Chapter Four: Real functions with real variable

4.1 Generalities
Definition 4.1
We call a real function of a real variable every application f of a subset D of R on set R.
D is called the domain of definition for f.
We call the graph of the function f the subset of R? which we denote by I's, and defined as
follows: Ty = {(x; y) € R%xeD ANy = f(x)} or['p = {(x;f(x));x € D}.
The image of the domain D by f is denoted by f(D) where: f(D) ={y € R;3x € D:y = f(x)}.
Definition 4.2 Let f: D — R be a function.
We say that the function f is bounded from above (bounded from below, respectively) if, and only
if, the set £ (D) is bounded from above (bounded from below, respectively)
So,( f is bounded from above) ©&(3IM € R; Vx € D: f(x) < M).

,( f 1s bounded from below) &(3m € R; Vx € D: f(x) = M).
We say that the function f is bounded if, and only if, it is bounded from above and from below.
So,( f isbounded) ©(3M € R3; Vx € D: |f(x)| < M).
Remark 4.1
If the function f is bounded on D, then the part (D) is bounded on R. It accepts an upper bound
and a lower bound, which we denote by Sup,, f and Inf , f respectively.
Definition 4.3 Let f: D — R be a function.
We say that f is increasing over D (strictly increasing, respectively) if and only if
V;yED:x<y= f(x) S f(y) (Vx;y €D:x <y = f(x) < f(y), respectively).
We say that f is decreasing over D (strictly decreasing, respectively) if and only if
V;yED:x<y= f(x) = f(y) (Vx;y € D:x <y = f(x) > f(y), respectively).
We say that f is constant over D ifand only if Vx;y € D:x =y = f(x) = f(y).
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Definition 4.4 Let f: D — R be a function.

We say that f have a local maximum (local minimum, respectively) at point x, of Dif:

Ja € R};Vx € D:|x —xol < a = f(x) < f(xp) (f(x) = f(x0), respectively).

And if Vx € D: f(x) < f(xo) (f(x) = f(x,), respectively) we say that f have an absolute
maximum (absolute minimum, respectively) at x.

4.2 limit of a function

4.2.1 Finite limit

Definition 4.5

B

We say a subset of Ris a m for a point x( of R if it contains an open interval that

includes xo. And we symbolize it with V..

Let f be a function, defined on a neighborhood V, of point x.

We say that the function f has a limit £(¢ € R) at point x, if, and only if,

VeE>0;38>0Vx €V, :0<|x—x0| <= |f(x) — 1| <e¢, Wewrite)}i_)r)rclof(x)={’.

Remark

We say that f does not accept the number € as a limit at x if and only if
3e>0;V8>0;Ix €V, 10 <|x—x0| <8, |[f(x) -] = ¢

proposition 4.1

If J!ir}r} f(x) = £+ 0, then there exists a domain of the form]xg — o, xo[ U 1x0, xo + o[, with a > 0,
X0

such that f(x) has the same sign as .

Proof

Fore = |£|,then Ja > 0; Vx € V,: 0 < [x — x| < a = [f(x) — £| < |£] from him
20 < f(x)<0;¢£<0

xe]xo—oc,xo[U]xo;xo"'O‘[:){o<f(x)<2£’;15’>0

= f(x) has the same sign as ¢.



Examples

1) Let f:x = 5x — 7 Be a function , using the definition prove that: }Ci_r)r%f(x) = 3.

Since f is defined on R, we can take V, = R.( V; is a neighborhood of point 2)
Let € € R%, we have Vx € R:
If(x) -3|<ees |5x—7-3|<¢

2] < =
S |x— =
= 2] < 2

So it is enough to take § = gto achieve the following:

Ve>0;36 >0 VxeER:0< [x—2|<d=|f(x) — 3| <e.

2)Letfix - x - xl: Be a function , using the definition prove that: Lilr} fo) = %

Since f is defined on R — {1}, we can take V; = [0; +oo[. .( V is a neighborhood of point 2)

Let € € R%, we have

Vx EV1:|f(x) —%| = |L——|

1| fx—1] |x—1]
x+1 2

T 2)x+1] 2

|x—

= < &to be |f(x) — 3| <&, from which

Therefore, it suffices to take
|"%1| <& |x—1| < 2e Soitisenough to take § = 2¢ to achieve the following:

Ve>0;35 > 0;Vx € V;: O<|x—1|<6:>|f(x)—%|<e.

Definition 4 6

Let f be a function defined in the interval V, = ]x,,b[, we say that f have the limit £ from the

right at x, if and only if

Ve > 0;36 > 0;Vx € V. : O0<x—x<d=|f(x)—7?| <e.

we write lim f(x) =L or lirn+ fx)=+¢.
x5xq X=X

Let f be a function defined in the interval V., = 1a, x,[, we say that f have the limit £ from the left

at xo if and only if

Ve>0;36>0;Vx eV, : —6<x—x<0= lf(x) — | <e.
we write li<m fx)=*or lim f(x) =*.
x—>x0

X-X(



Proposition 4.2

A function f has a limit at x if and only if it accepts right and left limits at x, and this limits are

equal.
Example
0 3x—1 if x<1
Let the function f defined on R by f(x) = { 6 . .
3 if x>1

Prove that: limf (x) = 2 and limf (x) = 2 what do you conclude.
1 x-1

X—

1) Let V; = ]—oo; 1] and € € R, we have
Vx eVy: [f(x) —2|<ee=|3x—-3| <¢
|3x—3|<£<:>0<|x—1|<§

£
<=>0<—x+1<§

&
<:>—§<x—1<0

It is enough to take & = - to achieve the following:
Ve>0;36 >0;VxeV;: 0<1—x<d=|f(x)—2|<¢

Let V; = [1; +oo[and € € R}, we have

2lx —1] 2
< —=|x—1]|

Vx € V;: —2]=""
x€Vi If(0) -2l = =5 <3

So
2 3 3
§|x—1|<e<=>|x—1|<§e(=>0<x—1<§e

It is enough to take § = 32—5 to achieve the following:
Ve>0;36 >0;VxeV: 0<x—1<d=|f(x)—2|<¢

Conclusion: Since lir{l_ fx) = lim+ f(x) =2 f accepts a limit at 1, which is 2.
xX— x—1
Theorem 4.1

If a function f accepts a limit at x, then this limit is unique.

Proof



Let f accept two different limits £ and £ where £ > ¢

¢
fore = — 36,,6, > 0;Vx €V,

!

and
: =10
0<|x—x4] <6, = |f(x)—£|<£=T

For § = min{é,,6,} Then Vx € V, :
O0<|x—xp|<d= -2 =|f(x)—€—(f(x) =)
= |- <e+e=2¢
=S [L-10|<|?—7|
This is a contradiction. So £ = £’

4.2.2 Limit of a function using sequences

Theorem 4.2
Let f: D — R be a function and x, € D. The following two conditions are equivalent.

1) lim f(x) = 4.
XX

2) For all sequence (x,) where Vn € N:x,, € D A x,, # x, then:
(limx, =x0) = ( Jim f(,) = )

n—+oo

Proof

Necessary condition:

We impose lim f(x) = ¢ and let (x,) sequence where Vn € N:x, € D A x,, # Xy and lim x,, =
X—Xqo n—oo

Xo.Let us prove that: nLiIPoo flxy) =+4.

Fore>0then38 > 0;Vx €V, :0 < |x —xo| <d = |f(x) —£| <e&.So

ANEN; VneEN:n >N = |x, — x5l <6 = |f(x,) — | <e.

Sove>0;ANEN; VvneN:n>N = |f(x,) — | < e.Songerf(xn) =4.



Sufficient condition: We now assume that for every sequence (x,,) where

vn € N:ix, €D A x, # xo then (lim x,, = xo) = (nl_igloof(xn) =7).

n—-+4oo

Let us prove that lim f(x) = £. Assume that J}ir)r} f(x) # £ thatis
X—Xq —X0

3e>0;V8 > 0;Ix €V, 10 < |x —xo| <6 and |f(x) — | = &.
and for & =%thenVn € N*; 3 x, # xpand x, € V.1 |x,, — xo] <% and |f(x,) —?| = «.

So lim x, = x, and nl_iﬁof(xn) #+ ¢ (this is a contradiction ).

n—-+oo

Remark

To prove that a function f has no limit at x,, it is enough to find two sequences (x,,) and (x';,) that

converge towards x, but lim f(x',) # lim f(x,) Or we are looking for a sequence (x,,) that
n—-oo n—-oo

converges toward x,, but the sequence (f (xn))nEN diverges.

Example
Prove that the function f:x — cosi does not accept a limit at 0.

, | o1
Let the sequences (x,) and (x',,) where vn € N*: x,, = Zanl X'p = 5—.

We have lim x,, = lim x', = 0 Onthe other hand: vn € N*: f(x' ) = —1; f(x,) = 0.
So
limf(x )=—1; limf(x,)=0So: limf(x ) #limf(x,) i.e. f does not accept a limit at 0.

4.2.3 Infinite limits

BIFS

We say a subset of R is a neighborhood of +co ( —oo, respectively) if it contains an open
interval of the form ]a, +oo[ ( ]—oo, b[, respectively) And we symbolize it with V o (V_w ,
respectively).

Definitions
Ve>0;FA> 0 Vx eV, ix>A= |f(x) — | <¢e) & (xl_i)r+noof(x) =7)

Ve>0;FA> O VxEV_ix<—-A=|f(x)—¥|<¢&) & (xl_i>r_noof(x) =7)

(VA>0;36 > 0;Vx € Vi lx —xpl < 6= f(x) > A) & (lim f(x) = +00)
X—X0



(VA >0;38 > 0;Vx € Vit [x — x| < 8= f(x) < —4) & (lim f(x) = —o0)
VA>0;3aB>0;Vx €V, iix>B=f(x) > A) & (xl_i)rpoof(x) = +00)
(VA>0;3B>0;Vx €V, n:x>B= f(x) < —A) & (xlirglwf(x) = —00)
WVA>0;3B>0;Vx€EV_ix<—-B=f(x) > A) & (xl_i)r_noof(x) = +00)

(WVA>0;3B>0;Vx€eV_ix<—-B=f(x) <-4 & (xl_i)r_noof(x) = —)

Examples
1) Prove that lim X =2
x—oo X—1

The function x = % is defined on V o, =]1; +oo[, for ¢ € R} we have

2 2
<o <£<:>x>g+1

Vx €V, o —-2|<ee

Therefore, it is sufficient to choose B = % + 1 to obtain:
Ve>0; ABERL;VXEV, n:x>B = |f(x) —2|<e¢

2x

2) Prove that lim
< x—1

x—-1

LetV{ =]0;1[, for A € R} we have

—00,

2x 2
Vx € V;: <-Ae —<-Ac2+—< -4
x 1:f (%) —1 +x 1

Therefore, it is sufficient to choose § = A%Z to obtain:
VA>0; 36 €ER}; VxeV;:0<1—-x<d= f(x) <—A.
4.2.4 Operation on limits
Theorem 4.3
Let f and g be functions defined on the neighborhood V,,, with the possible exception of x,
where

Vx € Vy,: f(x) < g(x)
1) If lim f(x) = £and lim g(x) = ¢ thenf < ¢'.
XX X=X0
2) ) If lim f(x) = 4+oo then lim g(x) = +oo.
X—Xg X—X(

3) lim g(x) = —oo then lim f(x) = —o.
X—Xq X=X0



Let f,g and h be functions defined on the neighborhood V., with the possible exception of x,
where Vx € V, 1 h(x) < f(x) < g(x) and )}njrcl gx) = glrjrcl h(x) = ¥, then
X0 —X0

lim f(x) = ¥.

XX

Proof

Assume that Vx € V, : f(x) < g(x) and lim f(x) = ¢, lim g(x) = £ and suppose that
XX X=X0

£ > ¢ Fore= %then
£+ 3¢ -1
36; > 0:0 < |x —xol <8, = |f(x) — 4| <£=>T<f(x) <
30— ¢ £+
<glx) < 5
Bu taking 6 = min{d1,5,} then 0 < |x — xp| <& = g(x) < g < f(x) this is contradiction the
hypothesis .Vx € V. : f(x) < g(x).
Theorem 4.4
If f and g are functions defined in the neighborhood V., with the possible exception of x;, and
have the limits £, €', at x, respectively, then the functions f + g, f g, Af, |f| it has the limits

£+, AL, £, | £, at x, respectively. And if £' # 0, then the function é it has the limit % at xg.
Proof (Let us prove the last case )

38, >0:0< |x — x| <8, = |glx) — | <e=

Assume that )}H)rcl gx)=~%"#0fore= li—'l, then
—X0
‘E'
36, > 0:0 < |x—x0|<51=>|g(x)—£'|<%
I A
= [[gC)]| = €]l < >
:ﬂ< | (x)l < M
2 S 2
_ 1 < 2
lgGl 1€

On the other hand we have:
VeE>0;36, >0, Vx EV, 0 <|x —xo| <&, = |g(x) —£'| <e.
For 6 = min{§4, §,}, then
1 1 '=g(x) 2|lg(x)—2'| 2¢ '

O0<|x—x <8=|———|=| < <—=c=
| ol gx) ¢ £g(x) e e

4.2.5 Indeterminate form

We say that we are in the presence of an indeterminate form. If when x — x,
1) f - +ooand g - —oo then f + g — indeterminate form + oo — oo.
2)f > ooand g — 0then f.g —» indeterminate form co. 0.

3) f - o and g — oo then g — indeterminate form g

4) f - 0and g — 0 then g — indeterminate form %.

5) f » 0and g — 0 then f9 - indeterminate form 0°.

6) f » cand g — 0 then f9 > indeterminate form oo©.
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7) f » 1land g - o then f9 > indeterminate form 1°.
Remarks

1) The indeterminate forms co. 0, g can be reduced to the form g by writing 5 =Zin(3)and f.g =

SIS

Zin )
f
2) The indeterminate forms 0°, ©®, 1% can be reduced to the form oo. 0 by passing the logarithm.

x%4+3x+2 . x+1 . x+1\*
- , 2) lim xIn=—, 3) lim (—) )
x*+1 X—00 x—2 x—00 \X—2

Examples Calculate the limits: 1) lim1
xX—>=

4.2.6 Cauchy’s criterion for functions:

Theorem 4.4

A function f has a finite limit at x, if and only if

Ve>0;36>0;Vx',x" €V, :(0<|x"—x0| <dand 0 < [x"" — x| < 6) =

lf(xD) = fGxI <e

Proof

Necessary condition Assume that lim f(x) = £, then
X=X

Ve>0;36>0;Vx',x" €V, : (0 <|x"—x0]l <dand 0 < |x" —x0| < &) =

F(x) =] <55lf(x") =] <3
So

F) = FE =) =€ = (F) = Ol < If(x) = €] + |(f(x") - ©)|

<€+E_
2727 ¢

Sufficient condition Assume that Ve > 0;38 > 0; Vx',x" €V, :

! n ! 8 " 8
(0<|x —x0| <8 50 < |x —x0 <6):>|f(x)—{’|<§5|f(x )—{’|<§.

Let (x,,) be a sequence of V,, elements where Vn € N: x,, # xg and lim x,, = x,.
n—-oo
Sofor§ > 0,then AN, € N:Vn € N;n > N, = |x,, — xo| < 6.
SoVp,q € Nip>Nyandq >Ny = 0<|x, —xo| <8 and 0 < |x; —xo| < 8
= |f(xp) = f(xg)| <&
So (x,,) is a Cauchy sequence, and therefore convergent.
Let us now show that the limit lim f(x,,) is independent of the choice of sequence (x,,).
n—oo
Let (x,) and (x,,) where lim x,, = lim x, = x,.
n—>0o n—-oo
SodNEN; VneN:n>N= (0<|x, —xo| <dand 0 < |x;, — xo| < &)
= [f(xn) = flxn)| < e
So
lim (fen) = £(3)) =0
we obtain
lim f(x,) = lim f(x,,).
n—oo n—oo



4.2.7 Comparison of functions in the neighborhood of a point - Landau notation:

Let f and g be a functions defined in the neighborhood V,, of the point x,, with the possible
exception of x,

Definition 4.8

We say that f is negligible in front of g when x — x,, and we write f = 0(g), if
Ve>0;36 >0;Vx €V, : 0<|x—x0| <d=[|f(X)| < elg(X)].

Definition 4.9

We say that f is dominated by g when x — x,, and we write f = o(g), if
3k > 0,36 >0,Vx €V, 0<|x—x0| <6 = [f(X)| < klgX)|.

The symbols o and O are called Landau symbols.

Corollary 4.1
If g is non-zero on V., — {x,} then:

f(x) -0

f=o0(g) e hm pra

f=0(g < fE 3 is bounded in V.

Andif g = 1, then
f=0(1) e lim f(x) =0and f = 0(1) & f is boundedin V,,.
X—Xg

Remark We obtain a similar definition for xq = +c0 and xy = —co.

Examples
1) When x — 0 we have.

x3=o0(x?) , x* cos— =0(x?) , ( )3 = 0((%)4).

2) When x — 400 we have

x?=o0(x3) , x*sinx =0(x?) , ( )4 =0 (G)3>
Theorem 4.5

1) f =gh e f =o0(g)where h = o(1).

2 f =gh e f=0(g)where h = 0(1).

Proof ( Let's prove 1)

Necessary condition: Assume that f = 0(g).
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We put h(x) = %' g(x) #0 .

0 ,g(x)=0

Wehave f =o0(g) © Ve > 0;36 > 0;Vx EV,: 0<|x— x| <6 = |f(x)| < e|lg(x)l.
First: Let us prove that f = gh.

If g(x) =0then 0 < |x —xo| <8 = |f(x)] < €lg(x)| =0, we get f = gh.

If g(x) # 0 then f(x) = g(x) %, we get f = gh.

second:

Letusshowthath = 0(1),i:eVe > 0;36 > O;Vx €V, : 0<|x—xo| <5 = |h(x)| <¢
If g(x) = 0then h(x)=0,i.e |[h(x)| < ¢

If g(x) # 0 then |f(x)| < elg(x)] and from it %| <cielh()| <e

sefficient condition:

Assume that f = gh and h = 0(1) and show that f = o(g).

We have (h = 0(1)) & (Ve > 0;38 > 0;Vx € V,: 0 < |x —xo| <8 = |h(x)| < ¢) and

from there |f(x)| = |h(x)g(x)| < €lg(x)|i.e. f = 0(g).
In the same way we prove property 2.

Note: The previous two properties are summarized in the following writing.

0(g) = g.o(1) and 0(g) = g.0(1)

properties
I)f=0(g)andh = 0(g) = f+h=0(g).

2)f =o0(g)andh = o(g) = f + h =0(g).

3)f =o0(g)andh = 0(1) = fh =o0(g).

4) f=0(g)andh = 0(g) = f + h=0(g).

5)f =0(g)andh = 0(1) = fh =0(g).

6) h =0(f)and f = o(g) = h = o(g).

7Vh=o0(f)and f = 0(g) = h = o(g).

Note: The previous properties are summarized in the following writing.

1) 0(g) + 0(g) = 0(g).
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2) 0(9) +0(g) = o(g).
3) 0(9)0(1) = 0(g).
4)0(g9) +0(g9) = 0(9).
5)0(g9).0(1) = 0(9).

6) 0(0(g)) = 0(g).
7)0(0(9)) = o(9).
4.2.8 Equivalent functions:

Let f and g be a functions defined in the neighborhood V,, of the point x,, with the possible
exception of x.

Definition 4.11

We say that f is equivalent to g for x — x, and write f ~ g if f — g = o(f) for x — x,.
Results 4.1

Nf-g=o(f) = f—-g=o0(9.

2) The relation ~ is an equivalence relation on the set of functions defined in the neighborhood

Vy, — {xo} of the point x,.

3) If f and g are non-zero on V,, — {xo} then: f ~ g & lim —= @ _ g

X-X9 9 (x)
Theorem 4.7

Let f, g, f1and g, be afunctions defined in the neighborhood V., of the point x,, with the
possible exception of x, where f ~ f; and g ~ g, for x — x,. If

If the limit 11m f® it exists then the limit lim f10 oIso exists and we have:
X0 €9 x—x0 9 1( x)
X
lim f1(0) llmf( )
XX gl(x) x-x0 g(x)
Proof

Since % accepts a limit when x — x,, there is a neighborhood V,, to the point x,, such that g is

non-zero on V,, — {xo} and that g ~ g, (thatis, |g(x)| < e|gl(x)|) then g, is also non-zero on

Vy, — {xo} and hence

f~fi_(fi~f _([1=fA+o@®)_ f, _f(+o)
{g~gi:{gi~9:’{ =g(l+o)~ g, g(A+oD)
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(1+o@) _ =1+ 0(1) — 1, then lim LGN T AC)

And smce( o) xox0 910 x-x0 9(X)

Remark
Note: The concept of equivalent functions is used in calculating limits, especially in removing

indeterminacy.

Examples
1) Calculate the limit lim %? 21
For x —» 0 we have /4 +—2 ~ %x andYx+1—-1~ %x and from it
m =1i mi = 3
x—>0 W x> O%x 2
2) Calculate the limit lim Y2=26tx

X—+00

2+xex

1 )
For x - +oo we have vx2 —2x + x ~ 2x and 2 + xex ~ x, and from it

WX —2x + x .. 2x
lim —— = lim — = 2.
x—+00 x—>+00 X
2+ xex

4.3 Continuous functions:
Definition 4.12

Let f be a function defined on the neighborhood V, of the point x,. We say that f is continuous at
Xo if and only if:)}ir)r} fx) = f(xp). Inother words
X0
(f is continuous at xy) & (Ve > 0;38 > 0; Vx € V,: 0 < |[x —xp| < § = [f(x) — f(x0)| < €).

Let f be a function defined on the neighborhood V from the right for the point x,, we say that
f is continuous at x, from the right if and only if: lim f(x) = f(xo).

X—=X0

Let fbe a function defined on the neighborhood Vy, from the left for the point x,, we say that
f is continuous at x, from the left if and only: lim f(x) = f(x).

XX
Result 4.2
A function f is continuous at x, if and only if it is continuous at x, from the right and from the left

Examples
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x2-1|

| :
1) Let the function f defined on R by f(x) = { wr dx*F1

2 if x=1
lim f(x) =2 = f(1) = f is continuous at x, = 1, from the right.
x—1
lim f(x) = =2 # f(1) = f is discontinuous at x, = 1, from the left. So f is discontinuous at
x—1
Xg = 1.
Definition 4.13

Le I be a interval of R.

We say that a function f is continuous on the interval I if and only if it is continuous at every
point in this interval. We denote the set of continuous functions on the interval I by C(I).

We say that the function f is continuous uniformly over the domain I if and only if
Ve>0;36 > 0:vx',x" el |x —x"|<d=|f(x") — f(x")] < e.

It is clear from the definition that every uniformly continuous function in the interval I is
continuous in this interval (the opposite is not always true).

4.3.1 Continuous functions in a closed interval
Theorem 4.8

Every continuous function in a closed interval [a, b] is uniformly continuous in this interval.
Proof
We assume that £ is continuous and uniformly discontinuous on [a, b] i.e.

Je > 0; V8 > 0:3x',x" € [a,b]: |x' —x"| < &8 and |f(x") — f(x")| = e.

We putd = % > 0 where n € N* and from it:

1
Jde > 0;Vn € N*;3x;, x5, € [a,b]: |x;, — x5, | < - and |f(xy,) — f(x)] = e

Since the sequence (xn) is bounded, according to the BOLZANO-WEIERSTRASS theorem, then a
subsequence (x;lk) can be extracted from it that converges towards x from [a, b] and since

1 - " _ . .
vk € N: |x,’lk — x,’{k| < - the partial sequence (xy,) also converges towards x, and since f is

continuous at x, then 111—{{}0 (f(x;lk) - f(x;;k)) = (@) — f(%) = 0. This is a contradiction because
vk € N: |f(x,’1k) —f(x,’{k)| >«
Theorem 4.9

Every continuous function on the closed interval [a, b], is bounded.
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Proof

Assume that f continuous and unbounded on the interval [a, b], i.e. Vn € N; 3x,, €

[a, b]: If (xn)| > 1.

Since the sequence (x,,) is bounded, it is possible to extract from it a partial sequence (x,, ) that
converges towards ¥ from [a, b]. Since £ is continuous at X, then lim |f(xy, )| = If ).

This is a contradiction because Vk € N: |f(n,)| > n, = k, and hence ]li_r)£10|f(xnk)| =400,
Theorem 4.10

Any continuous function on a closed interval [a;b] reaches its upper and lower bounds at least
once, that is to say there is at least x; and x, are from the interval [a;b] where:

flx) = SUPxe[a;b] f(x) and f(x;) = infxe[a;b] f ().
Proof
Let M = supye(q ;b f(x). And assume that Vx € [a; b]: f(x) # M i.e. Vx € [a; b]: f(x) # M.

So the function g defined on [a;b] by Vx € [a; b]: g(x) =

1
it is continuous and strictl
M~—f(x) y

positive and therefore it is bounded to this interval, i.e.: 3m > 0; Vx € [a; b]: g(x) < m or
Im > 0;Vx € [a;b]: f(x) <M — i This contradicts the hypothesis M = supe[q;p] f ().
Theorem 4.11

Let f be a continuous function in the interval [a; b], if the signs of f(a) and f(b) are different,
then there is at least a point ¢ in the interval ]a; b[ satisfies: f(c) = 0.

Proof

Assume that f(a) < 0and f(b) > 0. Letthe set E = {x € [a; b]/f(x) > 0}, then E = @ because
b € E. We put infE = ¢ and let us prove that: f(c) = 0.

Assume that f(c) # 0 Since f is continuous at c, there exists at least a interval of the form I =
lc — a;c + a[ < [a; b] with @ > 0, where f(x) and f(c) have the same sign. (See Proposition
1.3).So

if f(c) > 0,thenVvx € I: f(x) > 0 by taking x = c—%wegetf(c—%) > 030c—%€ E and
therefore ¢ — % > ¢ = infE. and this is a contradiction.
if f(c) <0,thenvx € I: f(x) <O.

We have infE=c= 3xy €E:ic+a>xy=>c= xy €1 = f(xy) < 0. This is a contradiction
because x; € E = f(xq) > 0.So f(c) = 0.

Theorem 4.12
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Let f be a continuous function in the interval [a; b]. For every real number A between f'(a) and f(b),
there exists at least one real number ¢ of the interval [a; b] satisfies: f(c) = A.

Proof
case 1: If A = f(a) it is enough to take ¢ = a, but if A = f(b) it is enough to take ¢ = b.
case 2: If A # f(a) and A # f(b). Then the function g defined in the interval [a; b] by

g(x) = f(x) — A, satisfies the conditions of Theorem 4.11, So there exists at least one real number

c of the interval [a; b] where g(c) = 0 and from which we get f(c) = A.
Proposition 3.2

Let I be the interval of R, f a real function

If the function f is continuous on I, then the image of the interval I by the function f is a interval
of R, that is, the set £ (1) is a interval.

Proof
Let y;; v, be two numbers of f(I) where y; < y, then there are at least two numbers x,; x, of the

interval I where y; = f(x;) and y, = f(x;) according to the theorem 4.12 for every number y
such that y; <y < y,, there exists at least an number x confined between x; and x; (i.e. x € I),
where y = f(x) and hence y € f(I).

4.3.2 Extension by continuity

Definition 4 14

Let f be a function defined on the domain 1. With exception of the point x, of I, we assume that
lim f(x) = £. Then the function f, defined by f(x) = {f(x) X F Xo
X—%Xg B ' ;X =X
{x,} and is continuous at x,. The function f is called the extension of f with continuity at x;.

coincides with f on I —

Example

sin 2x

Let f be a function defined on R" by f(x) = % Since }}i’% = 2, then f can be extended by

. _ ﬂn&_iﬁﬁo
continuity at xy = 0 to the function f defined by: f(x) = { x :
2 ;x £+ 0

4.3.3 properties of monotone functions on an interval:
Theorem 4.13

Let f:]a, b[ - R be a monotonic function where —oo < a < b < 400, then the limits lim £ (x) «
xX—-a

lign f(x), are exists ( finite or infinite ) and we have

x—b

If f increasing = —oo < infyg)q pp f(x) = lim f(x) < lim f(x) = supxejap( f(x) < +o0
x—a x—b
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If f decreasing = —o0 < infyejqp( f(x) = lim f(x) < lim f(x) = supxeja,p[ f(x) < +0

x—b x—a
Proof

Assume that f increasing and SUp, ¢y, b[f(x) = M < +oo and let us prove that: lim f(x) = M.

x—b
We have supxe]a’b[f(x) =M=Ve>0;3a€]a,b M —e< f(a) < M.

f increasing

By puttingd =b—a >0,thenb—8<x<b=a<x<b S f(a)<f(kx)
SM-e<f(@<f(x)<M<M+e¢
SM—-e<f(x)<M+e.

SoVs>0;38>0:—6<x—b<O:>|f(x)—M|<ewegetli£nf(x)=M.

x—-b

In the same way we prove the second case.
Corollary 4.1
1) Let f:]a, b[ = R be a monotonic function then:

a) If f increasing = f(a) < lim flx) < lim f(x) < f(b).

x—-a x-b

b) If f decreasing = f(b) < lim flx) < lim f(x) < f(a).

x—b x-a

2) Let I be an interval of R bounded by a and b (a < b), and let f: [a, b] = R be an increasing
function. For each x,, where a < x, < b then:

a) —0 < f(xg— 0) < f(xo) < f(xp + 0) < +oo.

bylfael = f(a) < f(a+0) < +oo.

o)ifbel = -0 < f(b—0)<f(b).

Remark

We obtain a corollary similar to corollary 4.1 if f is decreasing over the interval I.
Theorem 4.14

Let I be an interval of R and let f: [a, b] = R be an monotonic function Then f is continuous on I
if and only if £(I) is a interval.

Proof
Necessary conditions
According to Proposition 2.3, if f is continuous, then f(I) is an interval.

sufficient condition

17



We assume f is increasing and f (I) is a interval and prove that f is continuous on 1.

Suppose the opposite and letx, be a point of discontinuity of f. As f is increasing, then at least one
of the relations f(xy) < f(xo + 0), f(xo — 0) < f(x,). is verified (corollary 4.1).

Assume, for example, that f(x,) < f(x, + 0) in this case, then for each x of I, we have
Xx<x9=>f(x) <f(xp)and x > xy = f(x) = f(xo + 0) thatis |(xy), f(xo + 0[N f(I) = .

Let x; € I where x; > x, then f(x,) € f(I) and f(x,) € f(I) and from it [f (xg), f(x1)] € f(I)
(because f(I) is ainterval) and since f(x;) > f(xo + 0) then | f (xo), f(xo + 0)[ <

[f (xo), f (x1)]

i.e. 1f (xo), f(xo + 0)[ N f(I) # @. This is a contradiction.

4.4.3 The inverse function of a strictly monotonic continuous function:
Theorem 4.15

Let I be the interval of Rand f:1 — R as a function.

If £ is continuous and strictly monotonic over the interval I, then £ in this case is bijective of the
interval I to the interval f(I). Therefore, f accepts an inverse function that we denote by f~1,
which in turn is defined, continuous, and strictly monotonic over the interval f(I) and has the
same direction of change of f, and we have

vxeLVyef(D:y=fx) ex=f"1y)...(x)
Remark: Relation (*) is used to give the expression for the function f_1 if possible.

If f is strictly monotonic over I, it is injective, and from the definition of the set £ (1), it is
surjective, so f is bijective.

£ is continuous, £(I) is an interval. On the other hand, as f is strictly monotonic, " is also

monotonic. Therefore, £ ! is continuous according to the theorem 4.14 because £~ (f(I)) = I is
an interval.

Example

Let the function f defined on the interval I = [0; +oo[ by f(x) = x? + 3, then f is continuous and
strictly monotonic (strictly increasing) on the interval I = [0; +oo[ where f(I) = [3; + o[
according to theorem (4.15), f is a bijective to the interval [0;+oo[] in the interval [3;+o0[, so it
accepts an inverse function f_1 and we have:

vxe[0;+°°[ivye[3;+OO[:y:x2+3<:>x2:y_3

x=4y—3
= \

x= 73 < 0(casx)

So f_l(x) = ,/y — 3, after replacing x with y, the final definition of the inverse function f_1 is as
follows:

18



£ [3; +oo[> [0; 400
x—->Vvx—3

Exercise*

) ) x2—2x+1 six<1
Let the function f defined on R by =f (x) =1 -x+1 six>1

2x—-1

1) Prove That f is continuous and strictly monotonic over R.
2) Concluding that f accepts an inverse function f‘l, write the expression f"l(x) in terms of x.

Solution

limf(x) =lim(x) = f(1) =0= continuous at 0 = f continuous over R.

x—1 x—1

f is decreasing over R and f(R) = ]—%; +oo[. So

f_l:]—%;+00[—>R
x+1 -1
x—>f(x)={2x+1’ 2
1—+vVx, x>0

<x<0

4.4 Differentiable functions
4.4.1 Definition and basic properties

Definition 4.15

Let f be a function defined on the neighborhood V,, of the point x,. We say that the function f is
differentiable at x, if and only if lim Lfgxo) L, exists. We call L the derivative of f at x,, and

x—>x0
we write. f'(xy) = L. If f is differentiable at all x € I, then we simply say that f is differentiable,
and then we obtain a function f’: I — R The derivative is sometimes written as ﬂ or — where y=
f ).
Remarks

1) By putting x — x, = h, the previous limit is written as Lir%w = f'(x)-

2) The function f is differentiable at x, if and only if there exists a function € defined in the
neighborhood V,, to the point x, where

VX € Vot f(2) = fx0) = (f'(x0) + £(x)) (x — xO)’xIH?O e(x)=0
If lim f(xi_f(x") Lq (lim f(x) f(x") = L, , respectively ), we say that the function f is

X—X( x—>x0
differentiable at x, from the rlght (from the left, respectively) And we write L; = f'(xo + 0)
(Lg = f'(xo — 0), respectively ).

Corollary 4.2
A function f is differentiable at x, if and only if f'(x, — 0) and f'(xo + 0) exist and
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f'(xo +0) = f" (xo — 0).
Example
Let f be a function defined in R by f(x) = |x? — 1], let us study the differentiability

of f at xo = 1.We have
CfO—fQ) g X1 L fEO—f) i —CP=D) o e
x—1 x—1 x—1 x—1

f is differentiable at x; = 1 from the right and from the left, but it is not differentiable at x, =
1 because f'(1+0) # f'(1 - 0).

Geometric interpretation
The derivative of the function f at x; is the slope of the line tangent to the graph

of f at the point Mg (xo, f(xo)). Thus, the equation of this tangent line is

y = f'(x0)(x — x0) + f (o).

The left and right derivatives are also interpreted by the half-tangents to the left and right of the
point M (xo, f(xg)).

Theorem 4.16

If f is differentiable at xg, then f is continuous at x,.

Proof

Let f be differentiable at x, then there is a neighborhood V,,, where

Vx € Vet f(x) — f(x0) = (f'(x0) + €(x))(x — x0) and lim e(x) = 0.50

lim (f(x) — f(xp)) = lim (f'(xo) + e(x)) (x — x¢) =0 So f is continuous at x,.
X—X0 X—X(
4.4.2 Higher order derivative

Let f be a function differentiable on the interval I. If f' differentiable on the interval I, then we denote its
derivative by f"', it is called the second derivative. In the same way, we define the successive derivatives
of the function f as follows:

vneN: fr00) = (FP ) sf Q@) = F).
We denote the nth-order derivative of the function f by Z—ZZ or y™, where y = f(x).

Exercise Prove that:

1) vn € N: cos™x = cos (x + gn) 2)Vn e N : [%]

Definition 4.16

We say of a function f defined in interval I, that it is of class C™ if it is differentiable to order n
andthe derivative £™ is continuous over I. We denote the set of functions of class C" in the
interval I by . C"(I). We have a definition:

c’(h = cW)

The set of infinitely differentiable functions over the interval 1., we denote C*(I).

4.4.3 Operations on differentiable functions

Theorem 4.17

W Cpnp
= xn+1 '
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Let f and g be differentiable functions on the interval I, then the functionsf + g ,af , fg ,g
(g # 0) are differentiable over I and we have:

F+9'=f+g ., @) =af
<£> e I R
9 g
Proof ( Let us prove the last case )

Let xy € I we have

x)—f(x0) (%)—g(xg)
00560 feg(r)-Flrn)e @) _ ey 90~ Gy T

x-xo  g)gxe)(x—x0) 9(x)g(xo)

When x — x, then [)-f(xo) | f'(xy) and 9@0-9(x) _, g (x0) and f(x) = f(x,) and

(x—x0) (x—x0)

f f
E(x)_g(x()) i (x0)g(x0)— (Xo)fg (xo)
X—Xo (g(xo))

g(x) = g(x0). So

Theorem 4.18 (Leibniz formula)

If £ and g admit nth derivatives on the interval I then the function f. g admits an nth derivative on
the interval I and we have:

n
vn e N: (f.g)™ = Z C? fn-p)g®)
p=0

Proof
We use proof by induction and by noting that: vn,p e N(1<p <n—1):C2 = c?_, +cP~].

Theorem 4.19
Let f and g be functions where f is differentiable on the interval I and g is differentiable on the

interval £(I), then the function g o f is differentiable on the interval I and (g o f)' = (g © f)f -
Proof
Let xq € I since f is differentiable at x, and g is differentiable at y, = f(xo), Then

f () = £ (x0) = (' (xo) + £00) Cx = x0) with. lim &, (x) = 0
and

90) =900 = (9'Go) + &) ~ yo) with lim £,(y) =0.
For y = f(x) then y —» yowhen x — x, (since f is continuous at x;) and from there

g(f(x)) - g(f(xo)) = (g'(f(xo)) + 52()’)) (f’(xo) + 51(95))(?5 — Xp) and
9U®) = 5 G)) (9 () +2) (f o) + 1)

X — Xy
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Forx — xy theny = y,, £1(x) = 0 and &,(y) = 0.So

9(f @) — 9(f x0)

e~ 9 (Fan)f o)
Example
Let the function h defined on R, by h(x) = cos(3\/— + xz) We have h = g o f where
f(x) = 3vVx + x? and g(x) = cos x and we havef x) =—= + 2x and g (x) = —sin x. So
(e g (3 )
K (x) = (g9 f)(x)f (x) = sm(3\/§+x )(2\&%— 2x
— 2
= (2\/_+2x>sm(\/_+x )

Theorem 4.20
If f is strictly monotonic continuous function on the interval I, and differentiable at x, from I

where f'(x,) # 0, then the inverse function £ " is differentiable at Yo = f(xo) from f(I) And we

have: .
r )(0)_f(o) flroy]

Proof

Let f is differentiable at x, from I where f'(x,) # 0, and let y, be a point from f (I) where

Yo = f(xo). For every y of f(I) there is a single real number x of I where y = f(x) and since f is

continuous and strictly monotonic on I, so f_1 is continuous and strictly monotonic on f (I) (according to
the Theorem 4.15), so Vy € f(I):y # y, = x # xg.and for y — y,, then x — x,.

Weputg = f~' theny, = f(xo) © xo = g(y,) andy = f(x) & x = g(y).So

g =g,) . x—xg 1 1
lim ——————= = lim —— = lim - .
Yo Y=Y, o0y =Y, xox0) T V= f (o)
X — Xy
Examples
f:[0;+00[->R . . . . . . . _
1) Let The function f is continuous and strictly increasing on the domain I =

x-f(x)=xm"
[0; +oof, and from it, f accepts an inverse function f‘1 defined, continuous and strictly
increasing on the interval f(I) = [0; 4+oo], denoted by ¥/. or (. )% is called the function of the nth

root. Since: Vx € ]0, +oo[: (x™)’ = nx™"1 = 0, Then the function f‘1 are differentiatiable at
every number y of the interval ]0, +oco[ where y = x™and we have:

1
() =7 ==

vx €10, +ool: (V) = ((x)n> =

22



2) Let w|-5loR

x—h(x)=tan x

]—%%[ and from it, h accepts an inverse function k™! defined, continuous and strictly increasing

0

. The function h is continuous and strictly increasing on the domain I =

on the interval A(I) = R, denoted by arctan. Since: Vx € ]—g;g[:h’(x) = (tanx) =

0s2x
, Then the function k™! are differentiable at every number y of set R where y = tan xand we

R N S S S
have: (h ) ) = T =GOS = e S T

So
1

Vx € R: (arctan x)’ = )
( ) 1+ x2

Theorem 4.21
If f has an extremum at point x, and is differentiable at x, then f'(x,) = 0.
Proof

The existence of f'(x,) entails the existence and equality of f'(x, + 0) and f'(x, — 0) and we
assume that f(x,) is a maximum, then exists a neighborhood Vy, of the point x, where

Vx € Vit f(x) < f(x0). So

If x > x4 then UCRIC)
X—Xo

SOandifx<xothenWZO.So
—A0

lim w—f (xo —0) = f'(x9) = 0 and
X—Xo

lim L) = 1, — 0) = f'(xp) < 0.

XX

We obtain f'(x,) =0

4.4.4 The theorems of Lagrange and Cauchy on finite increments

Proposition 3.3 (Rolle’s Theorem)

If a function f [a,b] — R is continuous on a closed interval [a, b] and differentiable on the open
interval ]a, b[ and f(a) = f(b), then there exists a point ¢ € [a, b] such that f'(c) = 0.

Proof

Since the function £ is continuous on [a, b], there exist points x,,, xu € [a, b] where they take
their minimum and maximum values respectively. If f(x,,) = f(xym) , then the function is
constant on [a, b]; and since in that case Vx € |a; b[: f'(x) = 0. If f(xyn) < f(xpm) , then, since
f(a) = f(b), one of the points x,;, and x; must lie in the open interval Ja, b[. We denote it by c
According theorem 4.21 we obtain f'(c) = 0.

Theorem 4 22 (Lagrange’s finite-increment theorem)

If a function f [a,b] — R is continuous on a closed interval [a, b] and differentiable on the open
interval ]a, b[, then there exists a point ¢ € [a, b] such that f(b) — f(a) = f'(c)(b — a).

Proof
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It is sufficient to check that the function g, defined in the domain [a, b] by g(x) = f(x) —

f—(b;:z(a) x, satisfies the conditions of Proposition 3.3. Then there is at least a number c of the
interval ]a, b[ that satisfies g’(c) = 0 and we obtain f'(c) = f—(b;:g(a)-

Remark

This theorem is used in approximate calculations and in proving many inequalities.
Example

Using the finite increment theorem, prove that: Vx > 0:Iln(x + 1) < x.

Applying the theorem of finite increments to the interval [0; x] where x > 0, we get

Vx=>0:In(x+1)—Inl1=f"(c)(x—0); 0<c<ux.

So
ln(x+1)=f(c)x=1+c-x ; 0<c<ux
We have
1
c>0 5 —< 1= x < Xx.
1+c 1+c¢
We obtain

Vx>0 :In(x+1) <x.
Theorem 4 23 (Cauchy's finite-increment theorem)

If a functions f, g [a,b] — R are continuous on a closed interval [a, b] and differentiable on the

open interval ]a, b[, and g’ is non-zero in the interval ]a, b[ then there exists a point ¢ €]a, b[ such
f)-f@ _ f'©

that  orme@ = 7o

Proof

We have (Vx €la; b[:g'(x) #* 0) = (g(b) #* g(a)) so it is sufficient to check that the function
@, defined in the domain [a, b] by @(x) = f(x) — %g(x), satisfies the conditions of

Proposition 3.3. Then there is at least a number c of the interval ]a, b|[ that satisfies ¢’(c¢) = 0 and

') _ f)-f(@
g'©  b-a

we obtain

Theorem 4 24 (Hospital Rule)

If a functions f, g are continuous on a neighborhood V , of the pomt a and differentiable on V —

{a} then: If the hmf E ;exlsts then the lim £ Ex; fia)) also and lim ’; Z‘; hm%. If in particular,
x—a g(x)— xoa Yoa —
f(a) = g(a) = 0 we have the equality hmf ® _ im {®,

ag (®  xoagk)
Proof
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!
Assume that lim e _ = /.

x—a g’ (x)
For x > a we apply Theorem 4 24 to the interval [a, x] and we get:

O —f@ _ f©

I —g@ 7 where ¢ € ]a, x|[.

> > ’ B
Soxsa=coa=LO 5 pfOf@_,,p
g© g—g(@

For x < a we apply Theorem 4 24 to the interval [x, a] and we get:

< < o 3
SOX—)a:}C_)a=>&_>£=>f(x) f(a)_)fl
g© g—g(@

We obtain lim [ = lim f& _

x—a g’ (x) x—a g(x)
Remarks

1) The previous result remains true if f and g are undefined at a but accept two finite limits.
2) Theorem 4.24 can be applied several times in a row.

3) Theorem 4.24 can be applied in the following cases:
a) ii_}rglof(x) =0 and chi_r)gg(x) = 0.

b)) gclgcllf(x) = oo and }Cl_rgg(x) = 00,

c)) ;i_)rgof(x) = oo and ii_)rgog(x) = o0.

Examples

) 1i \/x+ -2

x—)

(|F)

VX+3—2_hm2\/x+3:}

}CI_IH x—1 T x-1 1 4
. -x—-1 0
Z)Llin 22 (lFa)
1 e —x—l_1 ex—l_l_ e 1
N 2 W2 ¥%2z T2

. eX+x? 0
3) lim — (LLF=).
x—>+00 X°—x+1 00

eX+x? eX+2x e¥+1 e*
lim = lim = lim e”* = lim — = +oo.
x—>+00 X3-x+1 x—+400 3x%—1 x—=+00 6X x—+00 6

4) lim —lnx—(IFoo 0)

x—+oc0 X+3
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) 2x% . x—-1 ; 2X . In
lim —In—= lim — lim —&*%

x—+00 X+3 x+2 x—+00 X+3 x>+00 i
. ln% 0
Calculate lim —*2(L.F-).
xX—>+00 = 0
InX= 1 (ln—x — 1), S E—
lim —XF2 = pjp ~x¥2) o (DD g
X—+co l xX—+00 1 xX—>+00 _i
x (E) x?
. 2x2 x—=1 _ —
Soxgr_pwmlnﬁ_—z—ZX( 3) = —6.
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Chapter five: Elementary functions

5.1 Inverse Trigonometric fonctions
5.1.1 Arcsine Function

Definition 5.1

The function f defined in the interval I = [— % ; g]by f(x) = sinx, is continuous and strictly

increasing in the interval ], it accepts an inverse function f‘1 that is defined, continuous and
strictly increasing on the interval f(I) = [—1; 1]. We denote the function f~! by "arcsin" or

"sin~1",

We have Vx € [—g;g];‘v’y €[—-1;1] : y =sinx & x = arcsiny.

Derived function

We have Vx € ]—g;g[:(sinx)’ =cosx # 0 (cosx > 0)

According to the theorem 4.20then, the function arcsin is differentiable at every number y of
the field |—1; 1[ where y = sin x and we have:

1 1 1 1

(arcsiny)' = —— = = = :

Y (sinx)’ cosx /1 —=sinZx /1_y2
So

1
Vx € |-1;1[ : (arcsin x)' =
1 — x?

5.1.2 Arccosine Function
Definition 5.2

The function g defined in the interval I = [0; 7]by g(x) = cosx, is continuous and strictly
decreasing in the interval I, it accepts an inverse function g~! that is defined, continuous and

strictly decreasing on the interval f(I) = [—1; 1]. We denote the function g~! by "arccos" or

"cos™ 1",

We have Vx € [0;t]; Vy € [-1;1] : y = cosx & x = arccosy.
Derived function

We have Vx € ]0; [: (cosx)’ = —sinx # 0 (sinx > 0).
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Then the function arccos is differentiable at every number y of the field |—1; 1[ where y =
cos x and we have:

1 1 1 1

(arecosy) = teosxy = “sinx T—costx  J1-)72
So
1
Vx € |[-1;1[ : (arccosx)’ = — :
1—x*
5.1.3 Arctangent Function
Definition 5.3

s . s
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increasing in the interval I, it accepts an inverse function h~! that is defined, continuous and
strictly increasing on the interval h(I) = R. We denote the function h~! by "arctan" or
"tan~1".

The function h defined in the interval I = ] [by h(x) = tanx, is continuous and strictly

We have Vx € ]—g;g[;‘v’y ER:y=tanx & x = arctany.

Derived function

We have Vx € ]—g;g[:(tanx)’ =— %0

cosZx

Then, the function arctan is differentiable at every number y of R where y = tan x and we
have:

(arctany) = — L — —cos?xm— L —_ 1
arctany) = (tanx)’ O X = fantx 1 + y?
So
Vx € R: (arctanx)’ = !
x : (arctan x =112
5.1.4 Arccotangent Function
Definition 5.4

The function k defined in the interval I = ]0; t[by k(x) = cotan x, is continuous and strictly
decreasing in the interval I, it accepts an inverse function k™! that is defined, continuous and
strictly decreasing on the interval k(I) = R. We denote the function k! by "arccotan" or
"cotan~1",

We have Vx € |0; [; Vy € R : y = cotanx < x = arccotan y.

Derived function
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We have Vx € |0; 7[: (tcoanx)' = — L 20

sin? x

Then, the function arccotan is differentiable at every number y of R where y = co tan x and
we have:

1 1 1
(arccotany)” = (cotan x)’ = —sinfx = - 1+cotanx 1+ y%
So
Vx € R : (arccotanx)’ = — ! :
1+ x2
Properties

1) Vx € [-1;1] : arcsinx + arccos x = g
2) Vx € [-1;1] : sin(arccos x) = V1 — x2.
3) Vx € [-1;1] : cos(arcsinx) = V1 — x2.
4)Vx € R : arctanx + arc cotan x = g

1
5)Vx >0 :arctanx + arctan — = g

6) Vx <0 :arctanx + arctan% = - g
Proof
1) We put Vx € [—1; 1]: f(x) = arcsin x + arccos x.

WehaveVx € |-1; 1[: f'(x) =

1 1 . : : .
— = 0. So the function f is constant in the interval

ﬁ 1-x2
[—1;1].SoVx € [-1;1]: f(x) = f(0) = g

2) We have Vx € [—1; 1] : arcsinx € [—g,g] = cos(arcsinx) > 0. So

Vx € [—1; 1]: cos(arcsin x) = \/1 — (sin (arcsin x))2 =1 —x2

6) We putVx < 0 : f(x) = arctan x + arctan i We have

1 1 1

Vx<0:f'(x)= rEerimb il 0. So the function f is constant in the interval |—oo; 0[. So
1+(3)

X

Vx €100, 0[: f(x) = f(-1) = =2 2= %
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Remark: The properties of inverse trigonometric functions are deduced from the properties of
trigonometric functions. For example, property 1 is deduced from the property: sin (g — a) =
cos a, which we will explain later.

T

We have%—a € [—E;E] & a € [0,m]. Buputting cosa = xwe geta € [0,r] & x € [-1;1]
and sin(z—a) = cosa@sin(z—a) = x o - —q=arcsinx
2 2 2

T
= E — arccos x = arcsinx

3

= E = arccos x + arcsinx

5.2 Hyperbolic functions and their inverses
5.2.1 Hyperbolic functions

Definition 5.5 The hyperbolic sine function, which we denote by “sh,” is defined as Vx €

ex_e—x
R:shx =

Definition 5.6The hyperbolic cosine function, which we denote by “ch,” is defined as Vx €

eX+e™*
R:chx = >

Definition 5.7 The hyperbolic tangent function, which we denote by “th,” is defined as

h X_p,—X
Vx ERithxy =22 =2"°

chx eX+e X

Definition 5.8 The hyperbolic cotangent function, which we denote by “th,” is defined as

* h X —-X
Vx € R*:coth x = &% = £*¢

shx eX—e™X

Properties
Forall x,y € R we have:

1)sh(—x) = —shx ¢« ch(—x) =chx.

1

«ch?x — sh?x = 1.
ch2?x

2)1—th?x =
3)ch(x+y) =chxchy+ shxshy.
4)sh(x +y)=chxshy+shxchy.

hx+th
5) th(x +) = o
6) (shx)' =chx ,(chx) =shx, (thx) = " (cothx) = ——

ch?2x ’ sh2x '
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5.2.2 Inverses Hyperbolic functions
Definition 5.9

The function f defined in the interval I = [0; +oo[ by f(x) = ch x, is continuous and strictly
increasing in the interval I, it accepts an inverse function f ~1 that is defined, continuous and
strictly increasing on the interval f(I) = [1; +o[. We denote the function f~! by "arg ch " or
nch—l u.

eX+e™*

WehaveVx > 0;Vy >1:y=chx © chx = & e —2ye* +1=0.

Iszln y — y2—1>

<:>x=ln<y— /y2—1> (becauseln(y— yz—l)SO).

SoVx >1:argchx =In(x 4+ vx? — 1).

Derived function:Vx € |1; +oo[ : (argchx)' = %

Definition 5.10

The function g defined in the interval I = R by g(x) = sh x, is continuous and strictly
increasing in the interval I, it accepts an inverse function g~ that is defined, continuous and
strictly increasing on the interval f(I) = R. We denote the function g~ by " arg sh " or
nsh—l n.

We have Vx € R : argsh x = In(x + Vx? + 1).

Derived function:Vx € R : (argsh x)' = \/ﬁ

Definition 5.11

The function h defined in the interval I = R by h(x) = thx, is continuous and strictly
increasing in the interval I, it accepts an inverse function h™?! that is defined, continuous and
strictly increasing on the interval h(I) = ]—1; 1[. We denote the function h~! by "arctan" or
"tan~1".

WehaveVx € |—1;1[ : argthx = %lnlﬁ

1-x

Derived function:Vx € |—1; 1[ : (argth x)’' = L

T 1—x?
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