_{1} and x_{2} are from the interval $[a ; b]$ where:

$$
f\left(x_{1}\right)=\sup _{x \in[a ; b]} f(x) \text { and } f\left(x_{2}\right)=\inf _{x \in[a ; b]} f(x)
$$

Proof

Let $M=\sup _{x \in[a ; b]} f(x)$. And assume that $\forall x \in[a ; b]: f(x) \neq M$ i.e. $\forall x \in[a ; b]: f(x) \neq M$.
So the function g defined on $[a ; b]$ by $\forall x \in[a ; b]: g(x)=\frac{1}{M-f(x)}$ it is continuous and strictly
positive and therefore it is bounded to this interval, i.e.: $\exists m>0 ; \forall x \in[a ; b]: g(x) \leq m$ or $\exists m>0 ; \forall x \in[a ; b]: f(x) \leq M-\frac{1}{m}$. This contradicts the hypothesis $M=\sup _{x \in[a ; b]} f(x)$.

Theorem 4.11

Let f be a continuous function in the interval $[a ; b]$, if the signs of $f(a)$ and $f(b)$ are different, then there is at least a point c in the interval $] a ; b[$ satisfies: $f(c)=0$.

Proof

Assume that $f(a)<0$ and $f(b)>0$. Let the set $\mathrm{E}=\{x \in[a ; b] / f(x)>0\}$, then $\mathrm{E} \neq \emptyset$ because $b \in \mathrm{E}$. We put $\inf \mathrm{E}=c$ and let us prove that: $f(c)=0$.

Assume that $f(c) \neq 0$ Since f is continuous at c, there exists at least a interval of the form $I=$ $] c-\alpha ; c+\alpha[\subset[a ; b]$ with $\alpha>0$, where $f(x)$ and $f(c)$ have the same sign. (See Proposition 1.3).So
if $f(c)>0$, then $\forall x \in I: f(x)>0$ by taking $x=c-\frac{\alpha}{2}$ we get $f\left(c-\frac{\alpha}{2}\right)>0$ so $c-\frac{\alpha}{2} \in \mathrm{E}$ and therefore $c-\frac{\alpha}{2} \geq c=\inf E$. and this is a contradiction.
if $f(c)<0$, then $\forall x \in I: f(x)<0$.
We have $\operatorname{infE}=c \Rightarrow \exists x_{0} \in \mathrm{E}: c+\alpha>x_{0} \geq c \Rightarrow x_{0} \in I \Rightarrow f\left(x_{0}\right)<0$. This is a contradiction because $x_{0} \in \mathrm{E} \Rightarrow f\left(x_{0}\right)>0$.So $f(c)=0$.

Theorem 4.12

Let f be a continuous function in the interval $[a ; b]$. For every real number λ between $f(a)$ and $f(b)$, there exists at least one real number c of the interval $[a ; b]$ satisfies: $f(c)=\lambda$.

Proof

case 1: If $\lambda=f(a)$ it is enough to take $c=a$, but if $\lambda=f(b)$ it is enough to take $c=b$.
case 2: If $\lambda \neq f(a)$ and $\lambda \neq f(b)$. Then the function g defined in the interval $[a ; b]$ by
$g(x)=f(x)-\lambda$, satisfies the conditions of Theorem 4.11, So there exists at least one real number c of the interval $[a ; b]$ where $g(c)=0$ and from which we get $f(c)=\lambda$.
Proposition 3.2
Let I be the interval of \mathbb{R}, f a real function
If the function f is continuous on I, then the image of the interval I by the function f is a interval of \mathbb{R}, that is, the set $f(I)$ is a interval.

Proof

Let $y_{1} ; y_{2}$ be two numbers of $f(I)$ where $y_{1} \leq y_{2}$ then there are at least two numbers $x_{1} ; x_{2}$ of the interval I where $y_{1}=f\left(x_{1}\right)$ and $y_{2}=f\left(x_{2}\right)$ according to the theorem 4.12 for every number y such that $y_{1} \leq y \leq y_{2}$, there exists at least an number x confined between x_{1} and x_{2} (i.e. $x \in I$), where $y=f(x)$ and hence $y \in f(I)$.

4.3.2 Extension by continuity

Definition 414

Let f be a function defined on the domain I. With exception of the point x_{0} of I, we assume that $\lim _{x \rightarrow x_{0}} f(x)=\ell$. Then the function \widetilde{f}, defined by $\widetilde{f}(x)=\left\{\begin{array}{ll}f(x) & ; x \neq x_{0} \\ \ell & ; x=x_{0}\end{array}\right.$, coincides with f on $I-$ $\left\{x_{0}\right\}$ and is continuous at x_{0}. The function \widetilde{f} is called the extension of f with continuity at x_{0}.

Example

Let f be a function defined on \mathbb{R}^{*} by $f(x)=\frac{\sin 2 x}{x}$. Since $\lim _{x \rightarrow 0} \frac{\sin 2 x}{x}=2$, then f can be extended by continuity at $x_{0}=0$ to the function \widetilde{f} defined by: $\widetilde{f}(x)=\left\{\begin{array}{ll}\frac{\sin 2 x}{x} ; & x \neq 0 \\ 2 & ; x \neq 0\end{array}\right.$.

4.3.3 properties of monotone functions on an interval:

Theorem 4.13

Let $f:] a, b\left[\rightarrow \mathbb{R}\right.$ be a monotonic function where $-\infty<a<b<+\infty$, then the limits $\lim _{x \rightarrow a} f(x)$ ، $\lim _{x \rightarrow b} f(x)$, are exists (finite or infinite) and we have
If f increasing $\Longrightarrow-\infty \leq \inf _{x \in] a, b[} f(x)=\lim _{x \rightarrow a} f(x) \leq \lim _{x \rightarrow b} f(x)=\sup _{x \in] a, b[} f(x) \leq+\infty$

If f decreasing $\Rightarrow-\infty \leq \inf _{x \in] a, b[} f(x)=\lim _{x \rightarrow b} f(x) \leq \lim _{x \rightarrow a}^{x \rightarrow a} f(x)=\sup _{x \in] a, b[} f(x) \leq+\infty$

Proof

Assume that f increasing and $\sup _{x \in] a, b[} f(x)=M<+\infty$ and let us prove that: $\lim _{x \rightarrow b} f(x)=M$.
We have $\left.\sup _{x \in] a, b[} f(x)=M \Longrightarrow \forall \varepsilon>0 ; \exists \alpha \in\right] a, b[: M-\varepsilon<f(\alpha) \leq M$.
f increasing
By putting $\delta=b-\alpha>0$, then $b-\delta<x<b \Rightarrow \alpha<x<b \quad \cong \quad f(\alpha) \leq f(x)$

$$
\begin{aligned}
& \Rightarrow M-\varepsilon<f(\alpha) \leq f(x) \leq M<M+\varepsilon \\
& \Rightarrow M-\varepsilon<f(x)<M+\varepsilon
\end{aligned}
$$

So $\forall \varepsilon>0 ; \exists \delta>0:-\delta<x-b<0 \Rightarrow|f(x)-M|<\varepsilon$ we get $\lim _{x \rightarrow b} f(x)=M$.
In the same way we prove the second case.

Corollary 4.1

1) Let $f:] a, b[\rightarrow \mathbb{R}$ be a monotonic function then:
a) If f increasing $\Rightarrow f(a) \leq \lim _{x \rightarrow a} f(x) \leq \lim _{x \rightarrow b} f(x) \leq f(b)$.
b) If f decreasing $\Rightarrow f(b) \leq \lim _{x \rightarrow b} f(x) \leq \lim _{x \rightarrow a}^{x \rightarrow a} f(x) \leq f(a)$.
2) Let I be an interval of \mathbb{R} bounded by a and $b(a<b)$, and let $f:[a, b] \rightarrow \mathbb{R}$ be an increasing function. For each x_{0}, where $a<x_{0}<b$ then:
a) $-\infty<f\left(x_{0}-0\right) \leq f\left(x_{0}\right) \leq f\left(x_{0}+0\right)<+\infty$.
b) If $a \in I \Longrightarrow f(a) \leq f(a+0)<+\infty$.
c) If $b \in I \Rightarrow-\infty<f(b-0) \leq f(b)$.

Remark

We obtain a corollary similar to corollary 4.1 if f is decreasing over the interval I.

Theorem 4.14

Let I be an interval of \mathbb{R} and let $f:[a, b] \rightarrow \mathbb{R}$ be an monotonic function Then f is continuous on I if and only if $f(I)$ is a interval.

Proof

Necessary conditions

According to Proposition 2.3, if f is continuous, then $f(I)$ is an interval.

sufficient condition

We assume f is increasing and $f(I)$ is a interval and prove that f is continuous on I.
Suppose the opposite and let x_{0} be a point of discontinuity of f. As f is increasing, then at least one of the relations $f\left(x_{0}\right)<f\left(x_{0}+0\right), f\left(x_{0}-0\right)<f\left(x_{0}\right)$. is verified (corollary 4.1).
Assume, for example, that $f\left(x_{0}\right)<f\left(x_{0}+0\right)$ in this case, then for each x of I, we have $x \leq x_{0} \Rightarrow f(x)<f\left(x_{0}\right)$ and $x>x_{0} \Rightarrow f(x) \geq f\left(x_{0}+0\right)$ that is $]\left(x_{0}\right), f\left(x_{0}+0\right)[\cap f(I)=\emptyset$. Let $x_{1} \in I$ where $x_{1}>x_{0}$ then $f\left(x_{0}\right) \in f(I)$ and $f\left(x_{1}\right) \in f(I)$ and from it $\left[f\left(x_{0}\right), f\left(x_{1}\right)\right] \subset f(I)$ (because $f(I)$ is a interval) and since $f\left(x_{1}\right)>f\left(x_{0}+0\right)$ then $] f\left(x_{0}\right), f\left(x_{0}+0\right)[\subset$ $\left[f\left(x_{0}\right), f\left(x_{1}\right)\right]$
i.e. $] f\left(x_{0}\right), f\left(x_{0}+0\right)[\cap f(I) \neq \emptyset$. This is a contradiction.

4.4.3 The inverse function of a strictly monotonic continuous function:

Theorem 4.15

Let I be the interval of \mathbb{R} and $f: I \rightarrow \mathbb{R}$ as a function.
If f is continuous and strictly monotonic over the interval I, then f in this case is bijective of the interval I to the interval $f(I)$. Therefore, f accepts an inverse function that we denote by f^{-1}, which in turn is defined, continuous, and strictly monotonic over the interval $f(I)$ and has the same direction of change of f, and we have

$$
\forall x \in I ; \forall y \in f(I): y=f(x) \Leftrightarrow x=f^{-1}(y) \ldots .(*)
$$

Remark: Relation (*) is used to give the expression for the function f^{-1} if possible.
If f is strictly monotonic over I, it is injective, and from the definition of the set $f(I)$, it is surjective, so f is bijective.
f is continuous, $f(I)$ is an interval. On the other hand, as f is strictly monotonic, f^{-1} is also monotonic. Therefore, f^{-1} is continuous according to the theorem 4.14 because $f^{-1}(f(I))=I$ is an interval.

Example

Let the function f defined on the interval $\mathrm{I}=\left[0 ;+\infty\left[\right.\right.$ by $f(x)=x^{2}+3$, then f is continuous and strictly monotonic (strictly increasing) on the interval $\mathrm{I}=[0 ;+\infty[$ where $f(\mathrm{I})=[3 ;+\infty[$ according to theorem (4.15), f is a bijective to the interval $[0 ;+\infty[]$ in the interval $[3 ;+\infty[$, so it accepts an inverse function f^{-1} and we have:

$$
\begin{aligned}
\forall x \in\left[0 ;+\infty\left[; \forall y \in\left[3 ;+\infty\left[: y=x^{2}+3\right.\right.\right.\right. & \Leftrightarrow x^{2}=y-3 \\
& \Leftrightarrow\left\{\begin{array}{c}
x=\sqrt{y-3} \\
\mathrm{~V} \\
x=-\sqrt{y-3}<0(م))
\end{array}\right.
\end{aligned}
$$

So $f^{-1}(x)=\sqrt{y-3}$, after replacing x with y, the final definition of the inverse function f^{-1} is as follows:

$$
\begin{gathered}
f^{-1}:[3 ;+\infty[\rightarrow[0 ;+\infty[\\
x \rightarrow \sqrt{x-3}
\end{gathered}
$$

Exercise*

Let the function f defined on \mathbb{R} by $f f(x)=\left\{\begin{array}{ll}x^{2}-2 x+1 & \text { si } x \leq 1 \\ \frac{-x+1}{2 x-1} & \text { si } x>1\end{array}\right.$.

1) Prove That f is continuous and strictly monotonic over \mathbb{R}.
2) Concluding that f accepts an inverse function f^{-1}, write the expression $f^{-1}(x)$ in terms of x.

Solution

$\lim _{x \rightarrow 1} f(x)=\lim _{x \rightarrow 1}(x)=f(1)=0 \Rightarrow$ continuous at $0 \Rightarrow f$ continuous over \mathbb{R}.
f is decreasing over \mathbb{R} and $f(\mathbb{R})=]-\frac{1}{2} ;+\infty[$. So

$$
\begin{gathered}
\left.f^{-1}:\right]-\frac{1}{2} ;+\infty[\rightarrow \mathbb{R} \\
x \rightarrow f(x)=\left\{\begin{array}{l}
\frac{x+1}{2 x+1}, \frac{-1}{2}<x<0 \\
1-\sqrt{x},
\end{array} x \geq 0\right.
\end{gathered}
$$

4.4 Differentiable functions

4.4.1 Definition and basic properties

Definition 4.15

Let f be a function defined on the neighborhood $V_{x_{0}}$ of the point x_{0}. We say that the function f is differentiable at x_{0} if and only if $\lim _{x \rightarrow x_{0}} \frac{f(x)-f\left(x_{0}\right)}{x-x_{0}}=\mathrm{L}$, exists. We call L the derivative of f at x_{0}, and we write. $f^{\prime}\left(x_{0}\right)=L$. If f is differentiable at all $x \in I$, then we simply say that f is differentiable, and then we obtain a function $f^{\prime}: I \rightarrow \mathbb{R}$ The derivative is sometimes written as $\frac{d f}{d x}$ or $\frac{d y}{d x}$ where $y=$ $f(x)$.

Remarks

1) By putting $x-x_{0}=h$, the previous limit is written as $\lim _{h \rightarrow 0} \frac{f\left(x_{0}+h\right)-f\left(x_{0}\right)}{h}=f^{\prime}\left(x_{0}\right)$.
2) The function f is differentiable at x_{0} if and only if there exists a function ε defined in the neighborhood $V_{x_{0}}$ to the point x_{0} where

$$
\forall x \in V_{x_{0}}: f(x)-f\left(x_{0}\right)=\left(f^{\prime}\left(x_{0}\right)+\varepsilon(x)\right)\left(x-x_{0}\right), \lim _{x \rightarrow x_{0}} \varepsilon(x)=0
$$

If $\lim _{x \rightarrow x_{0}} \frac{f(x)-f\left(x_{0}\right)}{x-x_{0}}=L_{d}\left(\lim _{x \rightarrow x_{0}} \frac{f(x)-f\left(x_{0}\right)}{x-x_{0}}=L_{g}\right.$, respectively $)$, we say that the function f is differentiable at x_{0} from the right (from the left, respectively) And we write $L_{d}=f^{\prime}\left(x_{0}+0\right)$ ($L_{g}=f^{\prime}\left(x_{0}-0\right)$, respectively).

Corollary 4.2

A function f is differentiable at x_{0} if and only if $f^{\prime}\left(x_{0}-0\right)$ and $f^{\prime}\left(x_{0}+0\right)$ exist and

$$
f^{\prime}\left(x_{0}+0\right)=f^{\prime}\left(x_{0}-0\right)
$$

Example

Let f be a function defined in \mathbb{R} by $f(x)=\left|x^{2}-1\right|$, let us study the differentiability
of f at $x_{0}=1$. We have
$\lim _{x \rightarrow 1} \frac{f(x)-f(1)}{x-1}=\lim _{x \rightarrow 1} \frac{x^{2}-1}{x-1}=2=f^{\prime}(1+0)$ and $\lim _{x \rightarrow 1} \frac{f(x)-f(1)}{x-1}=\lim _{x \rightarrow 1} \frac{-\left(x^{2}-1\right)}{x-1}=-2=f^{\prime}(1-0)$.
f is differentiable at $x_{0}=1$ from the right and from the left, but it is not differentiable at $x_{0}=$ 1 because $f^{\prime}(1+0) \neq f^{\prime}(1-0)$.

Geometric interpretation

The derivative of the function f at x_{0} is the slope of the line tangent to the graph
of f at the point $\mathrm{M}_{0}\left(x_{0}, \mathrm{f}\left(x_{0}\right)\right)$. Thus, the equation of this tangent line is
$y=f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)+f\left(x_{0}\right)$.
The left and right derivatives are also interpreted by the half-tangents to the left and right of the point $\mathrm{M}_{0}\left(x_{0}, \mathrm{f}\left(x_{0}\right)\right)$.

Theorem 4.16

If f is differentiable at x_{0}, then f is continuous at x_{0}.

Proof

Let f be differentiable at x_{0} then there is a neighborhood $V_{x_{0}}$ where
$\forall x \in V_{x_{0}}: f(x)-f\left(x_{0}\right)=\left(f^{\prime}\left(x_{0}\right)+\varepsilon(x)\right)\left(x-x_{0}\right)$ and $\lim _{x \rightarrow x_{0}} \varepsilon(x)=0$. So
$\lim _{x \rightarrow x_{0}}\left(f(x)-f\left(x_{0}\right)\right)=\lim _{x \rightarrow x_{0}}\left(f^{\prime}\left(x_{0}\right)+\varepsilon(x)\right)\left(x-x_{0}\right)=0$ So f is continuous at x_{0}.

4.4.2 Higher order derivative

Let f be a function differentiable on the interval I. If f^{\prime} differentiable on the interval I, then we denote its derivative by $f^{\prime \prime}$, it is called the second derivative. In the same way, we define the successive derivatives of the function f as follows:

$$
\forall n \in \mathbb{N}: f^{(n+1)}(x)=\left(f^{(n)}(x)\right)^{\prime} f^{(0)}(x)=f(x)
$$

We denote the nth-order derivative of the function f by $\frac{d^{n} y}{d x^{n}}$ or $y^{(n)}$, where $y=f(x)$.
Exercise Prove that:

1) $\forall n \in \mathbb{N}: \cos ^{(n)} x=\cos \left(x+\frac{\pi}{2} n\right)$.
2) $\forall n \in \mathbb{N}:\left[\frac{1}{x}\right]^{(n)}=\frac{(-1)^{n} n!}{x^{n+1}}$.

Definition 4.16

We say of a function f defined in interval I, that it is of class C^{n} if it is differentiable to order n andthe derivative $f^{(n)}$ is continuous over I. We denote the set of functions of class C^{n} in the interval I by.$C^{n}(I)$. We have a definition:
$C^{0}(I)=C(I)$
The set of infinitely differentiable functions over the interval I., we denote $C^{\infty}(I)$.
4.4.3 Operations on differentiable functions

Theorem 4.17

Let f and g be differentiable functions on the interval I, then the functions $f+g, \alpha f, f g, \frac{f}{g}$ ($g \neq 0$) are differentiable over I and we have:

$$
\begin{array}{cl}
(f+g)^{\prime}=f^{\prime}+g^{\prime} & , \quad(\alpha f)^{\prime}=\alpha f^{\prime} \\
\left(\frac{f}{g}\right)^{\prime}=\frac{f^{\prime} g-f g^{\prime}}{g^{2}}, & (f g)^{\prime}=f^{\prime} g+f g^{\prime}
\end{array}
$$

Proof (Let us prove the last case)
Let $x_{0} \in I$ we have

$$
\frac{\frac{f}{g}(x)-\frac{f}{g}\left(x_{0}\right)}{x-x_{0}}=\frac{f(x) g\left(x_{0}\right)-f\left(x_{0}\right) g(x)}{g(x) g\left(x_{0}\right)\left(x-x_{0}\right)}=\frac{\frac{f(x)-f\left(x_{0}\right)}{\left(x-x_{0}\right)} g\left(x_{0}\right)-f\left(x_{0}\right) \frac{g(x)-g\left(x_{0}\right)}{\left(x-x_{0}\right)}}{g(x) g\left(x_{0}\right)} .
$$

When $x \rightarrow x_{0}$ then $\frac{f(x)-f\left(x_{0}\right)}{\left(x-x_{0}\right)} \rightarrow f^{\prime}\left(x_{0}\right)$ and $\frac{g(x)-g\left(x_{0}\right)}{\left(x-x_{0}\right)} \rightarrow g^{\prime}\left(x_{0}\right)$ and $f(x) \rightarrow f\left(x_{0}\right)$ and

$$
g(x) \rightarrow g\left(x_{0}\right) . \text { So } \frac{\frac{f}{g}(x)-\frac{f}{g}\left(x_{0}\right)}{x-x_{0}} \rightarrow \frac{f^{\prime}\left(x_{0}\right) g\left(x_{0}\right)-\left(x_{0}\right) f g^{\prime}\left(x_{0}\right)}{\left(g\left(x_{0}\right)\right)^{2}}
$$

Theorem 4.18 (Leibniz formula)
If f and g admit nth derivatives on the interval I then the function $f . g$ admits an nth derivative on the interval I and we have:

$$
\forall n \in \mathbb{N}:(f . g)^{(n)}=\sum_{p=0}^{n} C_{n}^{p} f^{(n-p)} g^{(p)}
$$

Proof

We use proof by induction and by noting that: $\forall n, p \in \mathbb{N}(1 \leq p \leq n-1)$: $C_{n}^{p}=C_{n-1}^{p}+C_{n-1}^{p-1}$.

Theorem 4.19

Let f and g be functions where f is differentiable on the interval I and g is differentiable on the interval $f(I)$, then the function $g \circ f$ is differentiable on the interval I and $(g \circ f)^{\prime}=\left(g^{\prime} \circ f\right) f^{\prime}$. Proof
Let $x_{0} \in I$ since f is differentiable at x_{0} and g is differentiable at $y_{0}=f\left(x_{0}\right)$, Then

$$
f(x)-f\left(x_{0}\right)=\left(f^{\prime}\left(x_{0}\right)+\varepsilon_{1}(x)\right)\left(x-x_{0}\right) \text { with } \lim _{x \rightarrow x_{0}} \varepsilon_{1}(x)=0
$$

and

$$
g(y)-g\left(y_{0}\right)=\left(g^{\prime}\left(y_{0}\right)+\varepsilon_{2}(y)\right)\left(y-y_{0}\right) \text { with } \lim _{y \rightarrow y_{0}} \varepsilon_{2}(y)=0 .
$$

For $y=f(x)$ then $y \rightarrow y_{0}$ when $x \rightarrow x_{0}$ (since f is continuous at x_{0}) and from there
$g(f(x))-g\left(f\left(x_{0}\right)\right)=\left(g^{\prime}\left(f\left(x_{0}\right)\right)+\varepsilon_{2}(y)\right)\left(f^{\prime}\left(x_{0}\right)+\varepsilon_{1}(x)\right)\left(x-x_{0}\right)$ and
$\frac{g(f(x))-g\left(f\left(x_{0}\right)\right)}{x-x_{0}}=\left(g^{\prime}\left(f\left(x_{0}\right)\right)+\varepsilon_{2}(y)\right)\left(f^{\prime}\left(x_{0}\right)+\varepsilon_{1}(x)\right)$

For $x \rightarrow x_{0}$ then $y \rightarrow y_{0}, \varepsilon_{1}(x) \rightarrow 0$ and $\varepsilon_{2}(y) \rightarrow 0$.So

$$
\frac{g(f(x))-g\left(f\left(x_{0}\right)\right)}{x-x_{0}} \rightarrow g^{\prime}\left(f\left(x_{0}\right)\right) f^{\prime}\left(x_{0}\right) .
$$

Example

Let the function h defined on \mathbb{R}_{+}by $h(x)=\cos \left(3 \sqrt{x}+x^{2}\right)$. We have $h=g \circ f$ where $f(x)=3 \sqrt{x}+x^{2}$ and $g(x)=\cos x$ and we have $f^{\prime}(x)=\frac{3}{2 \sqrt{x}}+2 x$ and $g^{\prime}(x)=-\sin x$. So

$$
\begin{aligned}
h^{\prime}(x)=\left(g^{\prime} \circ f\right)(x) f^{\prime}(x) & =-\sin \left(3 \sqrt{x}+x^{2}\right)\left(\frac{3}{2 \sqrt{x}}+2 x\right) \\
& =-\left(\frac{3}{2 \sqrt{x}}+2 x\right) \sin \left(\sqrt{x}+x^{2}\right) .
\end{aligned}
$$

Theorem 4.20

If f is strictly monotonic continuous function on the interval I, and differentiable at x_{0} from I where $f^{\prime}\left(x_{0}\right) \neq 0$, then the inverse function f^{-1} is differentiable at $y_{0}=f\left(x_{0}\right)$ from $f(I)$ And we have:

$$
\left(f^{-1}\right)^{\prime}\left(y_{0}\right)=\frac{1}{f^{\prime}\left(x_{0}\right)}=\frac{1}{f^{\prime}\left[f^{-1}\left(y_{0}\right)\right]^{\prime}}
$$

Proof

Let f is differentiable at x_{0} from I where $f^{\prime}\left(x_{0}\right) \neq 0$, and let y_{0} be a point from $f(I)$ where $y_{0}=f\left(x_{0}\right)$. For every y of $f(I)$ there is a single real number x of I where $y=f(x)$ and since f is continuous and strictly monotonic on I, so f^{-1} is continuous and strictly monotonic on $f(I)$ (according to the Theorem 4.15), so $\forall y \in f(I): y \neq y_{0} \Rightarrow x \neq x_{0}$. and for $y \rightarrow y_{0}$, then $x \rightarrow x_{0}$.

We put $g=f^{-1}$ then $y_{0}=f\left(x_{0}\right) \Leftrightarrow x_{0}=g\left(y_{0}\right)$ and $y=f(x) \Leftrightarrow x=g(y)$.So

$$
\lim _{y \rightarrow y_{0}} \frac{g(y)-g\left(y_{0}\right)}{y-y_{0}}=\lim _{y \rightarrow y_{0}} \frac{x-x_{0}}{y-y_{0}}=\lim _{x \rightarrow x_{0}} \frac{1}{\frac{y-y_{0}}{x-x_{0}}}=\frac{1}{f^{\prime}\left(x_{0}\right)} .
$$

Examples

1) Let $\begin{aligned} & f:[0 ;+\infty[\rightarrow \mathbb{R} \\ & x \rightarrow f(x)=x^{n}\end{aligned}$. The function f is continuous and strictly increasing on the domain $I=$ [$0 ;+\infty$ [, and from it, f accepts an inverse function f^{-1} defined, continuous and strictly increasing on the interval $f(I)=\left[0 ;+\infty[\text {, denoted by } \sqrt[n]{ } \text {. or (. })^{\frac{1}{n}}\right.$ is called the function of the nth root. Since: $\forall x \in] 0,+\infty\left[:\left(x^{n}\right)^{\prime}=n x^{n-1} \neq 0\right.$, Then the function f^{-1} are differentiatiable at every number y of the interval $] 0,+\infty\left[\right.$ where $y=x^{n}$ and we have:

$$
\begin{aligned}
\left(f^{-1}\right)^{\prime}(y)=\frac{1}{f^{\prime}(x)}=\frac{1}{n x^{n-1}}= & \frac{1}{n\left((y)^{\frac{1}{n}}\right)^{n-1}}=\frac{1}{n} y^{\frac{1}{n}-1} . \text { So } \\
& \forall x \in] 0,+\infty\left[:(\sqrt[n]{x})^{\prime}=\left((x)^{\frac{1}{n}}\right)^{\prime}=\frac{1}{n} x^{\frac{1}{n}-1} .\right.
\end{aligned}
$$

2) Let $\begin{gathered}h:]-\frac{\pi}{2} ; \frac{\pi}{2}[\rightarrow \mathbb{R} \\ x \rightarrow h(x)=\tan x\end{gathered}$. The function h is continuous and strictly increasing on the domain $I=$]- $\frac{\pi}{2} ; \frac{\pi}{2}\left[\right.$, and from it, h accepts an inverse function h^{-1} defined, continuous and strictly increasing on the interval $h(I)=\mathbb{R}$, denoted by arctan. Since: $\forall x \in]-\frac{\pi}{2} ; \frac{\pi}{2}\left[: h^{\prime}(x)=(\tan x)^{\prime}=\frac{1}{\cos ^{2} x} \neq 0\right.$
, Then the function h^{-1} are differentiable at every number y of set \mathbb{R} where $y=\tan x$ and we have: $\left(h^{-1}\right)^{\prime}(y)=\frac{1}{h^{\prime}(x)}=\cos ^{2} x=\frac{1}{1+\tan ^{2} x}=\frac{1}{1+y^{2}}$.

So

$$
\forall x \in \mathbb{R}:(\arctan x)^{\prime}=\frac{1}{1+x^{2}}
$$

Theorem 4.21

If f has an extremum at point x_{0} and is differentiable at x_{0} then $f^{\prime}\left(x_{0}\right)=0$.
Proof
The existence of $f^{\prime}\left(x_{0}\right)$ entails the existence and equality of $f^{\prime}\left(x_{0}+0\right)$ and $f^{\prime}\left(x_{0}-0\right)$ and we assume that $f\left(x_{0}\right)$ is a maximum, then exists a neighborhood $V_{x_{0}}$ of the point x_{0} where
$\forall x \in V_{x_{0}}: f(x) \leq f\left(x_{0}\right)$. So
If $x>x_{0}$ then $\frac{f(x)-f\left(x_{0}\right)}{x-x_{0}} \leq 0$ and if $x<x_{0}$ then $\frac{f(x)-f\left(x_{0}\right)}{x-x_{0}} \geq 0$. So
$\lim _{x \rightarrow x_{0}} \frac{f(x)-f\left(x_{0}\right)}{x-x_{0}}=f^{\prime}\left(x_{0}-0\right)=f^{\prime}\left(x_{0}\right) \geq 0$ and
$\lim _{\substack{>\\ x \rightarrow x_{0}}} \frac{f(x)-f\left(x_{0}\right)}{x-x_{0}}=f^{\prime}\left(x_{0}-0\right)=f^{\prime}\left(x_{0}\right) \leq 0$.
We obtain $f^{\prime}\left(x_{0}\right)=0$

4.4.4 The theorems of Lagrange and Cauchy on finite increments

Proposition 3.3 (Rolle's Theorem)
If a function $f[a, b] \rightarrow \mathbb{R}$ is continuous on a closed interval $[a, b]$ and differentiable on the open interval $] a, b\left[\right.$ and $f(a)=f(b)$, then there exists a point $c \in[a, b]$ such that $f^{\prime}(c)=0$.
Proof
Since the function f is continuous on $[a, b]$, there exist points $x_{m}, x_{M} \in[a, b]$ where they take their minimum and maximum values respectively. If $f\left(x_{\mathrm{m}}\right)=f\left(x_{\mathrm{M}}\right)$, then the function is constant on $[a, b]$; and since in that case $\forall x \in] a ; b\left[: f^{\prime}(x)=0\right.$. If $f\left(x_{\mathrm{m}}\right)<f\left(x_{\mathrm{M}}\right)$, then, since $f(a)=f(b)$, one of the points x_{m} and x_{M} must lie in the open interval $] a, b[$. We denote it by c According theorem 4.21 we obtain $f^{\prime}(c)=0$.
Theorem 422 (Lagrange's finite-increment theorem)
If a function $f[a, b] \rightarrow \mathbb{R}$ is continuous on a closed interval $[a, b]$ and differentiable on the open interval $] a, b\left[\right.$, then there exists a point $c \in[a, b]$ such that $f(b)-f(a)=f^{\prime}(c)(b-a)$.
Proof

It is sufficient to check that the function g, defined in the domain $[a, b]$ by $g(x)=f(x)-$ $\frac{f(b)-f(a)}{b-a} x$, satisfies the conditions of Proposition 3.3. Then there is at least a number c of the interval] a, b [that satisfies $g^{\prime}(c)=0$ and we obtain $f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}$.

Remark

This theorem is used in approximate calculations and in proving many inequalities.

Example

Using the finite increment theorem, prove that: $\forall x \geq 0: \ln (x+1) \leq x$.
Applying the theorem of finite increments to the interval $[0 ; x]$ where $x \geq 0$, we get

$$
\forall x \geq 0: \ln (x+1)-\ln 1=f^{\prime}(c)(x-0) ; \quad 0<\mathrm{c}<x
$$

So

$$
\ln (x+1)=f^{\prime}(c) x=\frac{1}{1+c} \cdot x \quad ; \quad 0<c<x
$$

We have

$$
c>0 \Rightarrow \frac{1}{1+c}<1 \Rightarrow \frac{1}{1+c} x \leq x .
$$

We obtain

$$
\forall x \geq 0: \ln (x+1) \leq x
$$

Theorem 423 (Cauchy's finite-increment theorem)

If a functions $f, g[a, b] \rightarrow \mathbb{R}$ are continuous on a closed interval $[a, b]$ and differentiable on the open interval $] a, b[$, and g is non-zero in the interval $] a, b[$ then there exists a point $c \in] a, b[$ such that $\frac{f(b)-f(a)}{g(b)-g(a)}=\frac{f^{\prime}(c)}{g^{\prime}(c)}$.
Proof
We have $(\forall x \in] a ; b\left[: g^{\prime}(x) \neq 0\right) \Longrightarrow(g(b) \neq g(a))$ so it is sufficient to check that the function φ, defined in the domain $[a, b]$ by $\varphi(x)=f(x)-\frac{f(b)-f(a)}{g(b)-g(a)} g(x)$, satisfies the conditions of
Proposition 3.3. Then there is at least a number c of the interval] a, b that satisfies $\varphi^{\prime}(c)=0$ and we obtain $\frac{f^{\prime}(c)}{g^{\prime}(c)}=\frac{f(b)-f(a)}{b-a}$.

Theorem 424 (Hospital Rule)

If a functions f, g are continuous on a neighborhood V_{a} of the point a and differentiable on $V-$ $\{a\}$ then: If the $\lim _{x \rightarrow a} \frac{f^{\prime}(x)}{g^{\prime}(x)}$ exists, then the $\lim _{x \rightarrow a} \frac{f(x)-f(a)}{g(x)-g(a)}$ also and $\lim _{x \rightarrow a} \frac{f^{\prime}(x)}{g^{\prime}(x)}=\lim _{x \rightarrow a} \frac{f(x)-f(a)}{g(x)-g(a)}$. If in particular, $f(a)=g(a)=0$ we have the equality $\lim _{x \rightarrow a} \frac{f^{\prime}(x)}{g^{\prime}(x)}=\lim _{x \rightarrow a} \frac{f(x)}{g(x)}$.
Proof

Assume that $\lim _{x \rightarrow a} \frac{f^{\prime}(x)}{g^{\prime}(x)}=\ell$.
For $x>a$ we apply Theorem 424 to the interval $[a, x]$ and we get:

$$
\left.\frac{f(x)-f(a)}{g(x)-g(a)}=\frac{f^{\prime}(c)}{g^{\prime}(c)} \text { where } c \in\right] a, x[
$$

So $x \xrightarrow{>} a \Rightarrow c \xrightarrow{>} a \Rightarrow \frac{f^{\prime}(c)}{g^{\prime}(c)} \rightarrow \ell \Rightarrow \frac{f(x)-f(a)}{g(x)-g(a)} \rightarrow \ell$
For $x<a$ we apply Theorem 424 to the interval $[x, a]$ and we get:
So $x \stackrel{<}{\rightarrow} a \Rightarrow c \stackrel{<}{\rightarrow} a \Rightarrow \frac{f^{\prime}(c)}{g^{\prime}(c)} \rightarrow \ell \Rightarrow \frac{f(x)-f(a)}{g(x)-g(a)} \rightarrow \ell$.
We obtain $\lim _{x \rightarrow a} \frac{f^{\prime}(x)}{g^{\prime}(x)}=\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\ell$.

Remarks

1) The previous result remains true if f and g are undefined at a but accept two finite limits.
2) Theorem 4.24 can be applied several times in a row.
3) Theorem 4.24 can be applied in the following cases:
a) $\lim _{x \rightarrow \infty} f(x)=0$ and $\lim _{x \rightarrow \infty} g(x)=0$.
b)) $\lim _{x \rightarrow a} f(x)=\infty$ and $\lim _{x \rightarrow a} g(x)=\infty$.
c)) $\lim _{x \rightarrow \infty} f(x)=\infty$ and $\lim _{x \rightarrow \infty} g(x)=\infty$.

Examples

1) $\lim _{x \rightarrow 1} \frac{\sqrt{x+3}-2}{x-1}\left(\right.$ I.F $\left.\frac{0}{0}\right)$.
$\lim _{x \rightarrow 1} \frac{\sqrt{x+3}-2}{x-1}=\lim _{x \rightarrow 1} \frac{\frac{1}{2 \sqrt{x+3}}}{1}=\frac{1}{4}$.
2) $\lim _{x \rightarrow 0} \frac{e^{x}-x-1}{x^{2}}\left(\right.$ I.F $\left.\frac{0}{0}\right)$.
$\lim _{x \rightarrow 0} \frac{e^{x}-x-1}{x^{2}}=\lim _{x \rightarrow 0} \frac{e^{x}-1}{2 x}=\lim _{x \rightarrow 0} \frac{e^{x}}{2}=\frac{1}{2}$.
3) $\lim _{x \rightarrow+\infty} \frac{e^{x}+x^{2}}{x^{3}-x+1}\left(\right.$ I.F $\left.\frac{\infty}{\infty}\right)$.
$\lim _{x \rightarrow+\infty} \frac{e^{x}+x^{2}}{x^{3}-x+1}=\lim _{x \rightarrow+\infty} \frac{e^{x}+2 x}{3 x^{2}-1}=\lim _{x \rightarrow+\infty} e^{x} \frac{e^{x}+1}{6 x}=\lim _{x \rightarrow+\infty} \frac{e^{x}}{6}=+\infty$.
4) $\lim _{x \rightarrow+\infty} \frac{2 x^{2}}{x+3} \ln \frac{x-1}{x+2}($ I.F ∞. 0)
$\lim _{x \rightarrow+\infty} \frac{2 x^{2}}{x+3} \ln \frac{x-1}{x+2}=\lim _{x \rightarrow+\infty} \frac{2 x}{x+3} \lim _{x \rightarrow+\infty} \frac{\ln \frac{x-1}{x+2}}{\frac{1}{x}}$.
Calculate $\lim _{x \rightarrow+\infty} \frac{\ln \frac{x-1}{x+2}}{\frac{1}{x}}\left(\operatorname{I.F} \frac{0}{0}\right)$.
$\lim _{x \rightarrow+\infty} \frac{\ln \frac{x-1}{x+2}}{\frac{1}{x}}=\lim _{x \rightarrow+\infty} \frac{\left(\ln \frac{x-1}{x+2}\right)^{\prime}}{\left(\frac{1}{x}\right)^{\prime}}=\lim _{x \rightarrow+\infty} \frac{\frac{3}{(x+2)(x-1)}}{-\frac{1}{x^{2}}}=-3$
So $\lim _{x \rightarrow+\infty} \frac{2 x^{2}}{x+3} \ln \frac{x-1}{x+2}=2 \times(-3)=-6$.

Chapter five: Elementary functions

5.1 Inverse Trigonometric fonctions

5.1.1 Arcsine Function

Definition 5.1

The function f defined in the interval $I=\left[-\frac{\pi}{2} ; \frac{\pi}{2}\right]$ by $f(x)=\sin x$, is continuous and strictly increasing in the interval I, it accepts an inverse function f^{-1} that is defined, continuous and strictly increasing on the interval $f(I)=[-1 ; 1]$. We denote the function f^{-1} by "arcsin" or " $\sin ^{-1}$ ".

We have $\forall x \in\left[-\frac{\pi}{2} ; \frac{\pi}{2}\right] ; \forall y \in[-1 ; 1]: y=\sin x \Leftrightarrow x=\arcsin y$.

Derived function

We have $\forall x \in]-\frac{\pi}{2} ; \frac{\pi}{2}\left[:(\sin x)^{\prime}=\cos x \neq 0(\cos x>0)\right.$
According to the theorem 4.20 then, the function arcsin is differentiable at every number y of the field]-1; 1 where $y=\sin x$ and we have:
$(\arcsin y)^{\prime}=\frac{1}{(\sin x)^{\prime}}=\frac{1}{\cos x}=\frac{1}{\sqrt{1-\sin ^{2} x}}=\frac{1}{\sqrt{1-y^{2}}}$.
So
$\forall x \in]-1 ; 1\left[:(\arcsin x)^{\prime}=\frac{1}{\sqrt{1-x^{2}}}\right.$

5.1.2 Arccosine Function

Definition 5.2

The function g defined in the interval $I=[0 ; \pi]$ by $g(x)=\cos x$, is continuous and strictly decreasing in the interval I, it accepts an inverse function g^{-1} that is defined, continuous and strictly decreasing on the interval $f(I)=[-1 ; 1]$. We denote the function g^{-1} by "arccos" or " $\cos ^{-1}$ ".

We have $\forall x \in[0 ; \pi] ; \forall y \in[-1 ; 1]: y=\cos x \Leftrightarrow x=\arccos y$.

Derived function

We have $\forall x \in] 0 ; \pi\left[:(\cos x)^{\prime}=-\sin x \neq 0(\sin x>0)\right.$.

Then the function arccos is differentiable at every number y of the field $]-1 ; 1$ where $y=$ $\cos x$ and we have:
$(\arccos y)^{\prime}=\frac{1}{(\cos x)^{\prime}}=-\frac{1}{\sin x}=-\frac{1}{\sqrt{1-\cos ^{2} x}}=-\frac{1}{\sqrt{1-y^{2}}}$.
So
$\forall x \in]-1 ; 1\left[:(\arccos x)^{\prime}=-\frac{1}{\sqrt{1-x^{2}}}\right.$.

5.1.3 Arctangent Function

Definition 5.3

The function h defined in the interval $I=]-\frac{\pi}{2} ; \frac{\pi}{2}[\operatorname{by} h(x)=\tan x$, is continuous and strictly increasing in the interval I, it accepts an inverse function h^{-1} that is defined, continuous and strictly increasing on the interval $h(I)=\mathbb{R}$. We denote the function h^{-1} by "arctan" or " $\tan ^{-1}$ ".

We have $\forall x \in]-\frac{\pi}{2} ; \frac{\pi}{2}[; \forall y \in \mathbb{R}: y=\tan x \Leftrightarrow x=\arctan y$.

Derived function

We have $\forall x \in]-\frac{\pi}{2} ; \frac{\pi}{2}\left[:(\tan x)^{\prime}=\frac{1}{\cos ^{2} x} \neq 0\right.$
Then, the function arctan is differentiable at every number y of \mathbb{R} where $y=\tan x$ and we have:
$(\arctan y)^{\prime}=\frac{1}{(\tan x)^{\prime}}=\cos ^{2} x=\frac{1}{1+\tan ^{2} x}=\frac{1}{1+y^{2}}$.
So

$$
\forall x \in \mathbb{R}:(\arctan x)^{\prime}=\frac{1}{1+x^{2}}
$$

5.1.4 Arccotangent Function

Definition 5.4

The function k defined in the interval $I=] 0 ; \pi[\operatorname{by} k(x)=\operatorname{cotan} x$, is continuous and strictly decreasing in the interval I, it accepts an inverse function k^{-1} that is defined, continuous and strictly decreasing on the interval $k(I)=\mathbb{R}$. We denote the function k^{-1} by "arccotan" or " $\operatorname{cotan}^{-1}$ ".

We have $\forall x \in] 0 ; \pi[; \forall y \in \mathbb{R}: y=\operatorname{cotan} x \Leftrightarrow x=\operatorname{arccotan} y$.

Derived function

We have $\forall x \in] 0 ; \pi\left[:(\operatorname{tcoan} x)^{\prime}=-\frac{1}{\sin ^{2} x} \neq 0\right.$
Then, the function arccotan is differentiable at every number y of \mathbb{R} where $y=c o \tan x$ and we have:

$$
(\operatorname{arccotan} y)^{\prime}=\frac{1}{(\operatorname{cotan} x)^{\prime}}=-\sin ^{2} x=-\frac{1}{1+\operatorname{cotan}^{2} x}=-\frac{1}{1+y^{2}}
$$

So

$$
\forall x \in \mathbb{R}:(\operatorname{arccotan} x)^{\prime}=-\frac{1}{1+x^{2}}
$$

Properties

1) $\forall x \in[-1 ; 1]: \arcsin x+\arccos x=\frac{\pi}{2}$.
2) $\forall x \in[-1 ; 1]: \sin (\arccos x)=\sqrt{1-x^{2}}$.
3) $\forall x \in[-1 ; 1]: \cos (\arcsin x)=\sqrt{1-x^{2}}$.
4) $\forall x \in \mathbb{R}: \arctan x+\operatorname{arccotan} x=\frac{\pi}{2}$.
5) $\forall x>0: \arctan x+\arctan \frac{1}{x}=\frac{\pi}{2}$.
6) $\forall x<0: \arctan x+\arctan \frac{1}{x}=-\frac{\pi}{2}$.

Proof

1) We put $\forall x \in[-1 ; 1]: f(x)=\arcsin x+\arccos x$.

We have $\forall x \in]-1 ; 1\left[: f^{\prime}(x)=\frac{1}{\sqrt{1-x^{2}}}-\frac{1}{\sqrt{1-x^{2}}}=0\right.$. So the function f is constant in the interval $[-1 ; 1]$. So $\forall x \in[-1 ; 1]: f(x)=f(0)=\frac{\pi}{2}$.
2) We have $\forall x \in[-1 ; 1]: \arcsin x \in\left[-\frac{\pi}{2} ; \frac{\pi}{2}\right] \Rightarrow \cos (\arcsin x) \geq 0$. So
$\forall x \in[-1 ; 1]: \cos (\arcsin x)=\sqrt{1-(\sin (\arcsin x))^{2}}=\sqrt{1-x^{2}}$.
6) We put $\forall x<0: f(x)=\arctan x+\arctan \frac{1}{x}$. We have
$\forall x<0: f^{\prime}(x)=\frac{1}{1+x^{2}}-\frac{1}{x^{2}} \frac{1}{1+\left(\frac{1}{x}\right)^{2}}=0$. So the function f is constant in the interval $]-\infty ; 0[$. So $\forall x \in]-\infty ; 0\left[: f(x)=f(-1)=-\frac{\pi}{4}-\frac{\pi}{4}=-\frac{\pi}{2}\right.$.

Remark: The properties of inverse trigonometric functions are deduced from the properties of trigonometric functions. For example, property 1 is deduced from the property: $\sin \left(\frac{\pi}{2}-\alpha\right)=$ $\cos \alpha$, which we will explain later.

We have $\frac{\pi}{2}-\alpha \in\left[-\frac{\pi}{2} ; \frac{\pi}{2}\right] \Leftrightarrow \alpha \in[0, \pi]$. Bu putting $\cos \alpha=x$ we get $\alpha \in[0, \pi] \Leftrightarrow x \in[-1 ; 1]$ and $\sin \left(\frac{\pi}{2}-\alpha\right)=\cos \alpha \Leftrightarrow \sin \left(\frac{\pi}{2}-\alpha\right)=x \Leftrightarrow \frac{\pi}{2}-\alpha=\arcsin x$

$$
\begin{aligned}
& \Leftrightarrow \frac{\pi}{2}-\arccos x=\arcsin x \\
& \Leftrightarrow \frac{\pi}{2}=\arccos x+\arcsin x
\end{aligned}
$$

5.2 Hyperbolic functions and their inverses

5.2.1 Hyperbolic functions

Definition 5.5 The hyperbolic sine function, which we denote by "sh," is defined as $\forall x \in$ $\mathbb{R}: \operatorname{sh} x=\frac{e^{x}-e^{-x}}{2}$.

Definition 5.6The hyperbolic cosine function, which we denote by "ch," is defined as $\forall x \in$ $\mathbb{R}: \operatorname{ch} x=\frac{e^{x}+e^{-x}}{2}$.

Definition 5.7The hyperbolic tangent function, which we denote by "th," is defined as
$\forall x \in \mathbb{R}:$ th $x=\frac{\operatorname{sh} x}{\operatorname{ch} x}=\frac{e^{x}-e^{-x}}{e^{x}+e^{-x}}$.
Definition 5.8The hyperbolic cotangent function, which we denote by "th," is defined as $\forall x \in \mathbb{R}^{*}: \operatorname{coth} x=\frac{\operatorname{ch} x}{\operatorname{sh} x}=\frac{e^{x}+e^{-x}}{e^{x}-e^{-x}}$.

Properties

For all $x, y \in \mathbb{R}$ we have:

1) $\operatorname{sh}(-x)=-\operatorname{sh} x \quad$ r $\operatorname{ch}(-x)=\operatorname{ch} x$.
2) $1-t h^{2} x=\frac{1}{\operatorname{ch}^{2} x} \cdot \operatorname{ch}^{2} x-\operatorname{sh}^{2} x=1$.
3) $\operatorname{ch}(x+y)=\operatorname{ch} x \operatorname{ch} y+\operatorname{sh} x \operatorname{sh} y$.
4) $\operatorname{sh}(x+y)=\operatorname{ch} x \operatorname{sh} y+\operatorname{sh} x \operatorname{ch} y$.
5) $\operatorname{th}(x+y)=\frac{\operatorname{th} x+\operatorname{th} y}{1+\operatorname{th} x \operatorname{th} y}$.
6) $(\operatorname{sh} x)^{\prime}=\operatorname{ch} x,(\operatorname{ch} x)^{\prime}=\operatorname{sh} x,(\operatorname{th} x)^{\prime}=\frac{1}{\operatorname{ch}^{2} x},(\operatorname{coth} x)^{\prime}=-\frac{1}{\operatorname{sh}^{2} x}$.

5.2.2 Inverses Hyperbolic functions

Definition 5.9

The function f defined in the interval $I=[0 ;+\infty[$ by $f(x)=\operatorname{ch} x$, is continuous and strictly increasing in the interval I, it accepts an inverse function f^{-1} that is defined, continuous and strictly increasing on the interval $f(I)=\left[1 ;+\infty\left[\right.\right.$. We denote the function f^{-1} by " arg ch " or " ch^{-1} ".

We have $\forall x>0 ; \forall y>1: y=\operatorname{ch} x \Leftrightarrow \operatorname{ch} x=\frac{e^{x}+e^{-x}}{2} \Leftrightarrow e^{2 x}-2 y e^{x}+1=0$.

$$
\begin{aligned}
& \Leftrightarrow\left\{\begin{array}{l}
x=\ln \left(y+\sqrt{y^{2}-1}\right) \\
x=\ln \left(y-\sqrt{y^{2}-1}\right)
\end{array}\right. \\
& \Leftrightarrow x=\ln \left(y-\sqrt{y^{2}-1}\right)\left(\text { because } \ln \left(y-\sqrt{y^{2}-1}\right) \leq 0\right) .
\end{aligned}
$$

So $\forall x \geq 1$: $\arg \operatorname{ch} x=\ln \left(x+\sqrt{x^{2}-1}\right)$.
Derived function: $\forall x \in] 1 ;+\infty\left[:(\arg \operatorname{ch} x)^{\prime}=\frac{1}{\sqrt{x^{2}-1}}\right.$.

Definition 5.10

The function g defined in the interval $I=\mathbb{R}$ by $g(x)=\operatorname{sh} x$, is continuous and strictly increasing in the interval I, it accepts an inverse function g^{-1} that is defined, continuous and strictly increasing on the interval $f(I)=\mathbb{R}$. We denote the function g^{-1} by " arg sh " or " sh^{-1} ".

We have $\forall x \in \mathbb{R}: \arg \operatorname{sh} x=\ln \left(x+\sqrt{x^{2}+1}\right)$.
Derived function: $\forall x \in \mathbb{R}:(\arg \operatorname{sh} x)^{\prime}=\frac{1}{\sqrt{x^{2}+1}}$.

Definition 5.11

The function h defined in the interval $I=\mathbb{R}$ by $h(x)=\operatorname{th} x$, is continuous and strictly increasing in the interval I, it accepts an inverse function h^{-1} that is defined, continuous and strictly increasing on the interval $h(I)=]-1 ; 1\left[\right.$. We denote the function h^{-1} by "arctan" or " $\tan ^{-1}$ ".

We have $\forall x \in]-1 ; 1\left[: \arg\right.$ th $x=\frac{1}{2} \ln \frac{1+x}{1-x}$.
Derived function: $\forall x \in]-1 ; 1\left[:(\arg \operatorname{th} x)^{\prime}=\frac{1}{1-x^{2}}\right.$.

