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Chapter Four:  Real functions with real variable 

4.1 Generalities 

Definition 4.1 

We call a real function of a real variable every application 𝑓 of a subset 𝐷 of ℝ on set ℝ. 

𝐷 is called the domain of definition for 𝑓. 

We call the graph of the function 𝑓 the subset of ℝ2 which we denote by Γ𝑓, and defined as 

follows: Γ𝑓 = {(𝑥; 𝑦) ∈ ℝ2; 𝑥 ∈ 𝐷 ∧ 𝑦 = 𝑓(𝑥)} or Γ𝑓 = {(𝑥;𝑓(𝑥)) ; 𝑥 ∈ 𝐷}. 

The image of the domain D by 𝑓 is denoted by 𝑓(𝐷) where: 𝑓(𝐷) = {𝑦 ∈ ℝ; ∃𝑥 ∈ 𝐷: 𝑦 = 𝑓(𝑥)}. 

Definition 4.2  Let 𝑓: 𝐷 → ℝ be a function. 

We say that the function 𝑓 is bounded from above (bounded from below, respectively) if, and only 

if, the set 𝑓(𝐷) is bounded from above (bounded from below, respectively) 

So,( 𝑓 is bounded from above) ⇔(∃𝑀 ∈  ℝ; ∀𝑥 ∈ 𝐷: 𝑓(𝑥) ≤ 𝑀). 

     ,( 𝑓 is bounded from below) ⇔(∃𝑚 ∈  ℝ; ∀𝑥 ∈ 𝐷: 𝑓(𝑥) ≥ 𝑀). 

We say that the function 𝑓 is bounded if, and only if, it is bounded from above and from below. 

So,( 𝑓 is bounded) ⇔(∃𝑀 ∈  ℝ+
∗ ;  ∀𝑥 ∈ 𝐷: |𝑓(𝑥)| ≤ 𝑀). 

Remark 4.1 

If the function 𝑓 is bounded on D, then the part 𝑓(𝐷) is bounded on ℝ. It accepts an upper bound 

and a lower bound, which we denote by 𝑆𝑢𝑝𝐷 𝑓 and 𝐼𝑛𝑓𝐷 𝑓 respectively. 

 Definition 4.3  Let 𝑓: 𝐷 → ℝ be a function. 

We say that 𝑓 is increasing over 𝐷 (strictly increasing, respectively) if and only if 

∀𝑥; 𝑦 ∈ 𝐷: 𝑥 < 𝑦 ⟹ 𝑓(𝑥) ≤ 𝑓(𝑦) (∀𝑥; 𝑦 ∈ 𝐷: 𝑥 < 𝑦 ⟹ 𝑓(𝑥) < 𝑓(𝑦), respectively). 

We say that 𝑓 is decreasing over 𝐷 (strictly decreasing, respectively) if and only if 

∀𝑥; 𝑦 ∈ 𝐷: 𝑥 < 𝑦 ⟹ 𝑓(𝑥) ≥ 𝑓(𝑦) ( ∀𝑥; 𝑦 ∈ 𝐷: 𝑥 < 𝑦 ⟹ 𝑓(𝑥) > 𝑓(𝑦), respectively). 

We say that 𝑓 is constant over 𝐷 if and only if ∀𝑥; 𝑦 ∈ 𝐷: 𝑥 ≠ 𝑦 ⟹ 𝑓(𝑥) = 𝑓(𝑦). 
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Definition 4.4  Let 𝑓: 𝐷 → ℝ be a function. 

We say that 𝑓 have a local maximum (local minimum, respectively) at point 𝑥0 of D if: 

∃𝛼 ∈ ℝ+
∗ ; ∀𝑥 ∈ 𝐷: |𝑥 − 𝑥0| < 𝛼 ⟹ 𝑓(𝑥) ≤ 𝑓(𝑥0) (𝑓(𝑥) ≥ 𝑓(𝑥0), respectively). 

And if ∀𝑥 ∈ 𝐷: 𝑓(𝑥) ≤ 𝑓(𝑥0) (𝑓(𝑥) ≥ 𝑓(𝑥0), respectively) we say that 𝑓 have an absolute 

maximum (absolute minimum, respectively) at 𝑥0. 

4.2 limit of a function 

4.2.1 Finite limit 

Definition 4.5   

We say a subset of ℝ is a neighborhood⏞        
جوار

 for a point 𝑥0 of ℝ if it contains an open interval that  

includes 𝑥0. And we symbolize it with V𝑥0. 

Let 𝑓 be a function, defined on a neighborhood V𝑥0 of point 𝑥0. 

We say that the function 𝑓 has a limit ℓ(ℓ ∈ ℝ) at point 𝑥0 if, and only if,  

∀ε > 0 ; ∃δ > 0; ∀𝑥 ∈ V𝑥0: 0 < |𝑥 − 𝑥0| < 𝛿 ⟹ |𝑓(𝑥) − ℓ| < 𝜀, we write lim
𝑥→𝑥0

𝑓(𝑥) = ℓ. 

Remark 

We say that 𝑓 does not accept the number ℓ as a limit at 𝑥0 if and only if 

∃ε > 0 ; ∀δ > 0; ∃𝑥 ∈ V𝑥0: 0 < |𝑥 − 𝑥0| < 𝛿 و  |𝑓(𝑥) − ℓ| ≥ 𝜀 

proposition 4.1 

If lim
𝑥→𝑥0

𝑓(𝑥) = ℓ ≠ 0, then there exists a domain of the form]𝑥0−α,𝑥0[∪ ]𝑥0, 𝑥0+α[, with α > 0, 

such that 𝑓(𝑥) has the same sign as ℓ. 

Proof 

For 𝜀 = |ℓ|, then ∃α > 0; ∀𝑥 ∈ V𝑥0: 0 < |𝑥 − 𝑥0| < α ⇒ |𝑓(𝑥) − ℓ| < |ℓ| from him 

𝑥 ∈ ]𝑥0 − α, 𝑥0[ ∪ ]𝑥0, 𝑥0 + α[ ⇒ {
2ℓ < 𝑓(𝑥) < 0 ;  ℓ < 0

0 < 𝑓(𝑥) < 2ℓ ;  ℓ > 0
 

                                                        ⇒ 𝑓(𝑥) has the same sign as ℓ. 
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Examples 

1) Let 𝑓: 𝑥 → 5𝑥 − 7 Be a function , using the definition prove that: lim
𝑥→2

𝑓(𝑥) = 3. 

Since 𝑓 is defined on ℝ, we can take V2 = ℝ.( V2 is a neighborhood of point 2 ) 

 Let 𝜀 ∈ ℝ+
∗ , we have ∀𝑥 ∈ ℝ: 

|𝑓(𝑥) − 3| < 𝜀 ⟺ |5𝑥 − 7 − 3| < 𝜀 

⟺ |𝑥 − 2| <
𝜀

5
 

So it is enough to take 𝛿 =
𝜀

5
 to achieve the following: 

      ∀𝜀 > 0; ∃𝛿 > 0; ∀𝑥 ∈ ℝ ∶ 0 < |𝑥 − 2| < 𝛿 ⟹ |𝑓(𝑥) − 3| < 𝜀. 

2) Let 𝑓: 𝑥 → 𝑥 →
1

𝑥+1
 Be a function , using the definition prove that: lim

𝑥→1
𝑓(𝑥) = 1

2
.. 

Since 𝑓 is defined on ℝ− {1}, we can take V1 = [0;+∞[. .( V1 is a neighborhood of point 2 ) 

 Let 𝜀 ∈ ℝ+
∗ , we have 

      ∀𝑥 ∈ V1: |𝑓(𝑥) −
1

2
| = |

1

𝑥+1
−
1

2
| =

|𝑥−1|

2|𝑥+1|
<
|𝑥−1|

2
. 

Therefore, it suffices to take  
|𝑥−1|

2
< 𝜀 to be |𝑓(𝑥)− 1

2
| < 𝜀, from which 

   |
𝑥−1

2
|< 𝜀⟺ |𝑥− 1| < 2𝜀. So it is enough to take 𝛿 = 2𝜀 to achieve the following: 

   ∀𝜀 > 0; ∃𝛿 > 0; ∀𝑥 ∈ V1:   0 < |𝑥 − 1| < 𝛿 ⟹ |𝑓(𝑥) −
1

2
| < 𝜀. 

Definition 4 6 

Let 𝑓 be a function defined in the interval V𝑥0 = ]𝑥0, b[, we say that 𝑓 have the limit ℓ from the 

right at 𝑥0 if and only if  

        ∀𝜀 > 0; ∃𝛿 > 0; ∀𝑥 ∈ V𝑥0:    0 < 𝑥 − 𝑥0 < 𝛿 ⟹ |𝑓(𝑥) − ℓ| < 𝜀. 

we write lim
𝑥
>
→𝑥0

𝑓(𝑥) = ℓ or lim
𝑥→𝑥0

+
𝑓(𝑥) = ℓ. 

Let 𝑓 be a function defined in the interval V𝑥0 = ]𝑎,𝑥0[, we say that 𝑓 have the limit ℓ from the left 

at 𝑥0 if and only if  

        ∀𝜀 > 0; ∃𝛿 > 0; ∀𝑥 ∈ V𝑥0 :   − 𝛿 < 𝑥 − 𝑥0 < 0 ⟹ |𝑓(𝑥) − ℓ| < 𝜀. 

we write lim
𝑥
<
→𝑥0

𝑓(𝑥) = ℓ or lim
𝑥→𝑥0

− 𝑓(𝑥) = ℓ. 
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Proposition 4.2 

A function 𝑓 has a limit at 𝑥0 if and only if it accepts right and left limits at 𝑥0 and this limits are 

equal. 

Example 

Let the function 𝑓 defined on ℝ by 𝑓(𝑥) = {
3𝑥 − 1    𝑖𝑓   𝑥 ≤ 1
6

𝑥+2
         𝑖𝑓    𝑥 > 1

. 

Prove that: lim
𝑥
>
→1
𝑓(𝑥) = 2 and lim

𝑥
<
→1
𝑓(𝑥) = 2 what do you conclude. 

1) Let V1 = ]−∞; 1] and 𝜀 ∈ ℝ+
∗ , we have 

∀𝑥 ∈ V1:  |𝑓(𝑥) − 2| < 𝜀 ⟺ |3𝑥 − 3| < 𝜀 

                               |3𝑥 − 3| < 𝜀⟺ 0 < |𝑥 − 1| <
𝜀

3
 

                                       ⟺ 0 < −𝑥 + 1 <
𝜀

3
 

                                       ⟺ −
𝜀

3
< 𝑥 − 1 < 0 

It is enough to take 𝛿 =
𝜀

3
 to achieve the following: 

∀ε > 0; ∃𝛿 > 0; ∀𝑥 ∈ V1:  0 < 1 − 𝑥 < 𝛿 ⟹ |𝑓(𝑥) − 2| < 𝜀 

   Let V1 = [1;+∞[and 𝜀 ∈ ℝ+
∗ , we have 

∀𝑥 ∈ V1:  |𝑓(𝑥) − 2| =
2|𝑥 − 1|

𝑥 + 2
<
2

3
|𝑥 − 1|     

So 
2

3
|𝑥 − 1| < 𝜀⟺ |𝑥 − 1| <

3

2
𝜀⟺ 0 < 𝑥− 1 <

3

2
𝜀 

It is enough to take 𝛿 =
3𝜀

2
 to achieve the following: 

∀ε > 0; ∃𝛿 > 0; ∀𝑥 ∈ V1:  0 < 𝑥 − 1 < 𝛿 ⟹ |𝑓(𝑥) − 2| < 𝜀 

Conclusion: Since lim
𝑥→1−

𝑓(𝑥) = lim
𝑥→1+

𝑓(𝑥) =2 𝑓 accepts a limit at 1, which is 2. 

Theorem 4.1 

If a function 𝑓 accepts a limit at 𝑥0, then this limit is unique. 

Proof 
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Let 𝑓 accept two different limits ℓ and ℓ
′
 where ℓ > ℓ′. 

for 𝜀 =
ℓ−ℓ′

2
 ; ∃𝛿1, 𝛿2 > 0; ∀𝑥 ∈ V𝑥0: 

0 < |𝑥 − 𝑥0| < 𝛿1 ⟹ |𝑓(𝑥) − ℓ| < 𝜀 =
ℓ − ℓ′

2
 

and 

 0 < |𝑥 − 𝑥0| < 𝛿2 ⟹ |𝑓(𝑥) − ℓ
′| < 𝜀 =

ℓ− ℓ
′

2
 

For 𝛿 = min{𝛿1, 𝛿2} Then ∀𝑥 ∈ V𝑥0: 

0 < |𝑥 − 𝑥0| < 𝛿 ⟹ |ℓ − ℓ′| = |𝑓(𝑥) − ℓ − (𝑓(𝑥) − ℓ′)| 

      ⟹ |ℓ − ℓ′| < 𝜀 + 𝜀 = 2𝜀 

 ⟹ |ℓ − ℓ′| < |ℓ − ℓ′| 

This is a contradiction. So ℓ = ℓ′ 

4.2.2 Limit of a function using sequences 

Theorem 4.2 

Let 𝑓: 𝐷 → ℝ be a function and 𝑥0 ∈ 𝐷. The following two conditions are equivalent. 

1) lim
𝑥→𝑥0

𝑓(𝑥) = ℓ. 

2) For all sequence (𝑥𝑛) where ∀𝑛 ∈ ℕ: 𝑥𝑛 ∈ 𝐷 ∧ 𝑥𝑛 ≠ 𝑥0 then: 

(lim 𝑥𝑛 =
𝑛→+∞

𝑥0) ⟹ ( lim
𝑛→+∞

𝑓(𝑥𝑛) = ℓ) 

Proof 

Necessary condition:  

We impose lim
𝑥→𝑥0

𝑓(𝑥) = ℓ and let (𝑥𝑛) sequence where ∀𝑛 ∈ ℕ: 𝑥𝑛 ∈ 𝐷 ∧  𝑥𝑛 ≠ 𝑥0 and lim
n→∞

𝑥𝑛 =

𝑥0.Let us prove that: lim
𝑛→+∞

𝑓(𝑥𝑛) = ℓ. 

For ε > 0 then ∃δ > 0; ∀𝑥 ∈ V𝑥0: 0 < |𝑥 − 𝑥0| < 𝛿 ⟹ |𝑓(𝑥) − ℓ| < 𝜀. So 

∃N ∈ ℕ; ∀𝑛 ∈ ℕ: 𝑛 > N ⟹ |𝑥𝑛 − 𝑥0| < δ ⟹ |𝑓(𝑥𝑛) − ℓ| < 𝜀. 

So ∀ε > 0; ∃N ∈ ℕ; ∀𝑛 ∈ ℕ: 𝑛 > N ⟹ |𝑓(𝑥𝑛) − ℓ| < 𝜀.So lim
𝑛→+∞

𝑓(𝑥𝑛) = ℓ. 
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Sufficient condition: We now assume that for every sequence (𝑥𝑛) where 

 ∀𝑛 ∈ ℕ: 𝑥𝑛 ∈ 𝐷 ∧ x𝑛 ≠ 𝑥0 then (lim
𝑛→+∞

𝑥𝑛 = 𝑥0)⟹ ( lim
𝑛→+∞

𝑓(𝑥𝑛) = ℓ). 

Let us prove that lim
𝑥→𝑥0

𝑓(𝑥) = ℓ. Assume that lim
𝑥→𝑥0

𝑓(𝑥) ≠ ℓ that is  

    ∃ε > 0; ∀δ > 0; ∃𝑥 ∈ V𝑥0: 0 < |𝑥 − 𝑥0| < 𝛿  and |𝑓(𝑥) − ℓ| ≥ 𝜀. 

and for 𝛿 =
1

𝑛
 then ∀𝑛 ∈ ℕ∗; ∃ 𝑥𝑛 ≠ 𝑥0 and 𝑥𝑛 ∈ V𝑥0:  |𝑥𝑛 − 𝑥0| <

1

𝑛
 and |𝑓(𝑥𝑛) − ℓ| ≥ 𝜀. 

So  lim
𝑛→+∞

𝑥𝑛 = 𝑥0 and lim
𝑛→+∞

𝑓(𝑥𝑛) ≠ ℓ ( this is a contradiction ). 

Remark 

To prove that a function 𝑓 has no limit at 𝑥0, it is enough to find two sequences (𝑥𝑛) and (𝑥′𝑛) that 

converge towards 𝑥0 but lim
𝑛→∞

𝑓(𝑥′𝑛) ≠ lim
𝑛→∞

𝑓(𝑥𝑛) Or we are looking for a sequence (𝑥𝑛) that 

converges toward 𝑥0 but the sequence (𝑓(𝑥𝑛))𝑛∈ℕ diverges. 

Example 

Prove that the function 𝑓: 𝑥 → cos
1

𝑥
 does not accept a limit at 0. 

Let the sequences (𝑥𝑛) and (𝑥′𝑛) where ∀𝑛 ∈ ℕ∗: 𝑥𝑛 =
1

2𝜋𝑛+
𝜋

2

،   𝑥′𝑛 =
1

2𝜋𝑛+𝜋
. 

We have lim
𝑛→∞

𝑥𝑛 = lim𝑛→∞
𝑥′𝑛 = 0 On the other hand: ∀𝑛 ∈ ℕ∗: 𝑓(𝑥′

𝑛
) = −1 ;   𝑓(𝑥𝑛) = 0. 

So 

lim 𝑓(𝑥′𝑛) = −1 ;  lim 𝑓(𝑥𝑛) = 0 So: lim 𝑓(𝑥′𝑛) ≠ lim 𝑓(𝑥𝑛) i.e. 𝑓 does not accept a limit at 0. 

4.2.3 Infinite limits 

We say a subset of ℝ is a neighborhood⏞        
جوار

 of +∞ ( −∞, respectively) if it contains an open 

interval of the form ]𝑎, +∞[ ( ]−∞, 𝑏[, respectively) And we symbolize it with V+∞ ( V−∞ , 

respectively). 

Definitions 
(∀𝜀 > 0;∃𝐴 > 0;∀𝑥 ∈ 𝑉+∞: 𝑥 > 𝐴⟹ |𝑓(𝑥)− ℓ| < 𝜀)⟺ ( lim

𝑥→+∞
𝑓(𝑥) = ℓ )   

(∀𝜀 > 0;∃𝐴 > 0;∀𝑥 ∈ 𝑉−∞: 𝑥 < −𝐴⟹ |𝑓(𝑥)− ℓ| < 𝜀)⟺ ( lim
𝑥→−∞

𝑓(𝑥) = ℓ) 

(∀𝐴 > 0;∃𝛿 > 0;∀𝑥 ∈ V𝑥0: |𝑥 − 𝑥0| < 𝛿⟹ 𝑓(𝑥) > 𝐴)⟺ ( lim
𝑥→𝑥0

𝑓(𝑥) = +∞) 
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(∀𝐴 > 0;∃𝛿 > 0;∀𝑥 ∈ V𝑥0: |𝑥 − 𝑥0| < 𝛿⟹ 𝑓(𝑥) < −𝐴)⟺ ( lim
𝑥→𝑥0

𝑓(𝑥) = −∞) 

       (∀𝐴 > 0; ∃𝐵 > 0;∀𝑥 ∈ 𝑉+∞: 𝑥 > 𝐵⟹ 𝑓(𝑥) > 𝐴)⟺ ( lim
𝑥→+∞

𝑓(𝑥) = +∞) 

(∀𝐴 > 0; ∃𝐵 > 0;∀𝑥 ∈ 𝑉+∞: 𝑥 > 𝐵⟹ 𝑓(𝑥) < −𝐴)⟺ ( lim
𝑥→+∞

𝑓(𝑥) = −∞) 

 (∀𝐴 > 0;∃𝐵 > 0;∀𝑥 ∈ 𝑉−∞: 𝑥 < −𝐵⟹ 𝑓(𝑥) > 𝐴)⟺ ( lim
𝑥→−∞

𝑓(𝑥) = +∞)   

(∀𝐴 > 0; ∃𝐵 > 0;∀𝑥 ∈ 𝑉−∞: 𝑥 < −𝐵⟹ 𝑓(𝑥) < −𝐴)⟺ ( lim
𝑥→−∞

𝑓(𝑥) = −∞) 

Examples 

1) Prove that lim
𝑥→∞

2𝑥

𝑥−1
= 2. 

The function 𝑥 →
2𝑥

𝑥−1
 is defined on 𝑉+∞ =]1;+∞[, for 𝜀 ∈ ℝ+

∗  we have 

∀𝑥 ∈ 𝑉+∞: |𝑓(𝑥) − 2| < 𝜀 ⇔
2

|𝑥 − 1|
< 𝜀 ⇔

2

𝑥 − 1
< 𝜀 ⟺ 𝑥 >

2

𝜀
+ 1 

Therefore, it is sufficient to choose 𝐵 =
2

𝜀
+ 1 to obtain: 

∀𝜀 > 0; ∃𝐵 ∈ ℝ+
∗  ; ∀𝑥 ∈ 𝑉+∞: 𝑥 > 𝐵 ⟹ |𝑓(𝑥) − 2| < 𝜀 

2) Prove that lim
𝑥
<
→1

2𝑥

𝑥−1
= −∞. 

Let V1 = ]0; 1[ , for 𝐴 ∈ ℝ+
∗  we have  

∀𝑥 ∈ V1: 𝑓(𝑥) < −𝐴 ⇔ 
2𝑥

𝑥 − 1
< −𝐴 ⇔ 2 +

2

𝑥 − 1
< −𝐴 

⇔ 0 > 𝑥 − 1 >
2

−𝐴 − 2
 

⇔ −
2

𝐴 + 2
< 𝑥 − 1 < 0 

Therefore, it is sufficient to choose 𝛿 =
2

𝐴+2
 to obtain: 

∀𝐴 > 0; ∃𝛿 ∈ ℝ+
∗  ;  ∀𝑥 ∈ V1: 0 < 1 − 𝑥 < 𝛿 ⟹ 𝑓(𝑥) < −𝐴. 

4.2.4 Operation on limits 
Theorem 4.3 
Let 𝑓 and 𝑔 be functions defined on the neighborhood V𝑥0, with the possible exception of 𝑥0, 

where 
∀𝑥 ∈ V𝑥0: 𝑓(𝑥) < 𝑔(𝑥) 

1) If lim
𝑥→𝑥0

𝑓(𝑥) = ℓ and lim
𝑥→𝑥0

𝑔(𝑥) = ℓ′ then ℓ ≤ ℓ′. 

2) ) If lim
𝑥→𝑥0

𝑓(𝑥) = +∞ then lim
𝑥→𝑥0

𝑔(𝑥) = +∞. 

3) lim
𝑥→𝑥0

𝑔(𝑥) = −∞ then lim
𝑥→𝑥0

𝑓(𝑥) = −∞. 
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Let 𝑓,𝑔 and ℎ be functions defined on the neighborhood V𝑥0, with the possible exception of 𝑥0, 

where ∀𝑥 ∈ V𝑥0: ℎ(𝑥) < 𝑓(𝑥) < 𝑔(𝑥) and lim
𝑥→𝑥0

𝑔(𝑥) = lim
𝑥→𝑥0

ℎ(𝑥) = ℓ, then 

 lim
𝑥→𝑥0

𝑓(𝑥) = ℓ. 

Proof 

Assume that ∀𝑥 ∈ V𝑥0: 𝑓(𝑥) < 𝑔(𝑥) and  lim
𝑥→𝑥0

𝑓(𝑥) = ℓ , lim
𝑥→𝑥0

𝑔(𝑥) = ℓ′ and suppose that  

ℓ > ℓ′. For ε =
ℓ−ℓʹ

2
 then  

∃δ1 > 0: 0 < |𝑥 − 𝑥0| < δ1 ⟹ |𝑓(𝑥) − ℓ| < 𝜀 ⟹
ℓ + ℓʹ

2
< 𝑓(𝑥) <

3ℓ − ℓʹ

2
 

∃δ2 > 0: 0 < |𝑥 − 𝑥0| < δ2 ⟹ |𝑔(𝑥) − ℓʹ| < 𝜀 ⟹
3ℓʹ − ℓ

2
< 𝑔(𝑥) <

ℓ + ℓʹ

2
 

Bu taking δ = min{δ1, δ2} then 0 < |𝑥 − 𝑥0| < δ ⟹ 𝑔(𝑥) <
ℓ+ℓʹ

2
< 𝑓(𝑥) this is contradiction the 

hypothesis .∀𝑥 ∈ V𝑥0: 𝑓(𝑥) < 𝑔(𝑥). 

Theorem 4.4 
If 𝑓 and 𝑔 are functions defined in the neighborhood V𝑥0, with the possible exception of 𝑥0, and 

have the limits  ℓ, ℓ′, at 𝑥0 respectively, then the functions 𝑓 +  𝑔, 𝑓 𝑔, 𝜆𝑓, |𝑓| it has the limits 

ℓ + ℓ′, 𝜆ℓ, ℓℓ′, |ℓ|, at 𝑥0 respectively. And if ℓʹ ≠ 0, then the function 
1

𝑔
 it has the limit 

1

ℓʹ
 at 𝑥0. 

Proof (Let us prove the last case ) 

Assume that lim
𝑥→𝑥0

𝑔(𝑥) = ℓʹ ≠ 0 for ε =
|ℓʹ|

2
, then 

∃δ1 > 0: 0 < |𝑥 − 𝑥0| < δ1 ⟹ |𝑔(𝑥) − ℓʹ| <
|ℓʹ|

2
 

                                                       ⟹ ||𝑔(𝑥)| − |ℓʹ|| <
|ℓʹ|

2
 

                                                         ⟹
|ℓʹ|

2
< |𝑔(𝑥)| <

3|ℓʹ|

2
 

                                          ⟹
1

|𝑔(𝑥)|
<
2

|ℓʹ|
. 

On the other hand we have: 

∀ε > 0 ; ∃δ2 > 0; ∀𝑥 ∈ V𝑥0: 0 < |𝑥 − 𝑥0| < δ2 ⟹ |𝑔(𝑥) − ℓʹ| < 𝜀. 

For δ = min{δ1, δ2}, then 

.0 < |𝑥 − 𝑥0| < δ ⟹ |
1

𝑔(𝑥)
−
1

ℓʹ
| = |

ℓʹ−𝑔(𝑥)

ℓʹ𝑔(𝑥)
| <

2|𝑔(𝑥)−ℓʹ|

|ℓʹ|2
<

2𝜀

|ℓʹ|2
= 𝜀′ 

4.2.5 Indeterminate form 
We say that we are in the presence of an indeterminate form. If when 𝑥 → 𝑥0 

1) 𝑓 → +∞ and 𝑔 → −∞ then 𝑓 + 𝑔 →  indeterminate form + ∞−∞. 

2) 𝑓 → ∞ and 𝑔 → 0 then 𝑓. 𝑔 →  indeterminate form ∞. 0. 

3) 𝑓 → ∞ and 𝑔 → ∞ then 
𝑓

𝑔
→  indeterminate form 

∞

∞
. 

4) 𝑓 → 0 and 𝑔 → 0 then 
𝑓

𝑔
→  indeterminate form 

0

0
. 

5) 𝑓 → 0 and 𝑔 → 0 then 𝑓𝑔 →  indeterminate form 00. 
6) 𝑓 → ∞ and 𝑔 → 0 then 𝑓𝑔 →  indeterminate form ∞0. 
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7) 𝑓 → 1 and 𝑔 → ∞ then 𝑓𝑔 →  indeterminate form 1∞. 

Remarks 

1) The indeterminate forms ∞. 0, 
∞

∞
 can be reduced to the form 

0

0
. by writing 

𝑓

𝑔
=

1

𝑔
1

𝑓

 in (3) and 𝑓. 𝑔 =

𝑔
1

𝑓

 in (2)/ 

2) The indeterminate forms 00, ∞0, 1∞ can be reduced to the form ∞. 0 by passing the logarithm. 

Examples Calculate the limits: 1) lim
𝑥→−1

𝑥2+3𝑥+2

𝑥4+1
 , 2) lim

𝑥→∞
𝑥ln

𝑥+1

𝑥−2
 , 3) lim

𝑥→∞
(
𝑥+1

𝑥−2
)
𝑥

. 

4.2.6 Cauchy’s criterion for functions: 
Theorem 4.4 
A function 𝑓 has a finite limit at 𝑥0 if and only if 

∀ε > 0 ; ∃δ > 0; ∀𝑥′, 𝑥′′ ∈ V𝑥0: (0 < |𝑥
′ − 𝑥0| < 𝛿 and 0 < |𝑥

′′ − 𝑥0| < 𝛿) ⟹ 

                                                                                                                                    |𝑓(𝑥′) − 𝑓(𝑥′′)| < 𝜀 
Proof 
Necessary condition  Assume that lim

𝑥→𝑥0
𝑓(𝑥) = ℓ, then 

   ∀ε > 0 ; ∃δ > 0; ∀𝑥′, 𝑥′′ ∈ V𝑥0: (0 < |𝑥
′ − 𝑥0| < 𝛿 and  0 < |𝑥

′′ − 𝑥0| < 𝛿) ⟹ 

                                                                                                                        |𝑓(𝑥′)− ℓ| <
ε

2
−𝑓(𝑥′′)|و ℓ| <

ε

2
. 

So 

|𝑓(𝑥′)− 𝑓(𝑥′′)| = |𝑓(𝑥′)− ℓ− (𝑓(𝑥′′)− ℓ)| < |𝑓(𝑥′)− ℓ|+ |(𝑓(𝑥′′)− ℓ)| 

                                                         <
ε

2
+
ε

2
= ε  

Sufficient condition  Assume that ∀ε > 0 ; ∃δ > 0; ∀𝑥′, 𝑥′′ ∈ V𝑥0: 

(0 < |𝑥′ −𝑥0| < 𝛿 0و < |𝑥′′ −𝑥0| < 𝛿)⟹ |𝑓(𝑥′)−ℓ| <
ε
2
|𝑓(𝑥′′)−ℓ|و <

ε
2
. 

Let (𝑥𝑛) be a sequence of V𝑥0 elements where ∀𝑛 ∈ ℕ: 𝑥𝑛 ≠ 𝑥0 and lim
𝑛→∞

𝑥𝑛 = 𝑥0. 
So for δ > 0, then ∃N0 ∈ ℕ: ∀𝑛 ∈ ℕ; 𝑛 > N0 ⟹ |𝑥𝑛 − 𝑥0| < 𝛿. 

So ∀𝑝, 𝑞 ∈  ℕ: 𝑝 > N0 and 𝑞 > N0 ⟹ 0 < |𝑥𝑝 − 𝑥0| < 𝛿  𝑎𝑛𝑑 0 < |𝑥𝑞 − 𝑥0| < 𝛿 

⟹ |𝑓(𝑥𝑝) − 𝑓(𝑥𝑞)| < 𝜀. 

So (𝑥𝑛) is a Cauchy sequence, and therefore convergent. 
Let us now show that the limit lim

𝑛→∞
𝑓(𝑥𝑛) is independent of the choice of sequence (𝑥𝑛). 

Let (𝑥𝑛) and (𝑥𝑛
′ ) where lim

𝑛→∞
𝑥𝑛
′ = lim

𝑛→∞
𝑥𝑛 = 𝑥0. 

So ∃N ∈ ℕ; ∀𝑛 ∈ ℕ: 𝑛 > N ⟹ (0 < |𝑥𝑛 − 𝑥0| < 𝛿 and 0 < |𝑥𝑛
′ − 𝑥0| < 𝛿) 

                                                    ⟹ |𝑓(𝑥𝑛) − 𝑓(𝑥𝑛
′ )| < 𝜀. 

So 

lim
𝑛→∞

(𝑓(𝑥𝑛) − 𝑓(𝑥𝑛
′ )) = 0, 

we obtain 

lim
𝑛→∞

𝑓(𝑥𝑛) = lim
𝑛→∞

𝑓(𝑥𝑛
′ ). 
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4.2.7 Comparison of functions in the neighborhood of a point - Landau notation: 

Let 𝑓 and 𝑔 be a functions defined in the neighborhood V𝑥0 of the point 𝑥0, with the possible 

exception of 𝑥0 

Definition 4.8 

We say that 𝑓 is negligible in front of 𝑔 when 𝑥 ⟶ 𝑥0, and we write 𝑓 = 𝑜(𝑔), if 

∀𝜀 > 0; ∃𝛿 > 0; ∀𝑥 ∈ V𝑥0:    0 < |𝑥 − 𝑥0| < 𝛿 ⟹ |𝑓(𝑥)| ≤ 𝜀|𝑔(𝑥)|. 

Definition 4.9 

We say that f is dominated by g when 𝑥 ⟶ 𝑥0, and we write 𝑓 = 𝑜(𝑔), if 
∃𝑘 > 0; ∃𝛿 > 0; ∀𝑥 ∈ V𝑥0:    0 < |𝑥 − 𝑥0| < 𝛿 ⟹ |𝑓(𝑥)| ≤ 𝑘|𝑔(𝑥)|. 

The symbols o and O are called Landau symbols. 

Corollary 4.1 

If 𝑔 is non-zero on V𝑥0 − {𝑥0} then: 

 𝑓 = 𝑜(𝑔) ⇔ lim
𝑥→𝑥0

𝑓(𝑥)

𝑔(𝑥)
= 0. 

 𝑓 = 𝑂(𝑔)⟺ |
𝑓(𝑥)

𝑔(𝑥)
| is bounded in V𝑥0. 

And if 𝑔 = 1, then  

 𝑓 = 𝑜(1) ⇔ lim
𝑥→𝑥0

𝑓(𝑥) = 0 and 𝑓 = 𝑂(1) ⇔ 𝑓 is bounded in V𝑥0 . 

Remark We obtain a similar definition for 𝑥0 = +∞ and 𝑥0 = −∞. 

Examples 

1) When 𝑥 ⟶ 0 we have. 

 𝑥3 = 𝑜(𝑥2)  ,  𝑥2 cos
1

𝑥
= 𝑂(𝑥2)  ,  (

1

𝑥
)
3
= 𝑜 ((

1

𝑥
)
4
). 

2) When 𝑥 ⟶ +∞ we have 

𝑥2 = 𝑜(𝑥3)  ,  𝑥2 𝑠𝑖𝑛𝑥 = 𝑂(𝑥2)  ,  (
1

𝑥
)
4
= 𝑜 ((

1

𝑥
)
3
). 

Theorem 4.5 

1) 𝑓 = 𝑔ℎ ⇔ 𝑓 = 𝑜(𝑔) where ℎ = 𝑜(1). 

2) 𝑓 = 𝑔ℎ ⇔ 𝑓 = 𝑂(𝑔) where ℎ = 𝑂(1). 

Proof  ( Let's prove 1) 

Necessary condition: Assume that 𝑓 = 𝑜(𝑔). 
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We put ℎ(𝑥) = {

𝑓(𝑥)

𝑔(𝑥)
, 𝑔(𝑥) ≠ 0 

   0     , 𝑔(𝑥) = 0
. 

We have 𝑓 = 𝑜(𝑔) ⇔ ∀𝜀 > 0; ∃𝛿 > 0; ∀𝑥 ∈ V𝑥0:    0 < |𝑥 − 𝑥0| < 𝛿 ⟹ |𝑓(𝑥)| ≤ 𝜀|𝑔(𝑥)|. 

First: Let us prove that 𝑓 = 𝑔ℎ. 

If 𝑔(𝑥) = 0 then  0 < |𝑥 − 𝑥0| < 𝛿 ⟹ |𝑓(𝑥)| ≤ 𝜀|𝑔(𝑥)| = 0, we get 𝑓 = 𝑔ℎ. 

If 𝑔(𝑥) ≠ 0 then 𝑓(𝑥) = 𝑔(𝑥)
𝑓(𝑥)

𝑔(𝑥)
, we get 𝑓 = 𝑔ℎ. 

second: 

Let us show that ℎ = 𝑜(1), i:e ∀𝜀 > 0; ∃𝛿 > 0; ∀𝑥 ∈ V𝑥0:    0 < |𝑥 − 𝑥0| < 𝛿 ⟹ |ℎ(𝑥)| ≤ 𝜀 

If 𝑔(𝑥) = 0 then ℎ(𝑥)=0, i.e |ℎ(𝑥)| ≤ 𝜀 

If 𝑔(𝑥) ≠ 0 then |𝑓(𝑥)| ≤ 𝜀|𝑔(𝑥)| and from it |
𝑓(𝑥)

𝑔(𝑥)
| ≤ 𝜀 i.e |ℎ(𝑥)| ≤ 𝜀. 

sefficient condition: 

Assume that 𝑓 = 𝑔ℎ and ℎ = 𝑜(1) and show that 𝑓 = 𝑜(𝑔). 

We have (ℎ = 𝑜(1)) ⟺ (∀𝜀 > 0; ∃𝛿 > 0; ∀𝑥 ∈ V𝑥0:    0 < |𝑥 − 𝑥0| < 𝛿 ⟹ |ℎ(𝑥)| ≤ 𝜀) and 

from there |𝑓(𝑥)| = |ℎ(𝑥)𝑔(𝑥)| ≤ 𝜀|𝑔(𝑥)| i.e. 𝑓 = 𝑜(𝑔). 

In the same way we prove property 2. 

Note: The previous two properties are summarized in the following writing. 

𝑜(𝑔) = 𝑔. 𝑜(1)   and  𝑂(𝑔) = 𝑔. 𝑂(1) 

properties 

1) 𝑓 = 𝑂(𝑔) and ℎ =  𝑂(𝑔) ⟹ 𝑓 + ℎ = 𝑂(𝑔). 

2) 𝑓 = 𝑜(𝑔) and ℎ =  𝑜(𝑔) ⟹ 𝑓 + ℎ = 𝑜(𝑔). 

3) 𝑓 = 𝑜(𝑔) and ℎ =   𝑂(1) ⟹ 𝑓ℎ = 𝑜(𝑔). 

4) 𝑓 = 𝑜(𝑔) and ℎ =  𝑂(𝑔) ⟹ 𝑓 + ℎ = 𝑂(𝑔). 

5) 𝑓 = 𝑂(𝑔) and ℎ =  𝑂(1) ⟹ 𝑓ℎ = 𝑂(𝑔). 

6) ℎ = 𝑂(𝑓) and 𝑓 =  𝑜(𝑔) ⟹ ℎ = 𝑜(𝑔). 

7) ℎ = 𝑜(𝑓) and 𝑓 =  𝑂(𝑔) ⟹ ℎ = 𝑜(𝑔). 

Note: The previous properties are summarized in the following writing. 

1) 𝑂(𝑔) + 𝑂(𝑔) = 𝑂(𝑔). 



12 
 

2) 𝑜(𝑔) + 𝑜(𝑔) = 𝑜(𝑔). 

3) 𝑜(𝑔)𝑂(1) = 𝑜(𝑔). 

4) 𝑜(𝑔) + 𝑂(𝑔) = 𝑂(𝑔). 

5) 𝑂(𝑔). 𝑂(1) = 𝑂(𝑔). 

6) 𝑂(𝑜(𝑔)) = 𝑜(𝑔). 

7) 𝑜(𝑂(𝑔)) = 𝑜(𝑔). 

4.2.8 Equivalent functions: 

Let 𝑓 and 𝑔 be a functions defined in the neighborhood V𝑥0 of the point 𝑥0, with the possible 

exception of 𝑥0. 

Definition 4.11 

We say that f is equivalent to g for 𝑥 ⟶ 𝑥0 and write 𝑓 ∼ 𝑔 if 𝑓 − 𝑔 = 𝑜(𝑓) for 𝑥 ⟶ 𝑥0. 

Results 4.1 

1) 𝑓 − 𝑔 = 𝑜(𝑓) ⇔ 𝑓 − 𝑔 = 𝑜(𝑔). 

2) The relation ∼ is an equivalence relation on the set of functions defined in the neighborhood 

V𝑥0 − {𝑥0} of the point 𝑥0. 

3) If 𝑓 and 𝑔 are non-zero on V𝑥0 − {𝑥0} then: 𝑓 ∼ 𝑔 ⇔ lim
𝑥→𝑥0

𝑓(𝑥)

𝑔(𝑥)
= 1. 

Theorem 4.7 

Let 𝑓 , 𝑔 , 𝑓1 and 𝑔1 be a functions defined in the neighborhood V𝑥0 of the point 𝑥0, with the 

possible exception of 𝑥0 where 𝑓 ∼ 𝑓1 and 𝑔 ∼ 𝑔1 for 𝑥 ⟶ 𝑥0. If  

If the limit lim
𝑥→𝑥0

𝑓(𝑥)

(𝑥)
 it exists then the limit lim

𝑥→𝑥0

𝑓1(𝑥)

𝑔1(𝑥)
 olso exists and we have: 

lim
𝑥→𝑥0

𝑓1(𝑥)

𝑔1(𝑥)
= lim
𝑥→𝑥0

𝑓(𝑥)

𝑔(𝑥)
 

Proof 

Since 
𝑓(𝑥)

𝑔(𝑥)
 accepts a limit when 𝑥 → 𝑥0, there is a neighborhood V𝑥0 to the point 𝑥0, such that 𝑔 is 

non-zero on V𝑥0 − {𝑥0} and that 𝑔 ∼ 𝑔1 (that is, |𝑔(𝑥)| ≤ 𝜀|𝑔1(𝑥)|) then 𝑔1  is also non-zero on 

V𝑥0 − {𝑥0} and hence 

{
𝑓 ∼ 𝑓1
𝑔 ∼ 𝑔1

⇒ {
𝑓1 ∼ 𝑓
𝑔1 ∼ 𝑔

⇒ {
𝑓1 = 𝑓(1+ 𝑜(1))

𝑔1 = 𝑔(1+ 𝑜(1))
⇒
𝑓1
𝑔1
=
𝑓
𝑔
(1+ 𝑜(1))

(1+ 𝑜(1))
. 
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And since 
(1+𝑜(1))

(1+𝑜(1))
= 1 + 𝑜(1) ⟶ 1, then lim

𝑥→𝑥0

𝑓1(𝑥)

𝑔1(𝑥)
= lim
𝑥→𝑥0

𝑓(𝑥)

𝑔(𝑥)
. 

Remark 

Note: The concept of equivalent functions is used in calculating limits, especially in removing 

indeterminacy. 

Examples 

1) Calculate the limit lim
𝑥→0

√4+𝑥−2

√𝑥+1
3

−1
. 

For 𝑥 → 0 we have √4+−2 ∼ 1

2
𝑥 and √𝑥 + 1

3
−1 ∼ 1

3
𝑥, and from it  

lim
𝑥→0

√4+ 𝑥−2

√𝑥+ 1
3

−1
= lim
𝑥→0

1
2
𝑥

1
3
𝑥
=
3
2
. 

2) Calculate the limit lim
𝑥→+∞

√𝑥2−2𝑥+𝑥

2+𝑥𝑒
1
𝑥

. 

For 𝑥 → +∞ we have √𝑥2−2𝑥+ 𝑥 ∼ 2𝑥 and 2 + 𝑥𝑒
1
𝑥 ∼ 𝑥, and from it  

lim
𝑥→+∞

√𝑥2−2𝑥+ 𝑥

2+ 𝑥𝑒
1
𝑥

= lim
𝑥→+∞

2𝑥
𝑥
= 2. 

4.3 Continuous functions: 

Definition 4.12 

Let 𝑓 be a function defined on the neighborhood V𝑥0 of the point 𝑥0. We say that 𝑓 is continuous at 

𝑥0 if and only if: lim
𝑥→𝑥0

𝑓(𝑥) = 𝑓(𝑥0). In other words 

(𝑓 is continuous at 𝑥0) ⟺ (∀𝜀 > 0; ∃𝛿 > 0;∀𝑥 ∈ V𝑥0: 0 < |𝑥 − 𝑥0| < 𝛿⟹ |𝑓(𝑥)− 𝑓(𝑥0)| < 𝜀 ). 

Let f be a function defined on the neighborhood Vx0 from the right for the point 𝑥0, we say that 

𝑓 is continuous at 𝑥0 from the right if and only if: lim
𝑥
>
→𝑥0

𝑓(𝑥) = 𝑓(𝑥0). 

Let f be a function defined on the neighborhood Vx0 from the left for the point 𝑥0, we say that 

𝑓 is continuous at 𝑥0 from the left if and only: lim
𝑥
<
→𝑥0

𝑓(𝑥) = 𝑓(𝑥0). 

Result 4.2 

A function f is continuous at 𝑥0 if and only if it is continuous at 𝑥0 from the right and from the left 

Examples 
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1) Let the function 𝑓 defined on ℝ by 𝑓(𝑥) = {
|𝑥2−1|

𝑥−1
  if 𝑥 ≠ 1

2          if    𝑥 = 1  
. 

lim
𝑥
>
→1

𝑓(𝑥) = 2 = 𝑓(1)  ⟹ 𝑓 is continuous at 𝑥0 = 1, from the right. 

lim
𝑥
<
→1

𝑓(𝑥) = −2 ≠ 𝑓(1)  ⟹ 𝑓 is discontinuous at 𝑥0 = 1, from the left. So 𝑓 is discontinuous at 

𝑥0 = 1. 

Definition 4.13 

Le 𝐼 be a interval of ℝ. 

We say that a function 𝑓 is continuous on the interval 𝐼 if and only if it is continuous at every 

point in this interval. We denote the set of continuous functions on the interval 𝐼 by C(𝐼). 

We say that the function 𝑓 is continuous uniformly over the domain 𝐼 if and only if 

∀𝜀 > 0; ∃𝛿 > 0: ∀𝑥′, 𝑥" ∈ 𝛪: |𝑥′ − 𝑥"| < 𝛿 ⟹ |𝑓(𝑥′) − 𝑓(𝑥")| < 𝜀. 

It is clear from the definition that every uniformly continuous function in the interval 𝐼 is 

continuous in this interval (the opposite is not always true). 

4.3.1 Continuous functions in a closed interval 

Theorem 4.8 

Every continuous function in a closed interval [𝑎, 𝑏] is uniformly continuous in this interval. 

Proof 

We assume that 𝑓 is continuous and uniformly discontinuous on [𝑎, 𝑏] i.e. 

∃𝜀 > 0; ∀𝛿 > 0: ∃𝑥′, 𝑥" ∈ [𝑎, 𝑏]: |𝑥′ − 𝑥"| < 𝛿  and |𝑓(𝑥′) − 𝑓(𝑥")| ≥ 𝜀. 

We put 𝛿 =
1

𝑛
> 0 where 𝑛 ∈ ℕ∗ and from it: 

∃𝜀 > 0; ∀𝑛 ∈ ℕ∗; ∃𝑥𝑛
′ , 𝑥𝑛

′′ ∈ [𝑎, 𝑏]: |𝑥𝑛
′ − 𝑥𝑛

′′| <
1

𝑛
 and |𝑓(𝑥𝑛

′ ) − 𝑓(𝑥𝑛
′′)| ≥ 𝜀. 

Since the sequence (𝑥𝑛
′ )  is bounded, according to the BOLZANO-WEIERSTRASS theorem, then a 

subsequence (𝑥𝑛𝑘
′ ) can be extracted from it that converges towards 𝑥̅ from [𝑎, 𝑏] and since  

∀𝑘 ∈ ℕ: |𝑥𝑛𝑘
′ − 𝑥𝑛𝑘

′′ | <
1

𝑛𝑘
, the partial sequence (𝑥𝑛𝑘

′′ ) also converges towards 𝑥̅, and since 𝑓 is 

continuous at 𝑥̅, then lim
𝑘→∞

(𝑓(𝑥𝑛𝑘
′ )−𝑓(𝑥𝑛𝑘

′′ )) = 𝑓(𝑥̅)−𝑓(𝑥̅) = 0. This is a contradiction because 

∀𝑘 ∈ ℕ: |𝑓(𝑥𝑛𝑘
′ ) − 𝑓(𝑥𝑛𝑘

′′ )| ≥ 𝜀. 

Theorem 4.9 

Every continuous function on the closed interval [𝑎, 𝑏], is bounded. 
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Proof 

Assume that 𝑓 continuous and unbounded on the interval [𝑎, 𝑏], i.e. ∀𝑛 ∈ ℕ; ∃𝑥𝑛 ∈
[𝑎, 𝑏]: |𝑓(𝑥𝑛)| > 𝑛. 

Since the sequence (𝑥𝑛) is bounded, it is possible to extract from it a partial sequence (𝑥𝑛𝑘) that 

converges towards 𝑥̅ from [𝑎, 𝑏]. Since 𝑓 is continuous at 𝑥̅, then lim
𝑘→∞

|𝑓(𝑥𝑛𝑘)| = |𝑓(𝑥̅)|. 

This is a contradiction because ∀𝑘 ∈ ℕ: |𝑓(𝑛𝑘)| > 𝑛𝑘 ≥ 𝑘, and hence lim
𝑘→∞

|𝑓(𝑥𝑛𝑘)| = +∞. 

Theorem 4.10 

Any continuous function on a closed interval [𝑎;𝑏] reaches its upper and lower bounds at least 

once, that is to say there is at least 𝑥1 and 𝑥2 are from the interval [𝑎;𝑏] where: 

𝑓(𝑥1) = sup𝑥∈[𝑎 ;𝑏] 𝑓(𝑥)   and  𝑓(𝑥2) = 𝑖𝑛𝑓𝑥∈[𝑎 ;𝑏] 𝑓(𝑥). 

Proof 

Let 𝑀 = sup𝑥∈[𝑎 ;𝑏] 𝑓(𝑥). And assume that ∀𝑥 ∈ [𝑎 ; 𝑏]: 𝑓(𝑥) ≠ 𝑀 i.e. ∀𝑥 ∈ [𝑎; 𝑏]: 𝑓(𝑥) ≠ 𝑀. 

So the function 𝑔 defined on [𝑎;𝑏] by ∀𝑥 ∈ [𝑎; 𝑏]: 𝑔(𝑥) =
1

𝑀−𝑓(𝑥)
 it is continuous and strictly 

positive and therefore it is bounded to this interval, i.e.: ∃𝑚 > 0; ∀𝑥 ∈ [𝑎; 𝑏]: 𝑔(𝑥) ≤ 𝑚 or  

∃𝑚 > 0; ∀𝑥 ∈ [𝑎; 𝑏]: 𝑓(𝑥) ≤ 𝑀 −
1

𝑚
. This contradicts the hypothesis 𝑀 = sup𝑥∈[𝑎;𝑏] 𝑓(𝑥). 

Theorem 4.11 

Let 𝑓 be a continuous function in the interval [𝑎; 𝑏], if the signs of 𝑓(𝑎) and 𝑓(𝑏) are different, 

then there is at least a point 𝑐 in the interval ]𝑎; 𝑏[ satisfies: 𝑓(𝑐) = 0. 

Proof 

Assume that 𝑓(𝑎) < 0 and  𝑓(𝑏) > 0. Let the set E = {𝑥 ∈ [𝑎; 𝑏] 𝑓(𝑥) > 0⁄ }, then E ≠ ∅ because 

𝑏 ∈ E. We put inf E = 𝑐 and let us prove that: 𝑓(𝑐) = 0. 

Assume that 𝑓(𝑐) ≠ 0 Since 𝑓 is continuous at 𝑐, there exists at least a interval of the form 𝐼 =
]𝑐 − 𝛼; 𝑐 + 𝛼[ ⊂ [𝑎; 𝑏] with 𝛼 > 0, where 𝑓(𝑥) and 𝑓(𝑐) have the same sign. (See Proposition 

1.3).So 

if 𝑓(𝑐) > 0, then ∀𝑥 ∈ 𝐼: 𝑓(𝑥) > 0 by taking 𝑥 = 𝑐 −
𝛼

2
 we get 𝑓 (𝑐 −

𝛼

2
) > 0 so 𝑐 −

𝛼

2
∈ E and 

therefore 𝑐 −
𝛼

2
≥ 𝑐 = inf E. and this is a contradiction. 

if 𝑓(𝑐) < 0, then ∀𝑥 ∈ 𝐼: 𝑓(𝑥) < 0.  

We have inf E = 𝑐⟹ ∃𝑥0 ∈ E: 𝑐 + 𝛼 > 𝑥0 ≥ 𝑐⟹ 𝑥0 ∈ 𝐼⟹ 𝑓(𝑥0) < 0. This is a contradiction 

because 𝑥0 ∈ E⟹ 𝑓(𝑥0) > 0.So 𝑓(𝑐) = 0. 

Theorem 4.12 
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Let 𝑓 be a continuous function in the interval [𝑎; 𝑏]. For every real number λ between 𝑓(𝑎) and 𝑓(𝑏), 
there exists at least one real number 𝑐 of the interval [𝑎; 𝑏] satisfies: 𝑓(𝑐) = λ. 

Proof 

case 1: If λ = 𝑓(𝑎) it is enough to take 𝑐 = 𝑎, but if λ = 𝑓(𝑏) it is enough to take 𝑐 = 𝑏. 

case 2: If λ ≠ 𝑓(𝑎) and λ ≠ 𝑓(𝑏). Then the function 𝑔 defined in the interval [𝑎; 𝑏] by  

𝑔(𝑥) = 𝑓(𝑥) − λ, satisfies the conditions of Theorem 4.11, So there exists at least one real number 

𝑐 of the interval [𝑎; 𝑏] where 𝑔(𝑐) = 0 and from which we get 𝑓(𝑐) = λ. 
Proposition 3.2 

Let 𝐼 be the interval of ℝ, 𝑓 a real function 

If the function 𝑓 is continuous on 𝐼, then the image of the interval 𝐼 by the function 𝑓 is a interval 

of ℝ, that is, the set 𝑓(𝐼) is a interval. 

Proof 

Let 𝑦1; 𝑦2 be two numbers of 𝑓(𝐼) where 𝑦1 ≤ 𝑦2 then there are at least two numbers 𝑥1; 𝑥2 of the 

interval 𝐼 where 𝑦1 = 𝑓(𝑥1) and 𝑦2 = 𝑓(𝑥2) according to the theorem 4.12 for every number 𝑦 

such that 𝑦1 ≤ 𝑦 ≤ 𝑦2, there exists at least an number 𝑥 confined between 𝑥1  and 𝑥2 ( i.e. 𝑥 ∈ 𝐼), 
where 𝑦 = 𝑓(𝑥) and hence 𝑦 ∈ 𝑓(𝐼). 

4.3.2 Extension by continuity 

Definition 4 14 

Let 𝑓 be a function defined on the domain 𝐼. With exception of the point 𝑥0 of 𝐼, we assume that 

lim
𝑥→𝑥0

𝑓(𝑥) = ℓ. Then the function 𝑓̃, defined by 𝑓̃(𝑥) = {
𝑓(𝑥)   ; 𝑥 ≠ 𝑥0
ℓ         ;  𝑥 = 𝑥0

, coincides with 𝑓 on 𝐼 −

{𝑥0} and is continuous at 𝑥0. The function 𝑓̃ is called the extension of 𝑓 with continuity at 𝑥0. 

Example 

Let 𝑓 be a function defined on ℝ∗ by 𝑓(𝑥) =
sin2𝑥

𝑥
. Since lim

𝑥→0

sin2𝑥

𝑥
= 2, then 𝑓 can be extended by 

continuity at 𝑥0 = 0 to the function 𝑓̃ defined by: 𝑓̃(𝑥) = {
sin2𝑥

𝑥
 ; 𝑥 ≠ 0

2         ; 𝑥 ≠ 0
. 

4.3.3 properties of monotone functions on an interval: 

Theorem 4.13 

Let 𝑓: ]𝑎, 𝑏[ → ℝ be a monotonic function where −∞ < 𝑎 < 𝑏 < +∞, then the limits lim
𝑥
>
→𝑎

𝑓(𝑥) ، 

lim
𝑥
<
→𝑏

𝑓(𝑥), are exists ( finite or infinite ) and we have  

If 𝑓 increasing ⟹ −∞ ≤ inf𝑥∈]𝑎,𝑏[ 𝑓(𝑥) = lim
𝑥
>
→𝑎

𝑓(𝑥) ≤ lim
𝑥
<
→𝑏

𝑓(𝑥) = sup𝑥∈]𝑎,𝑏[ 𝑓(𝑥) ≤ +∞ 
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If 𝑓 decreasing ⟹ −∞ ≤ inf𝑥∈]𝑎,𝑏[ 𝑓(𝑥) = lim
𝑥
<
→𝑏

𝑓(𝑥) ≤ lim
𝑥
>
→𝑎

𝑓(𝑥) = sup𝑥∈]𝑎,𝑏[ 𝑓(𝑥) ≤ +∞ 

Proof 

Assume that 𝑓 increasing and sup𝑥∈]𝑎,𝑏[ 𝑓(𝑥) = 𝑀 < +∞ and let us prove that: lim
𝑥
<
→𝑏

𝑓(𝑥) = 𝑀. 

We have sup𝑥∈]𝑎,𝑏[ 𝑓(𝑥) = 𝑀⟹ ∀ε > 0; ∃α ∈ ]𝑎, 𝑏[: 𝑀 − 𝜀 < 𝑓(𝛼) ≤ 𝑀. 

By putting 𝛿 = 𝑏 − 𝛼 > 0, then 𝑏 − 𝛿 < 𝑥 < 𝑏 ⇒ 𝛼 < 𝑥 < 𝑏 ⟹⏞
𝑓 increasing

 𝑓(𝛼) ≤ 𝑓(𝑥) 

                                                                                                        ⇒ 𝑀 − 𝜀 < 𝑓(𝛼) ≤ 𝑓(𝑥) ≤ 𝑀 < 𝑀 + 𝜀 

                                                                                                        ⇒ 𝑀 − 𝜀 < 𝑓(𝑥) < 𝑀 + 𝜀. 

So ∀ε > 0; ∃δ > 0:−𝛿 < 𝑥 − 𝑏 < 0 ⇒ |𝑓(𝑥) − 𝑀| < 𝜀 we get lim
𝑥
<
→𝑏

𝑓(𝑥) = 𝑀. 

In the same way we prove the second case. 

Corollary 4.1 

1) Let 𝑓: ]𝑎, 𝑏[ → ℝ be a monotonic function then: 

a) If 𝑓 increasing ⟹ 𝑓(𝑎) ≤ lim
𝑥
>
→𝑎

𝑓(𝑥) ≤ lim
𝑥
<
→𝑏

𝑓(𝑥) ≤ 𝑓(𝑏). 

b) If 𝑓 decreasing ⟹ 𝑓(𝑏) ≤ lim
𝑥
<
→𝑏

𝑓(𝑥) ≤ lim
𝑥
>
→𝑎

𝑓(𝑥) ≤ 𝑓(𝑎). 

2) Let 𝐼 be an interval of ℝ bounded by 𝑎 and 𝑏 (𝑎 < 𝑏), and let 𝑓: [𝑎, 𝑏] → ℝ be an increasing 

function. For each 𝑥0, where 𝑎 < 𝑥0 < 𝑏 then: 

a) −∞ < 𝑓(𝑥0 − 0) ≤ 𝑓(𝑥0) ≤ 𝑓(𝑥0 + 0) < +∞. 

b) If 𝑎 ∈ 𝐼 ⟹  𝑓(𝑎) ≤ 𝑓(𝑎 + 0) < +∞. 

c) If 𝑏 ∈ 𝐼 ⟹ −∞ < 𝑓(𝑏 − 0) ≤ 𝑓(𝑏). 

Remark 

We obtain a corollary similar to corollary 4.1 if 𝑓 is decreasing over the interval 𝐼. 

Theorem 4.14 

Let 𝐼 be an interval of ℝ and let 𝑓: [𝑎, 𝑏] → ℝ be an monotonic function Then 𝑓 is continuous on 𝐼 
if and only if 𝑓(𝐼) is a interval. 

Proof 

Necessary conditions 

According to Proposition 2.3, if 𝑓 is continuous, then 𝑓(𝐼) is an interval. 

sufficient condition 
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We assume 𝑓 is increasing and 𝑓(𝐼) is a interval and prove that 𝑓 is continuous on 𝐼. 

Suppose the opposite and let𝑥0 be a point of discontinuity of 𝑓. As 𝑓 is increasing, then at least one 

of the relations 𝑓(𝑥0) < 𝑓(𝑥0 + 0), 𝑓(𝑥0 − 0) < 𝑓(𝑥0).  is verified (corollary 4.1). 

Assume, for example, that 𝑓(𝑥0) < 𝑓(𝑥0 + 0) in this case, then for each 𝑥 of 𝐼, we have 

𝑥 ≤ 𝑥0 ⇒ 𝑓(𝑥) < 𝑓(𝑥0) and  𝑥 > 𝑥0 ⇒ 𝑓(𝑥) ≥ 𝑓(𝑥0 + 0) that is ](𝑥0), 𝑓(𝑥0 + 0)[ ∩ 𝑓(𝐼) = ∅. 

Let 𝑥1 ∈ 𝐼 where 𝑥1 > 𝑥0 then 𝑓(𝑥0) ∈ 𝑓(𝐼) and 𝑓(𝑥1) ∈ 𝑓(𝐼) and from it [𝑓(𝑥0), 𝑓(𝑥1)] ⊂ 𝑓(𝐼) 
(because 𝑓(𝐼) is a interval) and since 𝑓(𝑥1) > 𝑓(𝑥0 + 0) then ]𝑓(𝑥0), 𝑓(𝑥0 + 0)[ ⊂
[𝑓(𝑥0), 𝑓(𝑥1)] 

i.e. ]𝑓(𝑥0), 𝑓(𝑥0 + 0)[ ∩ 𝑓(𝐼) ≠ ∅. This is a contradiction. 

4.4.3 The inverse function of a strictly monotonic continuous function: 

Theorem 4.15 

Let 𝐼 be the interval of ℝ and 𝑓: 𝐼 → ℝ as a function. 

If 𝑓 is continuous and strictly monotonic over the interval 𝐼, then 𝑓 in this case is bijective of the 

interval 𝐼 to the interval 𝑓(𝐼). Therefore, 𝑓 accepts an inverse function that we denote by 𝑓−1, 

which in turn is defined, continuous, and strictly monotonic over the interval 𝑓(𝐼)  and has the 

same direction of change of 𝑓, and we have 

∀𝑥 ∈ 𝐼; ∀𝑦 ∈ 𝑓(𝐼): 𝑦 = 𝑓(𝑥) ⟺ 𝑥 = 𝑓−1(𝑦)… . (∗) 

Remark: Relation (∗) is used to give the expression for the function 𝑓−1 if possible. 

If 𝑓 is strictly monotonic over 𝐼, it is injective, and from the definition of the set 𝑓(𝐼), it is 

surjective, so 𝑓 is bijective. 

𝑓 is continuous, 𝑓(𝐼) is an interval. On the other hand, as 𝑓 is strictly monotonic, 𝑓−1 is also 

monotonic. Therefore, 𝑓−1 is continuous according to the theorem 4.14 because 𝑓−1(𝑓(𝐼)) = 𝐼 is 

an interval. 

Example  

Let the function 𝑓 defined on the interval I = [0;+∞[  by 𝑓(𝑥) = 𝑥2 + 3, then 𝑓 is continuous and 

strictly monotonic (strictly increasing) on the interval I = [0;+∞[ where 𝑓(I) = [3; +∞[ 
according to theorem (4.15), 𝑓 is a bijective to the interval [0;+∞[] in the interval [3;+∞[, so it 

accepts an inverse function 𝑓−1 and we have: 

∀𝑥 ∈ [0;+∞[; ∀𝑦 ∈ [3;+∞[: 𝑦 = 𝑥2 + 3 ⟺ 𝑥2 = 𝑦 − 3 

                                  ⟺ {
𝑥 = √𝑦 − 3

∨

𝑥 = −√𝑦 − 3 < (مرفوض)0

. 

So 𝑓−1(𝑥) = √𝑦 − 3, after replacing 𝑥 with 𝑦, the final definition of the inverse function 𝑓−1 is as 

follows: 
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𝑓−1: [3;+∞[→ [0;+∞[

𝑥 → √𝑥 − 3
 

Exercise* 

Let the function 𝑓 defined on ℝ by بـ𝑓(𝑥) = {
𝑥2 − 2𝑥 + 1   𝑠𝑖 𝑥 ≤ 1
−𝑥+1

2𝑥−1
               𝑠𝑖 𝑥 > 1

. 

1) Prove That 𝑓 is continuous and strictly monotonic over ℝ. 

2) Concluding that 𝑓 accepts an inverse function 𝑓−1, write the expression 𝑓−1(𝑥) in terms of 𝑥. 

Solution 

lim
𝑥
>
→1

𝑓(𝑥) = lim
𝑥
<
→1

(𝑥) = 𝑓(1) = 0 ⟹ continuous at 0 ⟹ 𝑓 continuous over ℝ. 

𝑓 is decreasing over ℝ and 𝑓(ℝ) = ]−
1

2
; +∞[. So 

𝑓−1: ]−
1
2 ;+∞[→ ℝ

𝑥 → 𝑓(𝑥) = {
𝑥 + 1
2𝑥 + 1 ,

−1
2 < 𝑥 < 0

1 − √𝑥, 𝑥 ≥ 0

 

4.4 Differentiable functions 

4.4.1 Definition and basic properties 

Definition 4.15 

Let 𝑓 be a function defined on the neighborhood 𝑉𝑥0 of the point 𝑥0. We say that the function 𝑓 is 

differentiable at 𝑥0 if and only if lim
𝑥
>
→𝑥0

𝑓(𝑥)−𝑓(𝑥0)

𝑥−𝑥0
= L, exists. We call 𝐿 the derivative of 𝑓 at 𝑥0, and 

we write. 𝑓′(𝑥0) = 𝐿. If 𝑓 is differentiable at all 𝑥 ∈  𝐼, then we simply say that 𝑓 is differentiable, 

and then we obtain a function 𝑓′: 𝐼 → ℝ The derivative is sometimes written as 
𝑑𝑓

𝑑𝑥
 or  

𝑑𝑦

𝑑𝑥
 where 𝑦 =

𝑓(𝑥). 
Remarks 

1) By putting 𝑥 − 𝑥0 = ℎ, the previous limit is written as lim
ℎ→0

𝑓(𝑥0+ℎ)−𝑓(𝑥0)

ℎ
= 𝑓′(𝑥0). 

2) The function 𝑓 is differentiable at 𝑥0 if and only if there exists a function ε defined in the 

neighborhood 𝑉𝑥0 to the point 𝑥0 where 

∀𝑥 ∈ 𝑉𝑥0: 𝑓(𝑥) − 𝑓(𝑥0) = (𝑓
′(𝑥0) + 𝜀(𝑥))(𝑥 − 𝑥0)و lim

𝑥→𝑥0
𝜀(𝑥) = 0 

If lim
𝑥
>
→𝑥0

𝑓(𝑥)−𝑓(𝑥0)

𝑥−𝑥0
= 𝐿𝑑 ( lim

𝑥
<
→𝑥0

𝑓(𝑥)−𝑓(𝑥0)

𝑥−𝑥0
= 𝐿𝑔 , respectively ), we say that the function 𝑓 is 

differentiable at 𝑥0 from the right (from the left, respectively) And we write 𝐿𝑑 = 𝑓
′(𝑥0 + 0) 

( 𝐿𝑔 = 𝑓′(𝑥0 − 0), respectively ). 

Corollary 4.2 

A function 𝑓 is differentiable at 𝑥0 if and only if 𝑓′(𝑥0 − 0) and 𝑓′(𝑥0 + 0) exist and 
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𝑓′(𝑥0 + 0) = 𝑓′ (𝑥0 − 0). 
Example 

Let 𝑓 be a function defined in ℝ by 𝑓(𝑥) = |𝑥2 − 1|, let us study the differentiability 

of 𝑓 at 𝑥0 = 1.We have 

lim
𝑥
>
→1

𝑓(𝑥)−𝑓(1)

𝑥−1
= lim
𝑥
>
→1

𝑥2−1

𝑥−1
= 2 = 𝑓′(1+ 0) and lim

𝑥
<
→1

𝑓(𝑥)−𝑓(1)

𝑥−1
= lim
𝑥
<
→1

−(𝑥2−1)

𝑥−1
= −2 = 𝑓′(1− 0). 

𝑓 is differentiable at 𝑥0 = 1 from the right and from the left, but it is not differentiable at 𝑥0 =
1 because 𝑓′(1 + 0) ≠ 𝑓′(1 − 0). 

Geometric interpretation 

The derivative of the function 𝑓 at 𝑥0 is the slope of the line tangent to the graph 

of 𝑓 at the point M0(𝑥0, f(𝑥0)). Thus, the equation of this tangent line is 

 𝑦 = 𝑓′(𝑥0)(𝑥 − 𝑥0) + 𝑓(𝑥0). 
The left and right derivatives are also interpreted by the half-tangents to the left and right of the 

point M0(𝑥0, f(𝑥0)). 
Theorem 4.16 

If 𝑓 is differentiable at 𝑥0, then 𝑓 is continuous at 𝑥0. 
Proof 

Let 𝑓 be differentiable at 𝑥0 then there is a neighborhood 𝑉𝑥0 where 

∀𝑥 ∈ 𝑉𝑥0: 𝑓(𝑥) − 𝑓(𝑥0) = (𝑓
′(𝑥0) + 𝜀(𝑥))(𝑥 − 𝑥0) and lim

𝑥→𝑥0
𝜀(𝑥) = 0.So 

lim
𝑥→𝑥0

(𝑓(𝑥)− 𝑓(𝑥0)) = lim
𝑥→𝑥0

(𝑓′(𝑥0)+ 𝜀(𝑥)) (𝑥 − 𝑥0) =0 So 𝑓 is continuous at 𝑥0. 

4.4.2 Higher order derivative 

Let 𝑓 be a function differentiable on the interval 𝐼. If 𝑓′ differentiable on the interval 𝐼, then we denote its 

derivative by 𝑓′′, it is called the second derivative. In the same way, we define the successive derivatives 

of the function 𝑓 as follows: 

∀𝑛 ∈ ℕ:  𝑓(𝑛+1)(𝑥) = (𝑓(𝑛)(𝑥))
′

𝑓(0)(𝑥)و = 𝑓(𝑥). 

We denote the nth-order derivative of the function 𝑓 by 
𝑑𝑛𝑦

𝑑𝑥𝑛
 or 𝑦(𝑛), where 𝑦 = 𝑓(𝑥). 

Exercise Prove that: 

1) ∀𝑛 ∈ ℕ ∶  𝑐𝑜𝑠(𝑛)𝑥 = cos (𝑥 +
𝜋

2
𝑛).       2) ∀𝑛 ∈ ℕ ∶   [

1

𝑥
]
(𝑛)

=
(−1)𝑛𝑛!

𝑥𝑛+1
. 

Definition 4.16 

We say of a function 𝑓 defined in interval 𝐼, that it is of class 𝐶𝑛 if it is differentiable to order 𝑛 

andthe derivative 𝑓
(𝑛)

 is continuous over 𝐼. We denote the set of functions of class 𝐶𝑛 in the 

interval 𝐼 by . 𝐶𝑛(𝐼). We have a definition: 

 𝐶0(𝐼) = 𝐶(𝐼) 
 The set of infinitely differentiable functions over the interval 𝐼., we denote 𝐶∞(𝐼). 
4.4.3 Operations on differentiable functions 

Theorem 4.17 
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Let 𝑓 and 𝑔 be differentiable functions on the interval 𝐼, then the functions𝑓 + 𝑔 , 𝛼𝑓 , 𝑓𝑔 ,
𝑓

𝑔
   

( 𝑔 ≠ 0 ) are differentiable over 𝐼 and we have: 

(𝑓 + 𝑔)′ = 𝑓′ +𝑔′        ,       (𝛼𝑓)′ = 𝛼𝑓′ 

(
𝑓

𝑔
)

′

=
𝑓′𝑔− 𝑓𝑔′

𝑔²
             ,           (𝑓𝑔)′ = 𝑓′𝑔+ 𝑓𝑔′. 

Proof  ( Let us prove the last case ) 

Let 𝑥0 ∈ 𝐼 we have 

𝑓

𝑔
(𝑥)−

𝑓

𝑔
(𝑥0)

𝑥−𝑥0
=
𝑓(𝑥)𝑔(𝑥0)−𝑓(𝑥0)𝑔(𝑥)

𝑔(𝑥)𝑔(𝑥0)(𝑥−𝑥0)
=

𝑓(𝑥)−𝑓(𝑥0)

(𝑥−𝑥0)
𝑔(𝑥0)−𝑓(𝑥0)

𝑔(𝑥)−𝑔(𝑥0)

(𝑥−𝑥0)

𝑔(𝑥)𝑔(𝑥0)
. 

When 𝑥 → 𝑥0 then  
𝑓(𝑥)−𝑓(𝑥0)

(𝑥−𝑥0)
→ 𝑓′(𝑥0)  and  

𝑔(𝑥)−𝑔(𝑥0)

(𝑥−𝑥0)
→ 𝑔′(𝑥0) and 𝑓(𝑥) → 𝑓(𝑥0) and 

 𝑔(𝑥) → 𝑔(𝑥0). So 

𝑓

𝑔
(𝑥)−

𝑓

𝑔
(𝑥0)

𝑥−𝑥0
⟶

𝑓′(𝑥0)𝑔(𝑥0)−(𝑥0)𝑓𝑔
′(𝑥0)

(𝑔(𝑥0))
2 . 

 

Theorem 4.18 (Leibniz formula) 

If 𝑓 and 𝑔 admit nth derivatives on the interval 𝐼 then the function 𝑓. 𝑔 admits an nth derivative on 

the interval 𝐼 and we have: 

∀𝑛 ∈ ℕ: (𝑓. 𝑔)(𝑛) =∑𝐶𝑛
𝑝

𝑛

𝑝=0

𝑓(𝑛−𝑝)𝑔(𝑝). 

Proof 

We use proof by induction and by noting that: ∀𝑛, 𝑝 ∈ ℕ ( 1 ≤ 𝑝 ≤ 𝑛 − 1 ): 𝐶𝑛
𝑝 = 𝐶𝑛−1

𝑝 + 𝐶𝑛−1
𝑝−1

. 

Theorem 4.19 

Let 𝑓 and 𝑔 be functions where 𝑓 is differentiable on the interval 𝐼 and 𝑔 is differentiable on the 

interval 𝑓(𝐼), then the function 𝑔 ∘ 𝑓 is differentiable on the interval 𝐼 and (𝑔 ∘ 𝑓)′ = (𝑔′ ∘ 𝑓 )𝑓′. 
Proof 
Let 𝑥0 ∈ 𝐼 since 𝑓 is differentiable at 𝑥0 and 𝑔 is differentiable at 𝑦0 = 𝑓(𝑥0), Then  

𝑓(𝑥) − 𝑓(𝑥0) = (𝑓
′(𝑥0) + 𝜀1(𝑥))(𝑥 − 𝑥0) w𝑖𝑡ℎ lim

𝑥→𝑥0
𝜀1(𝑥) = 0 

and  

 𝑔(𝑦) − 𝑔(𝑦0) = (𝑔
′(𝑦0) + 𝜀2(𝑦))(𝑦 − 𝑦0) with lim

𝑦→𝑦0
𝜀2(𝑦) = 0. 

For 𝑦 = 𝑓(𝑥) then 𝑦 → 𝑦0when 𝑥 → 𝑥0 (since 𝑓 is continuous at 𝑥0) and from there 

𝑔(𝑓(𝑥)) − 𝑔(𝑓(𝑥0)) = (𝑔
′(𝑓(𝑥0)) + 𝜀2(𝑦)) (𝑓

′(𝑥0) + 𝜀1(𝑥))(𝑥 − 𝑥0) and 

𝑔(𝑓(𝑥))−𝑔(𝑓(𝑥0))

𝑥 − 𝑥0
= (𝑔′(𝑓(𝑥0))+ 𝜀2(𝑦)) (𝑓

′(𝑥0)+ 𝜀1(𝑥)) 
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For 𝑥 → 𝑥0 then 𝑦 → 𝑦0, 𝜀1(𝑥)→ 0 and 𝜀2(𝑦)→ 0.So 
𝑔(𝑓(𝑥))−𝑔(𝑓(𝑥0))

𝑥 − 𝑥0
→ 𝑔′(𝑓(𝑥0))𝑓

′
(𝑥0). 

Example 

Let the function ℎ defined on ℝ+ by ℎ(𝑥) = cos(3√𝑥 + 𝑥2).We have ℎ = 𝑔 ∘ 𝑓 where  

𝑓(𝑥) = 3√𝑥 + 𝑥2 and 𝑔(𝑥) = cos 𝑥 and we have 𝑓′(𝑥) =
3

2√𝑥
+ 2𝑥 and 𝑔′(𝑥) = −𝑠𝑖𝑛 𝑥. So  

ℎ′(𝑥) = (𝑔′ ∘ 𝑓)(𝑥)𝑓′(𝑥) = −sin(3√𝑥 + 𝑥2) (
3

2√𝑥
+ 2𝑥) 

                                             = −(
3

2√𝑥
+ 2𝑥) sin(√𝑥 + 𝑥2). 

Theorem 4.20 

If 𝑓 is strictly monotonic continuous function on the interval 𝐼, and differentiable at 𝑥0 from 𝐼 

where 𝑓′(𝑥0) ≠ 0, then the inverse function 𝑓−1 is differentiable at 𝑦0 = 𝑓(𝑥0) from 𝑓(𝐼) And we 

have: 

(𝑓−1)
′
(𝑦0) =

1

𝑓′(𝑥0)
=

1

𝑓′ [𝑓−1(𝑦0)]
. 

Proof 

Let 𝑓 is differentiable at 𝑥0 from 𝐼 where 𝑓′(𝑥0) ≠ 0, and let 𝑦0 be a point from 𝑓(𝐼) where  

𝑦0 = 𝑓(𝑥0). For every 𝑦 of 𝑓(𝐼) there is a single real number 𝑥 of 𝐼 where 𝑦 = 𝑓(𝑥)  and since 𝑓 is 

continuous and strictly monotonic on 𝐼, so 𝑓−1 is continuous and strictly monotonic on 𝑓(𝐼) (according to 

the Theorem 4.15), so ∀𝑦 ∈ 𝑓(𝐼): 𝑦 ≠ 𝑦0 ⇒ 𝑥 ≠ 𝑥0.and for 𝑦 ⟶ 𝑦0, then 𝑥 → 𝑥0. 

We put 𝑔 = 𝑓−1 then 𝑦0 = 𝑓(𝑥0)⇔ 𝑥0 = 𝑔(𝑦0) and 𝑦 = 𝑓(𝑥) ⇔ 𝑥 = 𝑔(𝑦).So 

lim
𝑦→𝑦0

𝑔(𝑦)−𝑔(𝑦0)

𝑦 − 𝑦0
= lim
𝑦→𝑦0

𝑥 − 𝑥0
𝑦 − 𝑦0

= lim
𝑥⟶𝑥0

1
𝑦− 𝑦0
𝑥 − 𝑥0

=
1

𝑓′(𝑥0)
. 

Examples 

1) Let  𝑓:
[0;+∞[→ℝ

𝑥→𝑓(𝑥)=𝑥𝑛
. The function 𝑓 is continuous and strictly increasing on the domain 𝐼 =

[0;+∞[, and from it, 𝑓 accepts an inverse function 𝑓−1 defined, continuous and strictly 

increasing on the interval 𝑓(𝐼) = [0;+∞[, denoted by √ .  
𝑛

 or (. )
1

𝑛 is called the function of the nth 

root. Since: ∀𝑥 ∈ ]0, +∞[: (𝑥𝑛)′ = 𝑛𝑥𝑛−1 ≠ 0, Then the function 𝑓−1 are differentiatiable at 

every number 𝑦 of the interval ]0,+∞[ where 𝑦 = 𝑥𝑛and we have: 

(𝑓−1)
′
(𝑦) =

1

𝑓′(𝑥)
=

1

𝑛𝑥𝑛−1
=

1

𝑛((𝑦)
1
𝑛)

𝑛−1 =
1

𝑛
𝑦
1

𝑛
−1. So 

∀𝑥 ∈ ]0, +∞[: ( √𝑥
𝑛
)
′
= ((𝑥)

1
𝑛)
′

=
1

𝑛
𝑥
1
𝑛
−1
. 
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2) Let  
ℎ:]−

𝜋

2
;
𝜋

2
[→ℝ

𝑥→ℎ(𝑥)=tan 𝑥
. The function ℎ is continuous and strictly increasing on the domain 𝐼 =

]−
𝜋

2
;
𝜋

2
[, and from it, ℎ accepts an inverse function ℎ−1 defined, continuous and strictly increasing 

on the interval ℎ(𝐼) = ℝ, denoted by arctan. Since: ∀𝑥 ∈ ]−
𝜋

2
;
𝜋

2
[ : ℎ′(𝑥) = (tan 𝑥)′ =

1

𝑐𝑜𝑠2𝑥
≠ 0 

, Then the function ℎ−1 are differentiable at every number 𝑦 of set ℝ where 𝑦 = tan 𝑥and we 

have: (ℎ−1)
′
(𝑦) =

1

ℎ′(𝑥)
= 𝑐𝑜𝑠2𝑥 =

1

1+𝑡𝑎𝑛2𝑥
=

1

1+𝑦2
. 

So 

∀𝑥 ∈ ℝ: (arctan 𝑥)′ =
1

1 + 𝑥2
. 

Theorem 4.21 

If 𝑓 has an extremum at point 𝑥0 and is differentiable at 𝑥0 then 𝑓′(𝑥0) = 0. 

Proof 

The existence of 𝑓′(𝑥0) entails the existence and equality of 𝑓′(𝑥0 + 0) and 𝑓′(𝑥0 − 0) and we 

assume that 𝑓(𝑥0) is a maximum, then exists a neighborhood 𝑉𝑥0 of the point 𝑥0 where  

∀𝑥 ∈ 𝑉𝑥0: 𝑓(𝑥) ≤ 𝑓(𝑥0). So  

If 𝑥 > 𝑥0 then 
𝑓(𝑥)−𝑓(𝑥0)

𝑥−𝑥0
≤ 0 and if 𝑥 < 𝑥0 then 

𝑓(𝑥)−𝑓(𝑥0)

𝑥−𝑥0
≥ 0. So 

lim
𝑥
<
→𝑥0

𝑓(𝑥)−𝑓(𝑥0)

𝑥−𝑥0
= 𝑓′(𝑥0 − 0) = 𝑓

′(𝑥0) ≥ 0 and 

lim
𝑥
>
→𝑥0

𝑓(𝑥)−𝑓(𝑥0)

𝑥−𝑥0
= 𝑓′(𝑥0 − 0) = 𝑓

′(𝑥0) ≤ 0. 

We obtain 𝑓′(𝑥0) = 0 
4.4.4 The theorems of Lagrange and Cauchy on finite increments 

Proposition 3.3 (Rolle’s Theorem) 
If a function 𝑓 [𝑎, 𝑏]  →  ℝ  is continuous on a closed interval [𝑎, 𝑏] and differentiable on the open 

interval ]𝑎, 𝑏[ and 𝑓(𝑎)  = 𝑓(𝑏), then there exists a point 𝑐 ∈ [𝑎, 𝑏] such that 𝑓′(c) = 0. 

Proof 

Since the function 𝑓 is continuous on [𝑎, 𝑏], there exist points 𝑥m, 𝑥M ∈ [𝑎, 𝑏] where they take 

their minimum and maximum values respectively. If 𝑓(𝑥m) = 𝑓(𝑥M) , then the function is 

constant on [𝑎, 𝑏]; and since in that case ∀𝑥 ∈ ]𝑎; 𝑏[: 𝑓′(𝑥) = 0. If 𝑓(𝑥m) < 𝑓(𝑥M) , then, since 

𝑓(𝑎)  = 𝑓(𝑏), one of the points 𝑥m and 𝑥M must lie in the open interval ]𝑎, 𝑏[. We denote it by 𝑐 
According theorem 4.21 we obtain 𝑓′(c) = 0. 

Theorem 4 22 (Lagrange’s finite-increment theorem) 
If a function 𝑓 [𝑎, 𝑏]  →  ℝ  is continuous on a closed interval [𝑎, 𝑏] and differentiable on the open 

interval ]𝑎, 𝑏[, then there exists a point 𝑐 ∈ [𝑎, 𝑏] such that 𝑓(𝑏) − 𝑓(𝑎) = 𝑓′(𝑐)(𝑏 − 𝑎). 
Proof 
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It is sufficient to check that the function 𝑔, defined in the domain [𝑎, 𝑏] by 𝑔(𝑥) = 𝑓(𝑥) −
𝑓(𝑏)−𝑓(𝑎)

𝑏−𝑎
𝑥, satisfies the conditions of Proposition 3.3. Then there is at least a number c of the 

interval ]𝑎, 𝑏[ that satisfies 𝑔′(𝑐) = 0 and we obtain 𝑓′(𝑐) =
𝑓(𝑏)−𝑓(𝑎)

𝑏−𝑎
. 

Remark 

This theorem is used in approximate calculations and in proving many inequalities. 

Example 

Using the finite increment theorem, prove that: ∀𝑥 ≥ 0: ln(𝑥 + 1) ≤ 𝑥. 

Applying the theorem of finite increments to the interval [0; 𝑥] where 𝑥 ≥ 0, we get 

∀𝑥 ≥ 0 ∶ ln(𝑥 + 1) − ln 1 = 𝑓′(𝑐)(𝑥 − 0) ;    0 < c < 𝑥. 

So 

ln(𝑥 + 1) = 𝑓′(𝑐)𝑥 =
1

1 + 𝑐
⋅ 𝑥    ;     0 < c < 𝑥.   

We have 

𝑐 > 0 ⟹
1

1 + 𝑐
< 1 ⟹

1

1 + 𝑐
𝑥 ≤ 𝑥. 

We obtain 

∀𝑥 ≥ 0 ∶ ln(𝑥 + 1) ≤ 𝑥. 

Theorem 4 23 (Cauchy's finite-increment theorem) 

If a functions 𝑓, 𝑔 [𝑎, 𝑏]  →  ℝ  are continuous on a closed interval [𝑎, 𝑏] and differentiable on the 

open interval ]𝑎, 𝑏[, and 𝑔′ is non-zero in the interval ]𝑎, 𝑏[ then there exists a point 𝑐 ∈]𝑎, 𝑏[ such 

that 
𝑓(𝑏)−𝑓(𝑎)

𝑔(𝑏)−𝑔(𝑎)
=

𝑓′(𝑐)

𝑔′(𝑐)
. 

Proof 

We have (∀𝑥 ∈ ]𝑎 ; 𝑏[: 𝑔′(𝑥) ≠ 0)⟹ (𝑔(𝑏) ≠ 𝑔(𝑎)) so it is sufficient to check that the function 

φ, defined in the domain [𝑎, 𝑏] by φ(𝑥) = 𝑓(𝑥) −
𝑓(𝑏)−𝑓(𝑎)

𝑔(𝑏)−𝑔(𝑎)
𝑔(𝑥), satisfies the conditions of 

Proposition 3.3. Then there is at least a number c of the interval ]𝑎, 𝑏[ that satisfies φ′(𝑐) = 0 and 

we obtain 
𝑓′(𝑐)

𝑔′(𝑐)
=
𝑓(𝑏)−𝑓(𝑎)

𝑏−𝑎
. 

Theorem 4 24 (Hospital Rule) 

If a functions 𝑓, 𝑔 are continuous on a neighborhood 𝑉𝑎 of the point 𝑎 and differentiable on 𝑉 −

{𝑎} then: If the lim
𝑥→𝑎

𝑓′(𝑥)

𝑔′(𝑥)
 exists, then the lim

𝑥→𝑎

𝑓(𝑥)−𝑓(𝑎)

𝑔(𝑥)−𝑔(𝑎)
 also and lim

𝑥→𝑎

𝑓′(𝑥)

𝑔′(𝑥)
= lim
𝑥→𝑎

𝑓(𝑥)−𝑓(𝑎)

𝑔(𝑥)−𝑔(𝑎)
. If in particular, 

𝑓(𝑎) = 𝑔(𝑎) = 0 we have the equality lim
𝑥→𝑎

𝑓′(𝑥)

𝑔′(𝑥)
= lim
𝑥→𝑎

𝑓(𝑥)

𝑔(𝑥)
. 

Proof 
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Assume that lim
𝑥→𝑎

𝑓′(𝑥)

𝑔′(𝑥)
= ℓ. 

For 𝑥 > 𝑎 we apply Theorem 4 24 to the interval [𝑎, 𝑥] and we get: 

𝑓(𝑥)− 𝑓(𝑎)

𝑔(𝑥)−𝑔(𝑎)
=
𝑓′(𝑐)

𝑔′(𝑐)
  where  𝑐 ∈ ]𝑎, 𝑥[. 

So 𝑥
>
→ 𝑎 ⟹ 𝑐

>
→𝑎 ⟹ 𝑓

′
(𝑐)

𝑔′(𝑐)
→ ℓ ⟹ 

𝑓(𝑥)−𝑓(𝑎)

𝑔(𝑥)−𝑔(𝑎)
→ ℓ 

For 𝑥 < 𝑎 we apply Theorem 4 24 to the interval [𝑥, 𝑎] and we get: 

So 𝑥
<
→ 𝑎 ⟹ 𝑐

<
→𝑎 ⟹ 𝑓

′
(𝑐)

𝑔′(𝑐)
→ ℓ ⟹ 

𝑓(𝑥)−𝑓(𝑎)

𝑔(𝑥)−𝑔(𝑎)
→ ℓ. 

We obtain lim
𝑥→𝑎

𝑓′(𝑥)

𝑔′(𝑥)
= lim
𝑥→𝑎

𝑓(𝑥)

𝑔(𝑥)
= ℓ. 

Remarks 

1) The previous result remains true if 𝑓 and 𝑔 are undefined at 𝑎 but accept two finite limits. 

2) Theorem 4.24 can be applied several times in a row. 

3) Theorem 4.24 can be applied in the following cases: 

a) lim
𝑥→∞

𝑓(𝑥) = 0 and lim
𝑥→∞

𝑔(𝑥) = 0. 

b) ) lim
𝑥→𝑎
𝑓(𝑥) = ∞ and lim

𝑥→𝑎
𝑔(𝑥) = ∞. 

c) ) lim
𝑥→∞

𝑓(𝑥) = ∞ and lim
𝑥→∞

𝑔(𝑥) = ∞. 

Examples 

1) lim
𝑥→1

√𝑥+3−2

𝑥−1
 ( I.F 

0

0
 ). 

lim
𝑥→1

√𝑥 + 3 − 2

𝑥 − 1
= lim
𝑥→1

1

2√𝑥 + 3
1

=
1

4
. 

2) lim
𝑥→0

𝑒𝑥−𝑥−1

𝑥2
 ( I.F 

0

0
 ). 

lim
𝑥→0

𝑒𝑥 − 𝑥 − 1

𝑥2
= lim
𝑥→0

𝑒𝑥 − 1

2𝑥
= lim
𝑥→0

𝑒𝑥

2
=
1

2
. 

3) lim
𝑥→+∞

 𝑒𝑥+𝑥²

𝑥3−𝑥+1
 ( I.F 

∞

∞
 ). 

 lim
𝑥→+∞

 𝑒𝑥+𝑥²

𝑥3−𝑥+1
= lim
𝑥→+∞

 𝑒𝑥+2𝑥

3𝑥2−1
= lim 𝑒𝑥

𝑥→+∞

 𝑒𝑥+1

6𝑥
= lim

𝑥→+∞

 𝑒𝑥

6
= +∞. 

4) lim
𝑥→+∞

2𝑥2

𝑥+3
ln
𝑥−1

𝑥+2
 ( I.F ∞. 0 ) 
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 lim
𝑥→+∞

2𝑥2

𝑥+3
ln
𝑥−1

𝑥+2
= lim
𝑥→+∞

2𝑥

𝑥+3
lim
𝑥→+∞

ln
𝑥−1

𝑥+2
1

𝑥

. 

Calculate lim
𝑥→+∞

ln
𝑥−1

𝑥+2
1

𝑥

 ( I.F 
0

0
 ). 

lim
𝑥→+∞

ln
𝑥 − 1
𝑥 + 2
1
𝑥

= lim
𝑥→+∞

(ln
𝑥 − 1
𝑥 + 2)

′

(
1
𝑥
)
′ = lim

𝑥→+∞

3
(𝑥 + 2)(𝑥 − 1)

−
1
𝑥2

= −3 

So lim
𝑥→+∞

2𝑥2

𝑥+3
ln
𝑥−1

𝑥+2
= 2 × (−3) = −6. 
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Chapter five: Elementary functions 

5.1 Inverse Trigonometric fonctions 
5.1.1 Arcsine Function 

Definition 5.1 

The function 𝑓 defined in the interval 𝐼 = [−
𝜋

2
;
𝜋

2
]by 𝑓(𝑥) = sin 𝑥, is continuous and strictly 

increasing in the interval 𝐼, it accepts an inverse function 𝑓−1 that is defined, continuous and 

strictly increasing on the interval 𝑓(𝐼) = [−1; 1]. We denote the function 𝑓−1 by "arcsin" or 

"sin−1". 

We have ∀𝑥 ∈ [−
𝜋

2
;
𝜋

2
] ; ∀𝑦 ∈ [−1; 1] ∶ 𝑦 = sin 𝑥 ⟺ 𝑥 = arcsin 𝑦. 

Derived function 

We have ∀𝑥 ∈ ]−
𝜋

2
;
𝜋

2
[ : (sin 𝑥)′ = cos 𝑥 ≠ 0 (cos 𝑥 > 0) 

According to the theorem 4.20 then, the function arcsin is differentiable at every number 𝑦 of 

the field ]−1; 1[ where 𝑦 = sin 𝑥 and we have:  

(arcsin 𝑦)′ =
1

(sin 𝑥)′
=

1

cos 𝑥
=

1

√1 − sin2𝑥
=

1

√1 − 𝑦2
. 

So 

∀𝑥 ∈ ]−1; 1[ ∶ (arcsin 𝑥)′ =
1

√1 − 𝑥²
 

5.1.2 Arccosine Function 

Definition 5.2 

The function 𝑔 defined in the interval 𝐼 = [0; 𝜋]by 𝑔(𝑥) = cos 𝑥, is continuous and strictly 

decreasing in the interval 𝐼, it accepts an inverse function 𝑔−1 that is defined, continuous and 

strictly decreasing on the interval 𝑓(𝐼) = [−1; 1]. We denote the function 𝑔−1 by "arccos" or 

"cos−1". 

We have ∀𝑥 ∈ [0; 𝜋]; ∀𝑦 ∈ [−1; 1] ∶ 𝑦 = cos 𝑥 ⟺ 𝑥 = arccos 𝑦. 

Derived function 

We have ∀𝑥 ∈ ]0; 𝜋[: (cos 𝑥)′ = −sin 𝑥 ≠ 0 (sin 𝑥 > 0 ). 
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Then the function arccos is differentiable at every number 𝑦 of the field ]−1; 1[ where 𝑦 =

cos 𝑥 and we have:  

(arccos 𝑦)′ =
1

(cos 𝑥)′
= −

1

sin 𝑥
= −

1

√1 − cos2𝑥
= −

1

√1 − 𝑦2
. 

So 

∀𝑥 ∈ ]−1; 1[ ∶ (arccos 𝑥)′ = −
1

√1 − 𝑥²
. 

5.1.3 Arctangent Function 

Definition 5.3 

The function ℎ defined in the interval 𝐼 = ]−
𝜋

2
;
𝜋

2
[by ℎ(𝑥) = tan 𝑥, is continuous and strictly 

increasing in the interval 𝐼, it accepts an inverse function ℎ−1 that is defined, continuous and 

strictly increasing on the interval ℎ(𝐼) = ℝ. We denote the function ℎ−1 by "arctan" or 

"tan−1". 

We have ∀𝑥 ∈ ]−
𝜋

2
;
𝜋

2
[ ; ∀𝑦 ∈ ℝ ∶ 𝑦 = tan 𝑥 ⟺ 𝑥 = arctan 𝑦. 

Derived function 

We have ∀𝑥 ∈ ]−
𝜋

2
;
𝜋

2
[ : (tan 𝑥)′ =

1

cos2 𝑥
≠ 0  

Then, the function arctan is differentiable at every number 𝑦 of ℝ where 𝑦 = tan 𝑥 and we 

have:  

(arctan 𝑦)′ =
1

(tan𝑥)′
= cos2 𝑥 =

1

1 + tan2 𝑥
=

1

1 + 𝑦2
. 

So 

∀𝑥 ∈ ℝ ∶ (arctan 𝑥)′ =
1

1 + 𝑥2
. 

5.1.4 Arccotangent Function 

Definition 5.4 

The function 𝑘 defined in the interval 𝐼 = ]0; 𝜋[by 𝑘(𝑥) = cotan 𝑥, is continuous and strictly 

decreasing in the interval 𝐼, it accepts an inverse function 𝑘−1 that is defined, continuous and 

strictly decreasing on the interval 𝑘(𝐼) = ℝ. We denote the function 𝑘−1 by "arccotan" or 

"cotan−1". 

We have ∀𝑥 ∈ ]0; 𝜋[; ∀𝑦 ∈ ℝ ∶ 𝑦 = cotan 𝑥 ⟺ 𝑥 = arccotan 𝑦. 

Derived function 
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We have ∀𝑥 ∈ ]0; 𝜋[: (tcoan 𝑥)′ = −
1

sin2 𝑥
≠ 0  

Then, the function arccotan is differentiable at every number 𝑦 of ℝ where 𝑦 = 𝑐𝑜 tan 𝑥 and 

we have:  

(arccotan 𝑦)′ =
1

(cotan 𝑥)′
= −sin2 𝑥 = −

1

1 + cotan2 𝑥
= −

1

1 + 𝑦2
. 

So 

∀𝑥 ∈ ℝ ∶ (arccotan 𝑥)′ = −
1

1 + 𝑥2
. 

Properties 

1) ∀𝑥 ∈ [−1; 1] ∶ arcsin 𝑥 + arccos 𝑥 =
𝜋

2
. 

2) ∀𝑥 ∈ [−1 ; 1] ∶ sin(arccos 𝑥) = √1 − 𝑥2. 

3) ∀𝑥 ∈ [−1; 1] ∶ cos(arcsin 𝑥) = √1 − 𝑥2. 

4) ∀𝑥 ∈ ℝ ∶ arc tan 𝑥 + arc cotan 𝑥 =
𝜋

2
. 

5) ∀𝑥 > 0 ∶ arctan 𝑥 + arctan
1

𝑥
=
𝜋

2
. 

6) ∀𝑥 < 0 ∶ arctan 𝑥 + arctan
1

𝑥
= −

𝜋

2
.  

Proof 

1) We put ∀𝑥 ∈ [−1; 1]: 𝑓(𝑥) = arcsin 𝑥 + arccos 𝑥. 

We have ∀𝑥 ∈ ]−1; 1[: 𝑓′(𝑥) =
1

√1−𝑥²
−

1

√1−𝑥²
= 0. So the function 𝑓  is constant in the interval 

[−1; 1]. So ∀𝑥 ∈ [−1; 1]: 𝑓(𝑥) = 𝑓(0) =
𝜋

2
. 

2) We have ∀𝑥 ∈ [−1; 1] ∶ arcsin 𝑥 ∈ [−
𝜋

2
;
𝜋

2
] ⟹ cos(arcsin 𝑥) ≥ 0. So  

∀𝑥 ∈ [−1; 1]: cos(arcsin 𝑥) = √1 − (sin (arc sin 𝑥))
2
= √1 − 𝑥2. 

6) We put ∀𝑥 < 0 ∶ 𝑓(𝑥) = arctan 𝑥 + arctan
1

𝑥
. We have  

∀𝑥 < 0 ∶ 𝑓′(𝑥) =
1

1+𝑥2
−

1

𝑥2
1

1+(
1

𝑥
)
2 = 0. So the function 𝑓  is constant in the interval ]−∞; 0[. So 

∀𝑥 ∈ ]−∞; 0[: 𝑓(𝑥) = 𝑓(−1) = −
𝜋

4
−
𝜋

4
= −

𝜋

2
. 
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Remark: The properties of inverse trigonometric functions are deduced from the properties of 

trigonometric functions. For example, property 1 is deduced from the property: sin (
𝜋

2
− 𝛼) =

cos 𝛼, which we will explain later. 

We have 
𝜋

2
− 𝛼 ∈ [−

𝜋

2
;
𝜋

2
] ⇔ 𝛼 ∈ [0, 𝜋]. Bu putting cos 𝛼 = 𝑥 we get 𝛼 ∈ [0, 𝜋] ⇔ 𝑥 ∈ [−1; 1] 

and  sin (
𝜋

2
− 𝛼) = cos 𝛼 ⇔ sin (

𝜋

2
− 𝛼) = 𝑥 ⇔

𝜋

2
− 𝛼 = arc sin 𝑥 

                                                    ⇔
𝜋

2
− arccos 𝑥 = arc sin 𝑥 

                                                    ⇔
𝜋

2
= arccos 𝑥 + arc sin 𝑥 

5.2 Hyperbolic functions and their inverses 

5.2.1 Hyperbolic functions 

Definition 5.5 The hyperbolic sine function, which we denote by “sh,” is defined as ∀𝑥 ∈

ℝ: sh 𝑥 =
𝑒𝑥−𝑒−𝑥

2
. 

Definition 5.6The hyperbolic cosine function, which we denote by “ch,” is defined as ∀𝑥 ∈

ℝ: ch 𝑥 =
𝑒𝑥+𝑒−𝑥

2
. 

Definition 5.7 The hyperbolic tangent function, which we denote by “th,” is defined as  

∀𝑥 ∈ ℝ: th 𝑥 =
𝑠ℎ 𝑥

𝑐ℎ 𝑥
=
𝑒𝑥−𝑒−𝑥

𝑒𝑥+𝑒−𝑥
. 

Definition 5.8 The hyperbolic cotangent function, which we denote by “th,” is defined as  

∀𝑥 ∈ ℝ∗: coth 𝑥 =
𝑐ℎ 𝑥

𝑠ℎ 𝑥
=
𝑒𝑥+𝑒−𝑥

𝑒𝑥−𝑒−𝑥
. 

Properties 

For all 𝑥, 𝑦 ∈ ℝ we have: 

1) 𝑠ℎ (−𝑥) = −𝑠ℎ 𝑥   ،   𝑐ℎ (−𝑥) = 𝑐ℎ 𝑥. 

2) 1 − 𝑡ℎ2 𝑥 =
1

𝑐ℎ2𝑥
،ch2𝑥 − 𝑠ℎ2𝑥 = 1. 

3) 𝑐ℎ(𝑥 + 𝑦) = 𝑐ℎ 𝑥 𝑐ℎ 𝑦 + 𝑠ℎ 𝑥 𝑠ℎ𝑦. 

4) 𝑠ℎ(𝑥 + 𝑦) = 𝑐ℎ 𝑥 𝑠ℎ 𝑦 + 𝑠ℎ 𝑥 𝑐ℎ 𝑦. 

5) 𝑡ℎ(𝑥 + 𝑦) =
𝑡ℎ 𝑥+𝑡ℎ 𝑦

1+𝑡ℎ 𝑥 𝑡ℎ 𝑦
. 

6)   (𝑠ℎ 𝑥)′ = 𝑐ℎ 𝑥    , (𝑐ℎ 𝑥)′ = 𝑠ℎ 𝑥 , (𝑡ℎ 𝑥)′ =
1

𝑐ℎ2𝑥
  , (𝑐𝑜𝑡ℎ 𝑥)′ = −

1

𝑠ℎ2𝑥
 . 
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5.2.2 Inverses Hyperbolic functions  

Definition 5.9 

The function 𝑓 defined in the interval 𝐼 = [0;+∞[ by 𝑓(𝑥) = ch 𝑥, is continuous and strictly 

increasing in the interval 𝐼, it accepts an inverse function 𝑓−1 that is defined, continuous and 

strictly increasing on the interval 𝑓(𝐼) = [1;+∞[. We denote the function 𝑓−1 by " arg ch " or 

"ch−1". 

We have ∀𝑥 > 0; ∀𝑦 > 1 ∶ 𝑦 = ch 𝑥 ⟺ 𝑐ℎ 𝑥 =
𝑒𝑥+𝑒−𝑥

2
⇔ 𝑒2𝑥 − 2𝑦𝑒𝑥 + 1 = 0. 

                                                                                      ⇔

{
 
 

 
 𝑥 = ln (𝑦 + √𝑦² − 1)

𝑥 = ln (𝑦 − √𝑦² − 1)

 

                       ⇔ 𝑥 = ln (𝑦 − √𝑦² − 1)  ( because ln (𝑦 − √𝑦2 − 1) ≤ 0 ).  

So ∀𝑥 ≥ 1 ∶ arg ch 𝑥 = ln(𝑥 + √𝑥2 − 1). 

Derived function: ∀𝑥 ∈ ]1;+∞[ ∶ (arg ch 𝑥)′ =
1

√𝑥2−1
. 

Definition 5.10 

The function 𝑔 defined in the interval 𝐼 = ℝ by 𝑔(𝑥) = sh 𝑥, is continuous and strictly 

increasing in the interval 𝐼, it accepts an inverse function 𝑔−1 that is defined, continuous and 

strictly increasing on the interval 𝑓(𝐼) = ℝ. We denote the function 𝑔−1 by " arg sh " or 

"sh−1". 

We have ∀𝑥 ∈ ℝ ∶ arg sh 𝑥 = ln(𝑥 + √𝑥2 + 1). 

Derived function: ∀𝑥 ∈ ℝ ∶ (arg sh 𝑥)′ =
1

√𝑥2+1
. 

Definition 5.11 

The function ℎ defined in the interval 𝐼 = ℝ by ℎ(𝑥) = th 𝑥, is continuous and strictly 

increasing in the interval 𝐼, it accepts an inverse function ℎ−1 that is defined, continuous and 

strictly increasing on the interval ℎ(𝐼) = ]−1; 1[. We denote the function ℎ−1 by "arctan" or 

"tan−1". 

We have ∀𝑥 ∈ ]−1; 1[ ∶ arg th 𝑥 =
1

2
ln
1+𝑥

1−𝑥
. 

Derived function: ∀𝑥 ∈ ]−1; 1[ ∶ (arg th 𝑥)′ =
1

1−𝑥2
. 

 


