Chapter Four: Real functions with real variable
4.1 Generalities
Definition 4.1
We call a real function of a real variable every application f of a subset D of R on set R.
D is called the domain of definition for f.
We call the graph of the function f the subset of R? which we denote by Iy, and defined as follows
Ir={(x;y) ER}x €D Ay =f(x)}or I} = {(x;f(x));x € D}.
The image of the domain D by f is denoted by f(D) where: f(D) ={y e R;3x € D:y = f(x)}.
Definition 4.2

Let f: D — R be a function. We say that the function f is bounded from above (bounded from
below, respectively) if, and only if, the set (D) is bounded from above ( from below,
respectively). So

( f is bounded from above) & (IM € R; Vx € D: f(x) < M),
( f isbounded from below) & (Ime R; Vx € D:f(x) > m)
We say that the function f is bounded if, and only if, it is bounded from above and from below. So
(fisbounded) & (IM € R%; Vx € D:|f(x)| < M).
Remark 4.1

If the function £ is bounded on D, then the part f (D) is bounded on R. It accepts an upper bound
and a lower bound, which we denote by Sup,, f and Inf, f respectively.

Definition 4.3 Let f: D — R be a function.

We say that f is increasing over D (strictly increasing, respectively) if and only if
Vi;yeED:x<y=f(x) < f(y) (Vx;y € D:x <y = f(x) < f(y), respectively).
We say that f is decreasing over D (strictly decreasing, respectively) if and only if
Vi;yeED:x<y=f(x) = f(y)(Vx;y €D:x <y = f(x) > f(y), respectively).
We say that f is constant over D ifand only if Vx;y € D:x # y = f(x) = f(y).
Definition 4.4 Let f: D — R be a function.

We say that f have a local maximum (local minimum, respectively) at point x, of D if:

Ja € R};Vx € D:|x —xol < a = f(x) < fxo) (f(x) = f(x,), respectively).



And if Vx € D: f(x) < f(xo) (f(x) = f(x,), respectively) we say that f have an absolute
maximum (absolute minimum, respectively) at x,,.

4.2 limit of a function

4.2.1 Finite limit

Definition 4.5 ( neighbourhood )

A subset of R is called the neighbourhood of a point x, € R if it contain an open interval that
include x,. And we symbolize it by V.

Definition 4.6 ( Finite limit )

Let f be a function, defined on a neighbourhood V,, of point x,, with the possible exception of
point x,.

We say that the function f has a limit £(¢ € R) at point x, if, and only if,

Ve>0;38>0;Vx €V, :0 < |x—x| <& = |f(x) —£| <&, and we write lim f(x) = 4.

X=X

Remark

We say that f does not accept the number £ as a limit at x, if and only if
3Ee>0;V8>0;Ix €V, 0 < |x — x| <& 5 |[f(x) — £ > .

proposition 4.1

If xll)r}l;l f(x) = ¢ # 0, then there exists a domain of the form]x, — a, xo[ U 1x, xo + af, with a >

0, SUC(F] that f(x) has the same sign as .

Proof

For e = [£|, then 3a > 0;Vx €V, : 0 < |x — xo| < a = |f(x) — £| < [£] from him

x € ]xo — a,x0[ U ]xg, x +(x[:>{2€<f(x)<0;{)<0
Coo T 0<f(x)<26;¢>0
= f(x) has the same sign as 4.
Examples

1) Let f: x - 5x — 7 Be a function , using the definition prove that: lin% f(x) =3.
X—

Since f is defined on R, we can take V, = R.('V, is a neighbourhood of point 2)
Let e € R}, we have Vx € R:

If(x)-3|<ee |5x—7-3|<¢



= 2<£
-2 <z

So it is enough to take § = §to achieve the following:

Ve>0;36 >0, VxER: 0< |x—-2|<d = |f(x) - 3| <&

1

2) Letfix > x> x—il Be a function , using the definition prove that: lin} flx) = >
X—

Since f is defined on R — {1}, we can take V; = [0; +oo[ ( V; is a neighbourhood of point 2)

Let e € R%, we have

. S I S Y IO | N ||
Vx € Vy: |f(x) 2| T x4 2| T 2)x+1] 2
Therefore, it suffices to take |x2;1| < eto be |f(x) — %| < &, from which

|x2;1| < e o |x— 1] < 2e. So it is enough to take § = 2¢ to achieve the following:

Ve > 0;36 > 0;Vx € V;: 0<|x—1|<6=|f(x)—%|<s.

Definition 4 6

Let f be a function defined in the interval V,,, = ]x,, b[, we say that f have the limit £ from the
right at x, if and only if

Ve> 0,36 >0;Vx €V, : 0<x—x,<d=|f(x)—¢|<e.

we write lim f(x) = € or lim f(x) = *.
> x-xg

X—Xg

Let f be a function defined in the interval V,,, = ]a, x,[, we say that f have the limit £ from the
left at x, if and only if

Ve>0;36 >0 Vx €V, : —0<x—x,<0=|f(x) -4 <e.

we write lim f(x) =+¢or lim f(x) ="*.
X=Xg

X—Xg
Proposition 4.2

The limit at a point of a function exists if and only if the left limit and the right limit exist and are
equal.

Example

3x—1 if x<1
Let the function f defined on R by f(x) = {L if x>1

X+2



Prove that: li;nf(x) =2and lignf(x) = 2 what do you conclude.

x—1 x—1
1) LetV; = ]—o0; 1] and € € R}, we have

vx eV [f(x)-2|<ee=[3x-3|<c¢

€
|3x—3|<e<=>0<|x—1|<§

£
=>0<—x+1<§

&
= —§< x—1<0
It is enough to take & = - to achieve the following:
Ve>0;36 >0;VxeV;: 0<1—x<d6=|f(x)—2|<e

Let V; = [1; +oo[and € € R}, we have

2|x — 1|

Vx eV;: — 2| =
X 1 |f(x) | x+ 2

2
< 3 |x — 1]
So
2 3 3
glx—ll<£=)|x—1|<§g<=>0<x—1<§s
It is enough to take § = 32—8 to achieve the following:
Ve>0;36 >0;VxeV: 0<x—-1<d§=|f(x)-2|<e
Conclusion: Since xli_)r{l_f(x) = )}Lrgl+f(x) =2 f accepts a limit at 1, which is 2.
Theorem 4.1
If a function f accepts a limit at x, then this limit is unique.

Proof

Let f accept two different limits € and £ where £ > ¢,

T
fore = — 36,6, > 0;Vx €V,

!

2

0<|x—x0l <6, = |f(x) — ¥l <e=

and

-1

O0<|x—xpl <6, = |f(x) 2| <e= >




For § = min{§,,8,} Then Vx € V,:

0<|x—xp|l<éd=[—-¢=1f(x)—¢—(f(x)—¥¢)I
=S |—-F¥|<e+e=2¢
=[-V|<|[¢—-¢]
This is a contradiction. So £ = ¢’
4.2.2 Limit of a function using sequences
Theorem 4.2

Let f: D — R be a function and x, € D. The following two conditions are equivalent.
1) lim f(x) =+¢.

XX
2) For all sequence (x,,) where vn € N:x,, € D A x,, # x, then:

(limx, =x5) = (lim f(x,) =¥)
n—+0o n-+oo

Proof
Necessary condition
We impose lim f(x) = ¢ and let (x,,) sequence where Vn € N:x, € D A x,, # x, and lim x,, =

X—Xg n—oo

X,o.Let us prove that: nlirpw flx,) =+¢.

Fore > 0then38 > 0;Vx €V, : 0 < |x —xo| <6 = |f(x) — €| < e.So
INEN; VnReN:n>N=|x, — x| <8 = |f(x,) — ?| <e.

Sove>0;AINeN; vne N:n >N = |f(x,) — | <e&.So lirP flx,) = 2.
n—->+oo

Sufficient condition

We now assume that for every sequence (x,) where Vn € N:x,, € D A x,, # x, then (lim x,, =

x) = (Jlim f(e) = &) o

Let us prove by contradiction that lim f(x) = #.

X—Xg

Assume that lim f(x) # ¢, that is 3e > 0; V8 > 0;3x € V,: 0 < |x — x| < & and

X—Xg
|f(x) — €| = e.
For § =%then vn € N*;3 x, # xgand x, € V, : [x, — x| < % and |f(x,) —f| = «.

So lim x, = x, and ligl f(x,) # € (this is a contradiction ).
n—->+oo

n—-+oo

5



Remark

To prove that a function f has no limit at x,, it is enough to find two sequences (x,) and (x',) that
converge towards x, but lim f(x’,) # lim f(x,) Or we are looking for a sequence (x,,) that
n—oo n—oo

converges toward x, but the sequence (f (x,,)) _ diverges.
Example

Prove that the function f: x — cosi does not accept a limit at 0.

Let the sequences (x,,) and (x',) where Vn € N*: x,, = — X', = !

2mn+- T onn+n’

vneN"f(x' ) =-1; f(x,) =0. We have lim x,, = lim x', = 0 and lim f(x’ ) = -1 #
n—0oo n—oo
lim f(x,,) = 0. So f does not accept a limit at 0.

4.2.3 Infinite limits

We say a subset of R is a neighbourhood of +oo ( —oo, respectively) if it contains an open interval
of the form Ja, +oo[ ( ]—oo, b[, respectively) And we symbolize it with V, ., ( V_, , respectively).

Definitions

(Ve>0;3A> 0 Vx eV, nix >A> |f(x)—f<e) & (xEwa(x) =7)
(Ve>0;3A> 0 Vx eV x<—-A=|f(x) -l <e) & (xl_i)r_noof(x) =7)
(VA>0;36 > 0;Vx €V i lx —x0]l <6 = f(x) > 4) & (Jcllr?of(x) = +00)
(VA>0;36 > 0;Vx €V lx —xol <6 = f(x) < —4) & (xli_)rjrclof(x) = —00)

(WVA>0;3B>0;Vx €V, p:x >B = f(x) > A) & (xEwa(x) = +00)
(WVA>0;3B>0;Vx €EV,p:x >B = f(x) < —A) & (xl_i)rpoof(x) = —0)
(WVA>0;3B>0;Vx €V :x<-B=f(x) >A) & (xl_i)rpoof(x) = +00)
(WVA>0;3B>0;Vx eV :x<-B=f(x) < -4) & (xl_i)rpwf(x) = —0)
Examples

1) Prove that lim 22X =2,

x—o00 X—1

The function x — % is defined on Vo, =]1; +o0o][, for ¢ € R} we have

2
Vx EV,iw: |f(x) - 2| <e & <o 1<e<:>x>g+1

[x — 1] X —



Therefore, it is sufficient to choose B = % + 1 to obtain:
Ve>0; IBER, ;Vx €V, ni:x >B = |f(x) - 2| <¢

2) Prove that lim 2% = —oo.
< x-1
x—1
Let V;, = ]0;1[, for A € R}, we have

2x 2
Vx € Vy: A —<-A4A2+—< -4
x€V:f(x) < x_1< +x_1<

Therefore, it is sufficient to choose § = A%Z to obtain:
VA>0;36€ER,; VxeV;:0<1—-x<§= f(x) <-A.
4.2.4 Operation on limits

Theorem 4.3

Let f and g be functions defined on the neighbourhood V,. , with the possible exception of x,,
where

Vx € Vy: f(x) < g(x) (or f(x) < g(x))

1) If lim f(x) = €and lim g(x) = ¢ then¢ < ¢'.
X—Xg X—Xg
2))If lim f(x) = 4+ then lim g(x) = +oo.
X—Xq X—=Xo
3) lim g(x) = —oo then lim f(x) = —oo.
X=X X—=Xo

Let f,g and h be functions defined on the neighbourhood V,. , with the possible exception of x,,
where Vx € V, :h(x) < f(x) < g(x) (orh(x) < f(x) < g(x))and lim g(x) = lim h(x) =
XX x

X
?,then lim f(x) = 4.

X—Xg
Proof

Assume that Vx € V, : f(x) < g(x) and lim f(x) = ¢, lim g(x) = ¢’ and suppose that
X—>Xo X—Xg

£ >4 Fore= %then



£+ 30 -1
381>0:0<|x—x0|<81=>|f(x)—{’|<e=>T<f(x)< 5

3¢'— ¢ £+
38, > 0:0< |x — x| <6, = |glx) —¥'| <e= 5 <g(x)<T

Bu taking 8§ = min{8,,8,} then 0 < |x — x| <6 = g(x) < % < f(x) this is contradiction the

hypothesis .Vx € V,: f(x) < g(x).
Theorem 4.4

If f and g are functions defined in the neighbourhood V,. , with the possible exception of x,, and
have the limits ¢, ', at x,, respectively, then the functions f + g, f g, Af, |f| it has the limits
L+ 2,2, £, |£], at x, respectively. And if £' # 0, then the function i it has the limit % at x,.

Proof (Let us prove the last case )

Assume that lim g(x) = €' # 0fore = ﬂ, then
XX 2
o
38, >0:0 < |x—x0|<61=|g(x)—{’|<7
A
= ||lg)]| = |[£']] < >
|€'] 31
$7< lg ()| <T
_ 1 < 2
lg(| 1€

On the other hand we have:
Ve>0;38, > 0;Vx €V, :0 <|x — x| <&, = |gx) — | <.
For 8§ = min{§,, 8,}, then

2@l _ 2¢ _
GEENTE

O<|x—x| <6= | ! l| = |£'_g(x)

gx) ¢ £9(x)

4.2.5 Indeterminate form
We say that we are in the presence of an indeterminate form. If when x — x,
1) f - +ooand g —» —oo then f + g = indeterminate form + co — oo,

2) f - o and g — 0 then f.g — indeterminate form co. 0.

3) f = coand g — oo then g — indeterminate form %



4) f - 0and g — 0 then g — indeterminate form g.

5) f » 0and g - 0 then f9 - indeterminate form 0°,
6) f » o and g — 0 then f9 - indeterminate form co°,
7) f - 1and g — oo then f9 — indeterminate form 1%.

Remarks

1) The indeterminate forms co. 0, g can be reduced to the form g by writing 5 =

f.g=41in(2)/
f

in (3) and

I SEE

2) The indeterminate forms 02, %, 1° can be reduced to the form oo. 0 by passing the logarithm.

Exercise

. . 243x+2
1) Calculate the limits: lim *~———,
x->—1 Xx*+1

X
2) Using the limit lim “%*2. calculate the limits:a) lim xin >, b) lim (X2} .
h—0 X—00 x—2 x—00 \X—2
Solution
2

1) lim 22322 _ g 2 50

x--1 X*+ 0

li x2+3x+2 . (x+2)(x+1) s (x+2) _ 1

xo—1 x*+1  xo—1 (3=x2+x-1)(x+1)  xo—1 (x3-x24x-1) 4
2) a) lim xInZ2 = IF .0. So

X—00 x—2

Putting i—i =1+hwegeth= % and for x — oo then h — 0 therefore

lim xln11 = lim xh In(+h) _ lim Z3xInC+h) _ —3x1=-3
X— 00 x—2 X—00 h X0 x—-2 h )
h—-0 h-0
X
b) lim (¥22) = IF 1. So
X—00 -

. x+1\% . . x+1 .
Putting f(x) = (E) and passing the logarithm we get g(x) = Inf(x) = xln—, according to
the first question we have lim g(x) = lim xlni—t = —3. So Inf(x) = —3 and we obtain
X—00 X—00 -

lim f(x) =e™3.
X—00
4.2.6 Cauchy’s criterion for functions:

Theorem 4.4



A function f has a finite limit at x, if and only if
Ve>0;38 > 0;Vx',x" €V, : (0 < |x" —xp| <Fand 0 < [x" — x0| < 6) =
If(x) - fx")] <e
Proof
Necessary condition

Assume that lim f(x) = £, then
X

—Xg

Ve>0;38>0;Vx',x" €V, : (0 <|x'—x0] <Fand 0 < [x" —x] <5) =
G — ol < Eolf ) — el <2

So

FGD = FGI = 1F 6D = £ = (F&) = DI < IFGD = 8l +1(F ) = D <z +- ==

Sufficient condition

Assume that Ve > 0;38 > 0; Vx',x" € Vi,
€

£
(O < |x"—xp]l <650 < |x" —x0] < 6) = |f(x) -2 < E;If(x")—{’l < 5

Let (x,) be a sequence of V,, elements where Vn € N: x,, # x, and lim x,, = x,,.

n—oo

Sofor§ > 0,then3INy € N:vn € N;n > Ny = |x, — xo| < 6.

SoVp,g € Nip>Nyandg >N, = 0< |xp—x0| <6 and 0 < |xq—x0| <é
= |f(x) = fxg)| <e.

So (x,,) is a Cauchy sequence, and therefore convergent.

Let us now show that the limit lim f(x,,) is independent of the choice of sequence (x,,).
n—-oo

Let (x,) and (x;,) where 7{1_{210 Xp = Al_r)‘go Xn = Xo-
SodANeEN; VvneN:n>N = (0 < |x, — x| <Sand 0 < |x;, — xo| < &)
= |f(x,) — flxp)] < e.
So
lim (f () = £ () = 0,

we obtain

10



lim f(x,) = lim f(x;).
n—->o0o n—oo
4.2.7 Comparison of functions in the neighbourhood of a point - Landau notation

Let f and g be a functions defined in the neighbourhood V,, | of the point x,, with the possible
exception of x,

Definition 4.8
We say that f is negligible in front of g when x — x,, and we write f = o(g), if
Ve>0;36 > 0;Vx €V, : 0<|x—x0| <= I[f(x)| <elg)l.
Definition 4.9
We say that f is dominated by g when x — x,, and we write f = o(g), if
3k >0;36 > 0;Vx €V, : 0 <|x—x0|l <6 = |f(0)| < klgx)l.
The symbols 0 and O are called Landau symbols.
Corollary 4.1
If g is non-zero on V,, — {x,} then:

fx) _

f=ol e inoe="0
_ f&| 5 i
f=0(g) & sl bounded in V.

And if g = 1, then
f=0() e lim f(x)=0and f = 0(1) & f isbounded in V.
X—Xg

Remark
We obtain a similar definition for x, = 40 and x, = —oo.
Examples

1) When x — 0 we have.

x3=o0(x?) , x? cosi =0(x?) , (%)3 =o0 ((1)4)
2) When x — 400 we have

x2 =03, x?sinx = 0(x?) , (%)4 =0 ((1)3>
Theorem 4.5

1) f =gh e f=0(g) where h = 0(1).

11



2)f =ghe f=0(g)where h = 0(1).
Proof ( Let's prove 1)
Necessary condition

Assume that f = 0(g).

L9 " g(x) £ 0

We put h(x) = {9 .
0 ,9(x)=0

Wehave f = o(g) © Ve > 0;36 > 0;Vx €V, 0 0<|x—xo| <6 = [|f(x)] <elg(x)l.
First: Let us prove that f = gh.

If g(x) =0then 0 < |x —x,| <8 = |f(x)| < elg(x)| =0, we get f = gh.
If g(x) # 0then f(x) = g(x)%, we get f = gh.

second:
Let us show that h = 0(1), e Ve > 0;36 > 0;Vx €V, 0 0<|x—xp| <8 = [h(x)| < €

If g(x) = 0 then h(x)=0, i.e |h(x)| < ¢
f(x)

If g(x) # 0then |f(x)| < €|g(x)| and from it e

<cie|lh(x)| <e.

Sufficient condition
Assume that f = gh and h = 0(1) and show that f = o(g).

We have (h = 0(1)) = (Ve >0;36 >0, Vx €V, : 0<|x—x0| <d=|h(x)| < e) and
fromthere |f(x)| = |h(x)g(x)| < elg(x)| ie. f = 0(g).

In the same way we prove property 2.

Note: The previous two properties are summarized in the following writing.
o(g) = g.o(1) and 0(g) = g.0(1)

Properties

1)f=0(g)andh= 0(g) = f +h = 0(g).

2)f =o(g)andh= o(g) = f+h=0(g).

3)f =0(g)andh = 0(1) = fh = o(g).

4) f =o(g)andh= 0(g) = f +h=0(g).

5) f =0(g)andh= 0(1) = fh = 0(g).

12



6) h = 0(f) and f = o(g) = h =0(g).
7)h=o(f)and f = 0(g) = h =0(g).
Note

The previous properties are summarized in the following writing.
1) 0(g) +0(g) = 0(9).

2) 0(g) +0(g) = o(g).

3) 0(9)0(1) = o(g).

4)0(g) + 0(g) = 0(9).

5)0(9).0(1) = 0(g).

6) 0(0(9)) = 0(g).

7) 0(0(9)) = o(g).

4.2.8 Equivalent functions:

Let f and g be a functions defined in the neighbourhood V,,  of the point x,, with the possible
exception of x,.

Definition 4.11

We say that f is equivalent to g for x — x, and write f ~ g if f — g = o(f) for x — x,,.
Results 4.1

)f-g=o(f) e f—g=o(g).

2) The relation ~ is an equivalence relation on the set of functions defined in the neighborhood

Vs, — {x0} of the point x,.

3) If f and g are non-zero on V,,, — {x,} then: f ~ g & lim [@ _ q,

x—xq 9(x)
Theorem 4.7

Letf, g, fi1 and g, be a functions defined in the neighbourhood V,., of the point x,, with the
possible exception of x, where f ~ f; and g ~ g, for x — x,. If

If the limit lim G, it exists then the limit lim L&) olso exists and we have:
x-xg (X xX—-xg 91X
A f()
lim lim

xoo g1 (X) | xox0 g ()

Proof

13



Since fﬁ % accepts a limit when x — x,, there is a neighbourhood V, to the point x,, such that g is

non-zero on V,, — {x,} and that g ~ g, (thatis, |g(x)| < &g, (x)l) then g, is also non-zero on
Vy, — {x0} and hence

{f~f1 =>{f1~f :>{f1=f(1+0(1)) fi _ f(1+0(D))

= = .
9~91 W1~9 |g=9(1+0) g 9g(1+0)
. (1+0(1) _ f1(x) . f)
And since ¥——= (o) = =14 0(1) — 1, then XIB}}O 7100 xl%xog(x).
Remark

Note: The concept of equivalent functions is used in calculating limits, especially in removing

indeterminacy.

Examples
Va+x—-2
1) Calculate the limit }CII)I’(I) YT

For x -» O we have v4 +—2 ~ %x andYx+1—-1~ %x, and from it

Ny 1
llrrl3— = llml— = E
x=0 Vx+1—1 x—>0§x
2) Calculate the limit lim Y225+
X2+®  oixex

1
For x - +o0 we have Vx2 — 2x + x ~ 2x and 2 + xex ~ x, and from it

o Vx?2—2x+x o 2x
lim ————= lim —=2.
X—>+00 = xX—=>4+0 X

2+ xex

4.3 Continuous functions:
Definitions 4.12

1) Let f be a function defined on the neighbourhood V.., of the point x,. We say that f is
continuous at

xo if and only if: lim f(x) = f(x,).
X—Xg

In other words f is continuous at x, if and only if:

(V£>O;36>O;VxEVxO:O< [x —xol <6 = |f(x) — fx)l <s).
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2) Let f be a function defined on the neighbourhood V,, of the form [x,, b[. We say that f is
continuous at x, from the right if and only if: lim f(x) = f(x,).
X=X
3) Let f be a function defined on the neighbourhood V,. of the form la, x,]. We say that f is
continuous at x, from the left if and only: lim f(x) = f (xo).
X—Xo

Result 4.2

A function f is continuous at x, if and only if it is continuous at x, from the right and from the left

Examples
21 ey 21

1) Let the function f defined on R by f(x) = { 1 X )

2 if x=1
lim f(x) =2 =f(1) = fiscontinuous at x, = 1, from the right.
x-1
lim f(x) = =2 # f(1) = fisdiscontinuous at x, = 1, from the left. So f is discontinuous at
x-1
XO = 1

Definition 4.13
Le I be a interval of R.

We say that a function f is continuous on the interval I if and only if it is continuous at every point
in this interval. We denote the set of continuous functions on the interval I by C(I).

We say that the function f is continuous uniformly over the domain [ if and only if
Ve>0;36 >0:vx' , x"€el: [x'—x"| <6 =|f(x") — f(x")]| < &

It is clear from the definition that every uniformly continuous function in the interval I is
continuous in this interval (the opposite is not always true).

4.3.1 Continuous functions in a closed interval
Theorem 4.8
Every continuous function in a closed interval [a, b] is uniformly continuous in this interval.
Proof
We assume that f is continuous and uniformly discontinuous on [a, b] i.e.
Je > 0;V6 > 0:3x",x" € [a,b]: |[x' —x"| <& and |[f(x") — f(x")| = &.

We put § = % > 0 where n € N* and from it:
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1
Je > 0;Vn € N*; 3x,, x;) € [a, b]: |x;, — x}| <E and |f(x;) — f(x;)| = e.

Since the sequence (x;,) is bounded, according to the BOLZANO-WEIERSTRASS theorem, then
a subsequence (x;Lk) can be extracted from it that converges towards x in [a, b] and since

1 - _ . .
vk € N: |x, —xp, | < - the partial sequence (x,) also converges towards &, and since f is

continuous at , then lim (f(x,gk) — f(x,’{k)) = f(x) — f(%) = 0. This is a contradiction because

vk € N: |f(xn,) = fm)| = e

Theorem 4.9

Every continuous function on the closed interval [a, b], is bounded.
Proof

Assume that f continuous and unbounded on the interval [a, b], i.e. Vn € N;3x,, €

[a,b]: |f (xp)| > n.
Since the sequence (x,,) is bounded, it is possible to extract from it a partial sequence (xnk) that
converges towards % from [a, b]. Since f is continuous at %, then lim | (xn, )| = IF .

This is a contradiction because Vk € N: |f(n,)| > n, = k, and hence Ilim |f(xnk)| = +o00.

Theorem 4.10
Let f be a continuous function on a closed interval [a;b].

Then f attains its upper and lower bounds on [a;b], i.e. there exist some points c,d € [a, b] such
that f(c) = supyeq ) f(x) and f(d) = infieq by f(X).

Proof

Let M = supye(q;p) f(x). And assume that Vx € [a; b]: f(x) # M i.e. Vx € [a; b]: f(x) # M.

1
M-f(x)
positive and therefore it is bounded to this interval, i.e.: 3m > 0;Vx € [a; b]: g(x) < mor

So the function g defined on [a;b] by Vx € [a; b]: g(x) = it is continuous and strictly

Im > 0;Vx € [a;b]: f(x) <M — % This contradicts the hypothesis M = supe(q;p) f ().

Theorem 4.11

Let f be a continuous function in the interval [a; b], if the signs of f(a) and f(b) are different,
then there is at least a point c in the interval ]a; b[ satisfies: f(c) = 0.

Proof

16



Assume that f(a) < 0 and f(b) > 0. Letthe set E = {x € [a; b]/f(x) > 0}, then E # @ because
b € E. We put infE = ¢ and let us prove that: f(c) = 0.

Assume that f(c) # 0 Since f is continuous at c, there exists at least a interval of the form I =
lc — a; c + a[ < [a; b] with @ > 0, where f(x) and f(c) have the same sign. (See Proposition
1.3).So

if f(¢) > 0, then Vx € I: f(x) > 0 by taking x = c—%wegetf(c—%) >0so0c——€Eand
therefore ¢ —% > ¢ = infE. and this is a contradiction.
if f(c)<O0,thenvx €l: f(x) <O.

We have infE =c= 3Jx, €E:c+a>x,=c = x, € = f(x,) < 0. This is a contradiction
because x, € E = f(x,) > 0.S0 f(c) = 0.

Theorem 4.12

Let f be a continuous function in the interval [a; b]. For every real number A between f(a) and
f(b), there exists at least one real number ¢ of the interval [a; b] satisfies: f(c) = A.

Proof
case 1: If A = f(a) it is enough to take ¢ = a, but if A = f(b) it is enough to take ¢ = b.
case 2: If A # f(a) and A # f(b). Then the function g defined on the interval [a; b] by

g(x) = f(x) — A, satisfies the conditions of Theorem 4.11, So there exists at least one real number
c of the interval [a; b] where g(c) = 0 and from which we get f(¢) = A.

Proposition 3.2
Let I be an interval of R, and f a real function.

If the function f is continuous on I, then the image of the interval I by the function f is a interval
of R, i.e. the set f(I) is a interval.

Proof
Let y;; v, be two numbers of f(I) where y; < y, then there are at least two numbers x;, x, of the

interval I where y;, = f(x;) and y, = f(x;) according to the theorem 4.12, then for every number
y where y; <y < y,, there exists at least number x confined between x, and x, (i.e. x € I),
where y = f(x) therefore y € f(I).

4.3.2 Extension by continuity
Definition 4 14
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Let f be a function defined on the domain I. With exception of the point x, of I, we assume that
lim f(x) = £. Then the function £, defined by f(x) = {f(x) % €1 = {xo}

X—Xg ' ; X = Xo
I — {x,} and is continuous at x,. The function £ is called the extension of £ with continuity at x,.

, coincides with f on

Example

sin 2x sin 2x

Let f be a function defined on R* by f(x) =

— Since ling = 2, then f can be extended by
X—
sin 2x

continuity at x, = 0 to the function f where: f(x) = { x YT 0.
2 ix #0

4.3.3 Properties of monotone functions on an interval
Theorem 4.13

Let f:]a, b[ - R be a monotonic function where —co < a < b < +oo, then the limits lim f(x) «
x—a

lim f(x), are exists ( finite or infinite ) and we have

x—b

If f increasing = —oo < infye)qpr f(x) = lim f(x) < lim f(x) = supyejap[ f(x) < 400

x—-a x—-b

If f decreasing = —oo < infyejqpr f(x) = lim f(x) < lim f(x) = supyejapf f () < +00

x—-b x-a

Proof

Assume that f increasing and supyejq pf f(x) = M < +o0 and let us prove that: lim f(x) = M.

x-b
We have supyeiap f(x) =M = Ve > 0;3a € Ja,b[: M — e < f(a) < M.

f increasing

Byputtingd =b—a>0,thenb—-86<x<b=2a<x<b S f(a)<fkx)
SM—-e<f(e)<f@)SM<M+e¢
>M—-e<f(x)<M+e.

SOV£>O;38>O:—6<x—b<0:>If(x)—MI<swegetliy1f(x)=M.

x-b
In the same way we prove the second case.
Corollary 4.1
1) Let f:]a, b[ = R be a monotonic function then:

a) If f increasing = f(a) < lim flx) < lim fx) < f(b).

x—-a x—b

b) If f decreasing = f(b) < lim fx) < lim fx) < f(a).

x—-b x—a

18



2) Let I be an interval of R bounded by a and b (a < b), and let f: [a, b] — R be an increasing
function. For each x,, where a < x, < b then:

a) —o0 < f(xg—0) < fxg) < fxp+0) < +oo.

b)ylfael = f(a) < f(a+0) < +oo.

c)Ifbel = —oo < f(b—0) < f(b).

Remark

We obtain a corollary similar to corollary 4.1 if f is decreasing over the interval I.
Theorem 4.14

Let I be an interval of R and let f: [a, b] — R be an monotonic function Then £ is continuous on I
if and only if £(I) is a interval.

Proof

Necessary conditions

According to Proposition 2.3, if f is continuous, then f(I) is an interval.

sufficient condition

We assume f is increasing and f(I) is a interval and prove that f is continuous on I.

Suppose the opposite and let x, be a point of discontinuity of f. As f is increasing, then at least
one of the relations f(x,) < f(xg + 0), f(xe — 0) < f(x,). is verified (According to corollary
4.1).

Assume, for example, that f(x,) < f(x, + 0) in this case, then for each x of I, we have
Xx<x9=f(x) < f(xg)and x > x5 = f(x) = f(xy + 0) that is ] (xo), f(xo + 0)[ N f(I) = @.

Let x, € I where x; > x, then f(x,) € f(I) and f(x;) € f(I) and from it [f (x,), f(x)] < f(D)
(because f (1) is a interval) and since f(x;) > f(xo + 0) then Jf(x,), f(xo + 0)[ C
[f (o), f ()]

ie. [f(xq), f(xo+ 0)[ N f(I) # @. This is a contradiction.

4.4.3 The inverse function of a strictly monotonic continuous function
Theorem 4.15

Let I be an interval of Rand f:1 — R a real function.

If £ is continuous and strictly monotonic over the interval I, then f is a bijective of the interval I to
the interval f(I). Therefore, f accepts an inverse function that we denote by f~1, which is defined,
continuous, and strictly monotonic over the interval f(I) and has the same direction of change of
f, and we have
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VxELVy € f(D:y=f(x) o x=f"1(y)..(x)
Remark
Relation (*) is used to give the expression f~1(x) if it is possible.
Proof

If f is strictly monotonic over [, it is injective, and from the definition of the set f (1), it is
surjective, so f is bijective.

f is continuous, f(I) is an interval. On the other hand, as f is strictly monotonic, f~1 is also
monotonic. Therefore, £~ is continuous because f~*(f(I)) = I is an interval (according to the
theorem 4.14 ).

Example

Let the function f defined on the interval I = [0; +o[ by f(x) = x? + 3, then f is continuous and
strictly monotonic (increasing) on the interval I = [0; +oo[ where f(I) = [3; 4+oo[ according to the
theorem (4.15), f is a bijective to the interval [0;+oo[ in the interval [3;+oo[, so it accepts an inverse
function £~ and we have:

Vx € [0; +oo[;Vy € [3;+o[:y=x?+3 = x?2=y—3

x=,y—3

=4 \%

x = —/y — 3 < 0(unacceptable).

So f~1(x) = /y — 3, after replacing x by vy, the definition of the function f~* becomes as
follows:

f1[3;400[— [0; 4]
x —>Vx—3
Exercise*

) ] x2—-2x+1 six<1
Let the function f defined on R by f(x) = { -x+1 Gix>1
2x-1
1) Prove That f is continuous and strictly monotonic over R.

2) Concluding that f accepts an inverse function f~1, and write the expression f~1(x) in terms of
X.

Solution

lignf(x) = lign(x) = f(1) = 0 = continuous at 0 = f continuous over R.

x—-1 x—-1

f is strictly decreasing over R and f(R) = ]—%; +oo[. So
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1
-1.|_=.
f ] 2,+00[—>R
x+1 .. -1
xof) =2zl Tz <x<0
1-vx ifx=0

4.4 Differentiable functions

4.4.1 Definition and basic properties
Definition 4.15

Let f be a function defined on the neighborhood V., of the point x,. We say that the function f is
differentiable at x, if and only if lim %ﬁx”) =

X—Xg

L, exists. We call L the derivative of f at x,,

and we denote it by. f'(x,).
If f is differentiable in each point of I, then it is called differentiable on I, in this case we define

the derivative function by ’;’C:’f,]fx). The derivative is sometimes written as % or % where y =
f ).
Remarks

f(x0+h)—f(x0) — fl(xo)

1) By putting x — x, = h, the previous limit is written as }lirré -

2) The function f is differentiable at x,, if and only if there exists a function € defined in the
neighborhood V; to the point x, where

Vx € Vy: f() = fxxg) = (f' (x0) + €(x)) (x — x0)s lim £(x) = 0

If lim L9/ Ly ( lim T®)-fo) L, , respectively ), we say that the function £ is
xixo *~*o xixo *~%o

differentiable at x, from the right (from the left, respectively) And we write Ly = f'(x, + 0)
(Lg = f'(xo — 0), respectively ).

Corollary 4.2

A function f is differentiable at x, if and only if f'(xy, — 0) and f'(x, + 0) exist and
fllxg +0) = £ (xo — 0).

Example

Let f be a function defined in R by f(x) = [x? — 1], let us study the differentiability
of f at x, = 1.We have

x2-1 —(x2—1) - 2= f’(l _ 0)

x—1

lim 2927 @ _ i =2=f"(1+0)andlim LT _ jim
> - > x-1 < x—1 <

x
x—-1 x—-1 x—-1 x—1
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f is differentiable at x, = 1 from the right and from the left, but it is not differentiable at x, = 1
because f'(1+ 0) # f'(1 —0).

Geometric interpretation

The derivative of the function f at x, is the slope of the line tangent to the graph
of f at the point M (x,, f(xy)). Thus, the equation of this tangent line is

y = f"(xo) (x — x0) + f (o).

The left and right derivatives are also interpreted by the half-tangents to the left and right of the
point Mg (xo, f(x()).

Theorem 4.16
If f is differentiable at x,, then f is continuous at x.
Proof

Let f be differentiable at x, then there is a neighborhood V,., where

Vx € Vy i f(x) — fx) = (f’(xo) + e(x))(x — x,) and xll)rgl;l e(x) = 0.So
lerJ? (f(x) - f(xo)) = ler)rcl (f’(xo) + e(x))(x —x,) =0 So f is continuous at x,.

4.4.2 Higher order derivative

Let f be a function differentiable on the interval I. If f' differentiable on the interval I, then we
denote its derivative by "' and is called the second derivative. In the same way, we define the
successive derivatives of the function f as follows:

vn € N: f+D(x) = (f(n)(x)), and f©@(x) = f(x),

Where £ symbolizes the nth order derivative of the function f, sometimes we denote f™ by
zan: or y™, where y = f(x).

Exercise
Prove that:

. (N)H — n it ) _ (=D)"n!
1)vneN: cos x—cos(x+;n). 2)Vn e N: [;] ==

Definition 4.16
Let f be a function defined on the interval 1.

We say that f is of a class C™ if it is differentiable to order n and the derivative f™ is continuous
over I. We denote the set of functions of class C™ on I by .C™(I).
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By definition we have: C°(I) = C(1).
The set of infinitely differentiable functions on the interval I, symbolizes it by C*(I).
4.4.3 Operations on differentiable functions

Theorem 4.17
Let u and v be differentiable functions on the interval I, then the functions u + v, au ,u. v %

(v # 0) are differentiable over I and we have:
(u+v) =u +7v ,  (au) =au’

w\ u'v—uv . . )
(—) =— , (uv) = u'v +uv'.

v v

Proof ( Let us prove the last case )

Let xo € [ we have

ulx)—u(xo) v(x)-v(xo)
207500 _ uvrg)-uov() _ _mxg P FOTUEO TGS

X—Xo v(x)v(x0) (x—x0) v(x)v(xo)

- v (xo) ; u(x) — u(x,) and

When x — x, then u(x)—u(xo) N u’(xo) ; v(g:v(xo)

(x—x0) Xo)

Z(x)~=(x0) ' - '
U(.X') SN U(XO). So 2 X v X0 N u (x)v(xg)—ulxo)v (xg)

X—Xg (v(xo))Z

Theorem 4.18 (Leibniz formula)

If u and v admit nth order derivatives on the interval I then the function u. v admits an nth order
derivative on the interval I and we have:

n
vn € N: (w.v)™ = Z cPum—Pyp®),
p=0

Proof
We use proof by induction and by noting that: vn,p e N(1<p<n-—1):C° = CP_ + ¢’}
Theorem 4.19

Let u and v be functions where u is differentiable on the interval I and v is differentiable on the
interval u (1), then the function v o u is differentiable on the interval I and (veou)' =v' ocu.u'.

Proof

Let x, € I since u is differentiable at x, and v is differentiable at y, = u(x,), Then
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u() = uxo) = (' (%) + & () (x = xp) with lim &) = 0
and

v() = v(0) = (v'(00) + &) — o) with lim &,(y) = 0.
Fory = u(x) then y — yowhen x — x, (since u is continuous at x,) and from there
v(u() = v(ulxo)) = (v' () + &) (' (xo) + £1(x))(x = xo) and
v(uG) - v(uGp) _

X_XO

(v (uxo)) + 200 (W (xo) + & (x))

For x — xytheny — y,, &(x) - 0 and &,(y) - 0.So

v(u(x)) — v(ulxy))

x_xo

- v’(u(xo)).u’(xo).

Examples
1) Let the function f defined on R, by f(x) = cos(3vx + x2).

u(x) = 3vx + x2 u'(x) =3Vx + le

, We have {
v(x) = cosx v'(x) = cosx

Putting f = v o u where {

So

f) = ow)(x).u'(x) = —sin(3Vx + x?2) (ZBW + Zx)

S (23—& + 2x> sin(vx + x2).

2) Let the function g defined by g(x) = In (sin %)

. u(x) = sin=L , 1
Putting g = v o u where 2x-3 , we have v'(x) = =
v(x) =Inx x
So
! — ! ! — 1 !
g' ()= ow(x).u'(x) = X+l ¢ (x).
sin5——
x+1 12 5
= u(x) =——
Next putting u = v, o u; where { (%) 2x-3  we have 1(%) (2x-3)% |
v;(x) = sinx v1(x) = cosx

So
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u' (x)(x) = (vy e uy)(x).uj(x) = cosm X ( ;)

2x—3 ~\ (2x — 3)2
So
') = 1 x+1 x( 5 )_ 5 ) x+1
g X ENEES 0S5 —3 (2x—3)2) = " (2x—3)2°""8 5 3
2x — 3

Theorem 4.20

If £ is a strictly monotonic continuous function on the interval I, and differentiable at x, in I where
f'(xo) # 0, then the inverse function f~1 is differentiable at y, = f(x,). And we have:

1 1

U000 = 5oy = FIFo0T

Proof
Let f is differentiable at x, in I where f'(x,) # 0, and let y, be a point in f(I) where

Yo = f(x,). For every y of f(I) there is a single real number x of I where y = f(x), since f is
continuous and strictly monotonic on I, then £~ is continuous and strictly monotonic on f (1)
(according to the Theorem 4.15), so Vy € f(I):y # y, = x # xy.and for y — y,, then x - x,.

Putting g = f~" then y, = f(xo) © xo = g(yo) and y = f(x) © x = g(y). So

9 —gle) . x—xy 1 1
lim ————— = lim = lim 5—=—-=—7—.
y=yo YV —Yo yove Yy — Yo x—xe Y "Yo  f'(xg)
X — X
Examples
1) Let Fil0i+ >R The fynction f is continuous and strictly increasing on the interval I = [0; +oo],

x-f(x)=xm"
and from it, f accepts an inverse function f~1 defined, continuous and strictly increasing on the

interval £(I) = [0; +oo[, denoted by " 3/. "or" (. )% " is called nth-root function.

Since: Vx € ]0, +oo[: (x™)" = nx™"1 # 0, Then the function f~1 is differentiable at every number
y where y = x™ (i.e. f~1 is differentiable on the interval ]0,+oo[ ) and we have:

1 1 1 1

1 =1
FG)  nxr i n ((y)%>n_1 "

F D=

After changing x with y we get:

Vx € ]0, +ool: ('{/E)’ = (x%>’ = %x%_l.
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2) Let ] The function h is continuous and strictly increasing on the interval I =

—>h(x) tan
]—— —[ and from it, h accepts an inverse function h~* defined, continuous and strictly i mcreasmg
on the interval h(I) = R, denoted by " arctan". Since: Vx € ]—— —[ h'(x) = (tanx)’ = =

0. Then the function h~1 is differentiable at every number y where y = tan x ( i.e. h71is
1

1 —
differentiable on R ) and we have: (h™1)'(y) = x) = cos’x = rET— 1+y2.
After changing x with y we get:

Vx € R: (arct ) = !
X .arctan x) = 1+ xz.

Theorem 4.21
If the function f has an extremum at point x, and is differentiable at x, then f'(x,) = 0.
Proof

The existence of f’(x,) entails the existence and equality of f'(x, + 0) and f’(x, — 0). Assume
that f (x,) is a maximum, then exists a neighbourhood V, of the point x, wherevx € V, :

fx) < f(xp).Soif x > x, then L&) < and if x < Xq then L8=&0) 5 g g4

X—Xo X—Xo

f(xo)—f(x0+0)_l M>0and

x—>x0

f,('xo) = f’(xo — 0) = lim MS 0.
xixo X—%g

This implies that f'(x,) = 0
4.4.4 Mean value theorem
4.4.4.1 Rolle's Theorem
Theorem 4 22

If a function f [a,b] — R is continuous on the closed interval [a, b] and differentiable on the
open interval Ja, b[ and f(a) = f(b), then there exists a point ¢ in ]a, b[ such that f'(c) = 0.

Proof

Since the function £ is continuous on [a, b], there exist a points x,, and xy; in [a, b] where f take
their minimum and maximum values respectively.

If f(x,) = f(xm) then the function f is constant on [a, b] so in this case we have: Vx €

la;b[: f'(x) = 0.
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If f(xy) < f(xym) thensince f(a) = f(b) one of the two points x,, and xy; belongs to the open
interval ]a, b[. We denote it by c. According to the theorem 4.21 we obtain f'(c) = 0.

4.4.4.1 Mean value theorem
Theorem 4 23 (Lagrange’s theorem)

If a function f [a,b] — R is continuous on the closed interval [a, b] and differentiable on the
open interval Ja, b[, then there exists a point ¢ €]a, b[ such that f(b) — f(a) = f'(c)(b — a).

Proof

It suffices to verify that the function g, defined on the interval [a, b] by g(x) = f(x) —

%x, satisfies the conditions of Theorem 4.22. Then there is at least one number c in the
interval ]a, b[which satisfies g'(c) = 0 therefore f'(c) = %.

Remark

This theorem is used in approximate calculations and in proving many inequalities.
Example

Using the mean value theorem, prove that: Vx = 0: ﬁ <In(x+1)<x.

Answer

By applying the mean value theorem to the function f(x) = In(x + 1) on the interval [9‘,5]
a b
where x > 0, we get:

VxZO:ln(x+1)—@g:f’(c)<£—g> , 94<c<3cﬂ.
f(b) f(a) b a a b
So
| =1 = , O0<c<ux.
n(x+1)=f"(c)x T3¢ X c<x
We have
1 1 X 1
D<c<<xy =>—< <l= < x<x
1+x 1+c 1+x 1+4c¢c
We obtain

X
>0 :—< < x.
Vx =0 1_I_x_ln(x+1)_x

0.02

For example if x = 0.02 then 0.0196 < Toz = In(1.02) < 0.02.
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4.4.4.3 Generalized mean value theorem
Theorem 4 24 (Cauchy's theorem)

If a functions f, g [a,b] — R are continuous on the closed interval [a, b] and differentiable on
the open interval ]a, b[, and g’ is non-zero in the interval ]a, b[ then there exists a point ¢ €]a, b
f)-f@ _ ')
h th = :
such that gb)-g@) g’

Proof

We have (Vx € |la; b[: g'(x) # 0) = (g(b) * g(a)) so it is suffices to verify that the function
f)-f(a)
a-g@9
theorem 4.22. Then there is at least one number c in the interval ]a, b[ which satisfies ¢'(c) = 0
£'© _ f)-f(a)

g'(©) b-a

@, defined on the interval [a, b] by @(x) = f(x) — (x), satisfies the conditions of

therefore

Theorem 4 25 (Hospital Rule)

Let f and g be a continuous functions on a neighbourhood ¥, of the point a and differentiable on
V — {a} then:

If the lim ~ i exists, then the lim £82=(@ qyists also and lim 2% = Jim £&/(@

x—>ag'(x x—a g(x)—g(a) x>ag'(®)  x-oagx)-gla)

£ _ i L2

In particular if f(a) = g(a) = 0 we have lim ‘7°= = lim ~~=.

Proof

f' () Y

xsag' ()

If x > a (If x < a, respectively ) by applying the theorem 4 24 on the interval [a, x] (on the
interval [x, a] respectively ) we get:

fx)=f(@) f'(c)
gx)—ga)  g'()

(0 FG)—f(a) 0 £
= - 2~ o,
7o do—g@ oo lim T =lim e =1

where c¢ between a and x.

So (x—»a)=>((—a) ==

Remarks

1) The Hospital Rule remains true if f and g are not defined in a, but have two finite limits.
2) The Hospital Rule can be applied several times in a row.

3) The Hospital Rule can be applied in the following cases:

a) Jli_)rglof(x) =0and ii_r)glog(x) = 0.
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b)) limf(x) = o0 and limg(x) = co.

c)) lim f(x) = oo and lim g(x) = oo.

Examples

. x+3-2 0
1) lim === (1LF ).

x-1 x-1 0

1
limvx+3_2— 2vx+3 _1
-1 x-—1 x-1 1

. eX*—x—1 0
2) }cli% — (LF 5 ).

y e*—x—1 y e*—1 y e*

im———— = lim =lim— ==

x—0 x2 x-0 2Xx x-0 2 2
. e*+x? 0

3) x1—1>r-|¥loo x3-x+1 (LF o )-

. X+ x? . X+2 . *+1 . x
lim —* = lim <22 = lime*£ 2 = lim < = +oo.
X400 x3-x+1 x—400 3x2-1 x—+00 6X x—+c 6

. 2x? -1
4) lim ==In==(1.F ©.0)

x—+00 X+3 xX+2

. 2x%, x—1 . 2X 4. lnz—;;

lim —In=—= lim — lim —*=

x—+o0 X+3  x+2 x—>+00 X+3 x—>+o00 x

.o 0
Calculate lim —*2(LF-).
X—+ 00 ; 0

lnx—_1 (lnx — 1), >
lim —XT2 _ x+2) _ oy XFDE-D
X—+00 l x—+00 1\ X—+00 _i
x 5) x?
So lim Z2In*t = 2 x (=3) = —6.
x—+0o0 X+3 xX+2
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Chapter Five: Elementary functions
5.1 Inverse Trigonometric functions
5.1.1 Arcsine Function
Definition 5.1

The function f defined in the interval [ = —%;g] by f(x) = sin x, is continuous and strictly

increasing in the interval I, it accepts an inverse function f 1 that is defined, continuous and

strictly increasing on the interval f(I) = [—1; 1]. We denote the function f~ by "arcsin" or

"sin™1". And we have Vx € [—g,g] ;Vy € [—-1;1] : y = sinx & x = arcsiny.

Derived Function
We have Vx € —g;g[:f’(x) = (sinx)’ = cosx # 0.

According to the Theorem 4.20 then, the function " arcsin " is differentiable at every number y
where y = sin x (i.e. on the interval |—1; 1[ ) and we have:

[F )] =

1
f'(x)
1
N COS X

1 Since cos?x + sin?x = 1, and
V1 — sin?x

xe]—%;%[ﬁcosx>0

1-— yzl
After changing x with y we get:

1
I-x2

Vx € |[-1;1[ : (arcsin x)’ =

5.1.2 Arccosine Function
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Definition 5.2

The function g defined in the interval I = [0; ] by g(x) = cosx, is continuous and strictly
decreasing in the interval I, it accepts an inverse function g~! that is defined, continuous and
strictly decreasing on the interval g(I) = [—1; 1]. We denote the function g~ by "arccos" or

"cos~1". And we have Vx € [0;];Vy € [-1;1] : y = cosx & x = arccosy.

Derived Function
We have Vx € ]0;[: g'(x) = (cosx)' = —sinx # 0.

Then the function " arccos " is differentiable at every number y where y = cos x ( i.e. on the
interval |—1; 1[ ) and we have:

1
97O =
1
—sinx
B 1 <Since cos?x +sinx =1, and)
—1 —sinZx x €]0;n[ = sinx >0
B 1
= T—yz
After changing x with y we get:
Vx € ]—1;1[ : (arccos x)' = _—1
i-x2
5.1.3 Arctangent Function
Definition 5.3
The function h defined in the interval I = ]—g;g[by h(x) = tan x, is continuous and strictly

increasing in the interval I, it accepts an inverse function h™! that is defined, continuous and

strictly increasing on the interval h(I) = R. We denote the function h~! by " arctan " or "tan™1".
And we have Vx € ]—g;g[;Vy ER:y=tanx & x = arctany.

Derived function

We have Vx € ]—g;g[:h’(x) = (tanx)' = L

cos? x

Then, the function " arctan " is differentiable at every number y where y = tanx (i.e.on R) and
we have:
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1
g'(x)

[~ )] =

= cos? x
1
1+ tan? x
1
1+y?

After changing x with y we get:

1

Vx € R: (arctanx)’ = :
( ) 1+ x2

5.1.4 Arccotangent Function
Definition 5.4

The function k defined in the interval I = ]0; r[ by k(x) = cotan x, is continuous and strictly
decreasing in the interval I, it accepts an inverse function k~* that is defined, continuous and
strictly decreasing on the interval k(I) = R. We denote the function k! by " arccotan " or

" cotan™! ". And we have Vx € |0;[;Vy € R : y = cotan x & x = arccotan y.

Derived function

Similarly we have

1
14+ x%

Vx € R : (arccotanx)’ = —

Properties

1) Vx € [—1;1] : arcsinx + arccos x = g
2) Vx € [-1;1] : sin(arccos x) = V1 — x2.
3) Vx € [-1;1] : cos(arcsinx) = V1 — x2.
4)Vx € R: arctanx + arc cotan x = g

5)Vx > 0 : arctan x + arctan% = g

6) Vx < 0 : arctan x + arctani = —g.

Proof

1) We put Vx € [—1; 1]: f(x) = arcsin x + arccos x.
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We have Vx € |-1;1[: f'(x) = ;2 — ;2 = 0. So the function f is constant in the interval
Vi1-x v;—x
[-1;1].Sovx € [-1;1]: f(x) = f(0) ==

2"

2) We have Vx € [—1;1] : arcsinx x € [—f»ﬂ = cos(arcsin x) = 0. So

Vx € [—1;1]:cos(arcsinx) = \[1 — (sin (arc sinx))2 =1 - x2.

6) We put Vx < 0: f(x) = arctanx + arctani. We have

Vx<0:f'(x)= 1+1x2 — x—121+(11)2 = 0. So the function f is constant in the interval ]—o0; 0[. So

Vx €]-0;0[: f(x) = f(-1) = =" =—7.

Remark

The properties of inverse trigonometric functions are deduced from the properties of trigonometric
functions. For example, property 1 is deduced from the property: sin (g - a) = cos a, which we
will explain later.

We have = — a € [—E;E] o a € [0,m].
2 272
By putting cos @ = x we get a = arccos x and we have

. n . n
sm(——a)= cosa(:)sm(——a)=x

2 2
n .
© - —a=arcsinx
2
s

C)E— arccosx = arcsinx

& — =arccosx + arcsin x.

N

5.2 Hyperbolic functions and their inverses
5.2.1 Hyperbolic functions

Definition 5.5 The hyperbolic sine function, which we denote by “sh,” is defined as
X _ =X
Vx € Rishx = 5

Definition 5.6 The hyperbolic cosine function, which we denote by “ch,” is defined as

eX+e™*

Vx € Richx = 5
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Definition 5.7 The hyperbolic tangent function, which we denote by “th,” is defined as

shx e*—e™*

Vx € R:ithx = =
chx e*X+e™~

Definition 5.8 The hyperbolic cotangent function, which we denote by “th,” is defined as

chx e*+e™*

Vx € R*:coth x = =
shx e¥—e™X

Properties
Forall x,y € Rwe have:

1)sh(—x) = —shx ¢« ch(—x) = chx.

1

ch2x

2)1—th?x = «ch?x — sh?x = 1.
3) ch(x +y) = chxchy+ shx shy.

4)sh(x +y) =chxshy+shxchy.

5) th(x +y) = —fft’;;tfhyy.
6) (shx) =chx ,(chx) =shx, (thx) = L (cothx) = — L

ch2x ’ sh2x '

5.2.2 Inverses Hyperbolic functions

Definition 5.9

The function f defined in the interval I = [0; +oo[ by f(x) = chx, is continuous and strictly
increasing in the interval I, it accepts an inverse function f ! that is defined, continuous and
strictly increasing on the interval f(I) = [1; +oo[. We denote the function f ! by " arg ch " or
"ch~1".And we have:

e*+e™™*
2
S e —2ye*+1=0.

x=1n<y+\/;>

(
‘:’ix:m(y_ so)

<:>x=ln<y— y2—1>(becauseln(y— yz—l)SO).

Vx> 0;Vy>1:y=chx S chx =

After changing x with y we get:
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Vx> 1:argchx =In(x +x? —1).

Derived Function: Vx € ]1; +oo[ : (argchx)’ = \/%

Definition 5.10

The function g defined in the interval I = R by g(x) = sh x, is continuous and strictly increasing
in the interval I, it accepts an inverse function g~! that is defined, continuous and strictly
increasing on the interval f(I) = R. We denote the function g~! by " arg sh " or "sh™1 ". And we
have:

Vx € R:argshx =In(x ++/x%2 +1).

Derived function

1
Vx € R: (argshx) = ———.
VxZ+1
Definition 5.11

The function h defined in the interval I = R by h(x) = thx, is continuous and strictly increasing
in the interval I, it accepts an inverse function h~! that is defined, continuous and strictly
increasing on the interval h(I) = ]—1; 1[. We denote the function h™ by "argth "or " th™1 ".
And we have:

1. 14+x

VxE]—l;l[:argthx=§ln1_x.

Derived function

vx € ]-1;1[: (argthx)' = T
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