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Chapter Four: Real functions with real variable 

4.1 Generalities 

Definition 4.1 

We call a real function of a real variable every application 𝑓 of a subset 𝐷 of ℝ on set ℝ. 

𝐷 is called the domain of definition for 𝑓. 

We call the graph of the function 𝑓 the subset of ℝ2 which we denote by Γ𝑓, and defined as follows 

Γ𝑓 = {(𝑥; 𝑦) ∈ ℝ
2; 𝑥 ∈ 𝐷 ∧ 𝑦 = 𝑓(𝑥)} or  Γ𝑓 = {(𝑥; 𝑓(𝑥)); 𝑥 ∈ 𝐷}. 

The image of the domain D by 𝑓 is denoted by 𝑓(𝐷) where: 𝑓(𝐷) = {𝑦 ∈ ℝ; ∃𝑥 ∈ 𝐷: 𝑦 = 𝑓(𝑥)}. 

Definition 4.2 

Let 𝑓:𝐷 → ℝ be a function. We say that the function 𝑓 is bounded from above (bounded from 

below, respectively) if, and only if, the set 𝑓(𝐷) is bounded from above ( from below, 

respectively). So 

( 𝑓 is bounded from above) ⇔  ( ∃𝑀 ∈  ℝ; ∀𝑥 ∈ 𝐷: 𝑓(𝑥) ≤ 𝑀 ), 

( 𝑓 is bounded from below)  ⇔  ( ∃𝑚 ∈  ℝ; ∀𝑥 ∈ 𝐷: 𝑓(𝑥) ≥ 𝑚 ) 

We say that the function 𝑓 is bounded if, and only if, it is bounded from above and from below. So 

( 𝑓 is bounded) ⇔ ( ∃𝑀 ∈  ℝ+
∗ ;  ∀𝑥 ∈ 𝐷: |𝑓(𝑥)| ≤ 𝑀 ). 

Remark 4.1 

If the function 𝑓 is bounded on 𝐷, then the part 𝑓(𝐷) is bounded on ℝ. It accepts an upper bound 

and a lower bound, which we denote by 𝑆𝑢𝑝𝐷  𝑓 and 𝐼𝑛𝑓𝐷  𝑓 respectively. 

 Definition 4.3  Let 𝑓:𝐷 → ℝ be a function. 

We say that 𝑓 is increasing over 𝐷 (strictly increasing, respectively) if and only if 

∀𝑥; 𝑦 ∈ 𝐷: 𝑥 < 𝑦 ⟹ 𝑓(𝑥) ≤ 𝑓(𝑦) (∀𝑥; 𝑦 ∈ 𝐷: 𝑥 < 𝑦 ⟹ 𝑓(𝑥) < 𝑓(𝑦), respectively). 

We say that 𝑓 is decreasing over 𝐷 (strictly decreasing, respectively) if and only if 

∀𝑥; 𝑦 ∈ 𝐷: 𝑥 < 𝑦 ⟹ 𝑓(𝑥) ≥ 𝑓(𝑦) ( ∀𝑥; 𝑦 ∈ 𝐷: 𝑥 < 𝑦 ⟹ 𝑓(𝑥) > 𝑓(𝑦), respectively). 

We say that 𝑓 is constant over 𝐷 if and only if ∀𝑥; 𝑦 ∈ 𝐷: 𝑥 ≠ 𝑦 ⟹ 𝑓(𝑥) = 𝑓(𝑦). 

Definition 4.4  Let 𝑓: 𝐷 → ℝ be a function. 

We say that 𝑓 have a local maximum (local minimum, respectively) at point 𝑥0 of D if: 

∃𝛼 ∈ ℝ+
∗ ; ∀𝑥 ∈ 𝐷: |𝑥 − 𝑥0| < 𝛼 ⟹ 𝑓(𝑥) ≤ 𝑓(𝑥0) (𝑓(𝑥) ≥ 𝑓(𝑥0), respectively). 
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And if ∀𝑥 ∈ 𝐷: 𝑓(𝑥) ≤ 𝑓(𝑥0) (𝑓(𝑥) ≥ 𝑓(𝑥0), respectively) we say that 𝑓 have an absolute 

maximum (absolute minimum, respectively) at 𝑥0. 

4.2 limit of a function 

4.2.1 Finite limit 

Definition 4.5 ( neighbourhood ) 

A subset of ℝ is called the neighbourhood of a point 𝑥0 ∈ ℝ if it contain an open interval that  

include 𝑥0. And we symbolize it by V𝑥0. 

Definition 4.6 ( Finite limit ) 

Let 𝑓 be a function, defined on a neighbourhood V𝑥0  of point 𝑥0, with the possible exception of 

point 𝑥0. 

We say that the function 𝑓 has a limit ℓ(ℓ ∈ ℝ) at point 𝑥0 if, and only if,  

∀ε > 0 ; ∃δ > 0;∀𝑥 ∈ V𝑥0: 0 < |𝑥 − 𝑥0| < 𝛿 ⟹ |𝑓(𝑥) − ℓ| < 𝜀, and we write lim
𝑥→𝑥0

𝑓(𝑥) = ℓ. 

Remark 

We say that 𝑓 does not accept the number ℓ as a limit at 𝑥0 if and only if 

∃ε > 0 ; ∀δ > 0; ∃𝑥 ∈ V𝑥0: 0 < |𝑥 − 𝑥0| < 𝛿 و  |𝑓(𝑥) − ℓ| ≥ 𝜀. 

proposition 4.1 

If lim
𝑥→𝑥0

𝑓(𝑥) = ℓ ≠ 0, then there exists a domain of the form]𝑥0 − α, 𝑥0[ ∪ ]𝑥0, 𝑥0 + α[, with α >

0, such that 𝑓(𝑥) has the same sign as ℓ. 

Proof 

For 𝜀 = |ℓ|, then ∃α > 0;∀𝑥 ∈ V𝑥0: 0 < |𝑥 − 𝑥0| < α ⇒ |𝑓(𝑥) − ℓ| < |ℓ| from him 

𝑥 ∈ ]𝑥0 − α, 𝑥0[ ∪ ]𝑥0, 𝑥0 + α[ ⇒ {
2ℓ < 𝑓(𝑥) < 0 ;  ℓ < 0

0 < 𝑓(𝑥) < 2ℓ ;  ℓ > 0
 

                                                        ⇒ 𝑓(𝑥) has the same sign as ℓ. 

Examples 

1) Let 𝑓: 𝑥 → 5𝑥 − 7 Be a function , using the definition prove that: lim
𝑥→2

𝑓(𝑥) = 3. 

Since 𝑓 is defined on ℝ, we can take V2 = ℝ.( V2 is a neighbourhood of point 2 ) 

 Let 𝜀 ∈ ℝ+
∗ , we have ∀𝑥 ∈ ℝ: 

|𝑓(𝑥) − 3| < 𝜀 ⟺ |5𝑥 − 7 − 3| < 𝜀 
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⟺ |𝑥 − 2| <
𝜀

5
 

So it is enough to take 𝛿 =
𝜀

5
 to achieve the following: 

      ∀𝜀 > 0; ∃𝛿 > 0;∀𝑥 ∈ ℝ ∶ 0 < |𝑥 − 2| < 𝛿 ⟹ |𝑓(𝑥) − 3| < 𝜀. 

2) Let 𝑓: 𝑥 → 𝑥 →
1

𝑥+1
 Be a function , using the definition prove that: lim

𝑥→1
𝑓(𝑥) =

1

2
.. 

Since 𝑓 is defined on ℝ− {1}, we can take V1 = [0;+∞[ ( V1 is a neighbourhood of point 2 ) 

 Let 𝜀 ∈ ℝ+
∗ , we have 

      ∀𝑥 ∈ V1: |𝑓(𝑥) −
1

2
| = |

1

𝑥+1
−
1

2
| =

|𝑥−1|

2|𝑥+1|
<

|𝑥−1|

2
. 

Therefore, it suffices to take  
|𝑥−1|

2
< 𝜀 to be |𝑓(𝑥) −

1

2
| < 𝜀, from which 

   |
𝑥−1

2
| < 𝜀 ⟺ |𝑥 − 1| < 2𝜀. So it is enough to take 𝛿 = 2𝜀 to achieve the following: 

   ∀𝜀 > 0; ∃𝛿 > 0;∀𝑥 ∈ V1:   0 < |𝑥 − 1| < 𝛿 ⟹ |𝑓(𝑥) −
1

2
| < 𝜀. 

Definition 4 6 

Let 𝑓 be a function defined in the interval V𝑥0 = ]𝑥0, b[, we say that 𝑓 have the limit ℓ from the 

right at 𝑥0 if and only if  

        ∀𝜀 > 0; ∃𝛿 > 0;∀𝑥 ∈ V𝑥0:    0 < 𝑥 − 𝑥0 < 𝛿 ⟹ |𝑓(𝑥) − ℓ| < 𝜀. 

we write lim
𝑥
>
→𝑥0

𝑓(𝑥) = ℓ or lim
𝑥→𝑥0

+
𝑓(𝑥) = ℓ. 

Let 𝑓 be a function defined in the interval V𝑥0 = ]𝑎, 𝑥0[, we say that 𝑓 have the limit ℓ from the 

left at 𝑥0 if and only if  

        ∀𝜀 > 0; ∃𝛿 > 0;∀𝑥 ∈ V𝑥0 :   − 𝛿 < 𝑥 − 𝑥0 < 0 ⟹ |𝑓(𝑥) − ℓ| < 𝜀. 

we write lim
𝑥
<
→𝑥0

𝑓(𝑥) = ℓ or lim
𝑥→𝑥0

−
𝑓(𝑥) = ℓ. 

Proposition 4.2 

The limit at a point of a function exists if and only if the left limit and the right limit exist and are 

equal. 

Example 

Let the function 𝑓 defined on ℝ by 𝑓(𝑥) = {
3𝑥 − 1    𝑖𝑓   𝑥 ≤ 1
6

𝑥+2
         𝑖𝑓    𝑥 > 1

. 
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Prove that: lim
𝑥
>
→1

𝑓(𝑥) = 2 and lim
𝑥
<
→1

𝑓(𝑥) = 2 what do you conclude. 

1) Let V1 = ]−∞;1] and 𝜀 ∈ ℝ+
∗ , we have 

∀𝑥 ∈ V1:  |𝑓(𝑥) − 2| < 𝜀 ⟺ |3𝑥 − 3| < 𝜀 

                               |3𝑥 − 3| < 𝜀 ⟺ 0 < |𝑥 − 1| <
𝜀

3
 

                                       ⟺ 0 < −𝑥 + 1 <
𝜀

3
 

                                       ⟺ −
𝜀

3
< 𝑥 − 1 < 0 

It is enough to take 𝛿 =
𝜀

3
 to achieve the following: 

∀ε > 0; ∃𝛿 > 0;∀𝑥 ∈ V1:  0 < 1 − 𝑥 < 𝛿 ⟹ |𝑓(𝑥) − 2| < 𝜀 

   Let V1 = [1;+∞[and 𝜀 ∈ ℝ+
∗ , we have 

∀𝑥 ∈ V1:  |𝑓(𝑥) − 2| =
2|𝑥 − 1|

𝑥 + 2
<
2

3
|𝑥 − 1|     

So 

2

3
|𝑥 − 1| < 𝜀 ⟺ |𝑥 − 1| <

3

2
𝜀 ⟺ 0 < 𝑥 − 1 <

3

2
𝜀 

It is enough to take 𝛿 =
3𝜀

2
 to achieve the following: 

∀ε > 0; ∃𝛿 > 0;∀𝑥 ∈ V1:  0 < 𝑥 − 1 < 𝛿 ⟹ |𝑓(𝑥) − 2| < 𝜀 

Conclusion: Since lim
𝑥→1−

𝑓(𝑥) = lim
𝑥→1+

𝑓(𝑥) =2 𝑓 accepts a limit at 1, which is 2. 

Theorem 4.1 

If a function 𝑓 accepts a limit at 𝑥0, then this limit is unique. 

Proof 

Let 𝑓 accept two different limits ℓ and ℓ′ where ℓ > ℓ′. 

for 𝜀 =
ℓ−ℓ′

2
 ; ∃𝛿1, 𝛿2 > 0; ∀𝑥 ∈ V𝑥0: 

0 < |𝑥 − 𝑥0| < 𝛿1 ⟹ |𝑓(𝑥) − ℓ| < 𝜀 =
ℓ − ℓ′

2
 

and 

 0 < |𝑥 − 𝑥0| < 𝛿2⟹ |𝑓(𝑥) − ℓ′| < 𝜀 =
ℓ − ℓ′

2
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For 𝛿 = min{𝛿1, 𝛿2} Then ∀𝑥 ∈ V𝑥0: 

0 < |𝑥 − 𝑥0| < 𝛿 ⟹ |ℓ − ℓ′| = |𝑓(𝑥) − ℓ − (𝑓(𝑥) − ℓ′)| 

      ⟹ |ℓ − ℓ′| < 𝜀 + 𝜀 = 2𝜀 

 ⟹ |ℓ − ℓ′| < |ℓ − ℓ′| 

This is a contradiction. So ℓ = ℓ′ 

4.2.2 Limit of a function using sequences 

Theorem 4.2 

Let 𝑓: 𝐷 → ℝ be a function and 𝑥0 ∈ 𝐷. The following two conditions are equivalent. 

1) lim
𝑥→𝑥0

𝑓(𝑥) = ℓ. 

2) For all sequence (𝑥𝑛) where ∀𝑛 ∈ ℕ: 𝑥𝑛 ∈ 𝐷 ∧ 𝑥𝑛 ≠ 𝑥0 then: 

(lim 𝑥𝑛 =
𝑛→+∞

𝑥0) ⟹ ( lim
𝑛→+∞

𝑓(𝑥𝑛) = ℓ) 

Proof 

Necessary condition 

We impose lim
𝑥→𝑥0

𝑓(𝑥) = ℓ and let (𝑥𝑛) sequence where ∀𝑛 ∈ ℕ: 𝑥𝑛 ∈ 𝐷 ∧  𝑥𝑛 ≠ 𝑥0 and lim
n→∞

𝑥𝑛 =

𝑥0.Let us prove that: lim
𝑛→+∞

𝑓(𝑥𝑛) = ℓ. 

For ε > 0 then ∃δ > 0;∀𝑥 ∈ V𝑥0: 0 < |𝑥 − 𝑥0| < 𝛿 ⟹ |𝑓(𝑥) − ℓ| < 𝜀. So 

∃N ∈ ℕ; ∀𝑛 ∈ ℕ: 𝑛 > N ⟹ |𝑥𝑛 − 𝑥0| < δ ⟹ |𝑓(𝑥𝑛) − ℓ| < 𝜀. 

So ∀ε > 0; ∃N ∈ ℕ; ∀𝑛 ∈ ℕ: 𝑛 > N ⟹ |𝑓(𝑥𝑛) − ℓ| < 𝜀.So lim
𝑛→+∞

𝑓(𝑥𝑛) = ℓ. 

Sufficient condition 

We now assume that for every sequence (𝑥𝑛) where ∀𝑛 ∈ ℕ: 𝑥𝑛 ∈ 𝐷 ∧ x𝑛 ≠ 𝑥0 then (lim
𝑛→+∞

𝑥𝑛 =

𝑥0) ⟹ ( lim
𝑛→+∞

𝑓(𝑥𝑛) = ℓ). 

Let us prove by contradiction that lim
𝑥→𝑥0

𝑓(𝑥) = ℓ. 

Assume that lim
𝑥→𝑥0

𝑓(𝑥) ≠ ℓ, that is ∃ε > 0; ∀δ > 0; ∃𝑥 ∈ V𝑥0: 0 < |𝑥 − 𝑥0| < 𝛿  and  

|𝑓(𝑥) − ℓ| ≥ 𝜀. 

For 𝛿 =
1

𝑛
 then ∀𝑛 ∈ ℕ∗; ∃ 𝑥𝑛 ≠ 𝑥0 and 𝑥𝑛 ∈ V𝑥0:  |𝑥𝑛 − 𝑥0| <

1

𝑛
 and |𝑓(𝑥𝑛) − ℓ| ≥ 𝜀. 

So  lim
𝑛→+∞

𝑥𝑛 = 𝑥0 and lim
𝑛→+∞

𝑓(𝑥𝑛) ≠ ℓ ( this is a contradiction ). 
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Remark 

To prove that a function 𝑓 has no limit at 𝑥0, it is enough to find two sequences (𝑥𝑛) and (𝑥′𝑛) that 

converge towards 𝑥0 but lim
𝑛→∞

𝑓(𝑥′𝑛) ≠ lim
𝑛→∞

𝑓(𝑥𝑛) Or we are looking for a sequence (𝑥𝑛) that 

converges toward 𝑥0 but the sequence (𝑓(𝑥𝑛))𝑛∈ℕ diverges. 

Example 

Prove that the function 𝑓: 𝑥 → cos
1

𝑥
 does not accept a limit at 0. 

Let the sequences (𝑥𝑛) and (𝑥′𝑛) where ∀𝑛 ∈ ℕ∗: 𝑥𝑛 =
1

2𝜋𝑛+
𝜋

2

،   𝑥′𝑛 =
1

2𝜋𝑛+𝜋
. So 

∀𝑛 ∈ ℕ∗: 𝑓(𝑥′
𝑛
) = −1 ;   𝑓(𝑥𝑛) = 0. We have lim

𝑛→∞
𝑥𝑛 = lim

𝑛→∞
𝑥′𝑛 = 0 and lim 𝑓(𝑥′

𝑛
) = −1 ≠

lim 𝑓(𝑥𝑛) = 0. So 𝑓 does not accept a limit at 0. 

4.2.3 Infinite limits 

We say a subset of ℝ is a neighbourhood of +∞ ( −∞, respectively) if it contains an open interval 

of the form ]𝑎, +∞[ ( ]−∞, 𝑏[, respectively) And we symbolize it with V+∞ ( V−∞ , respectively). 

Definitions 

(∀𝜀 > 0; ∃𝐴 > 0;∀𝑥 ∈ 𝑉+∞: 𝑥 > 𝐴 ⟹ |𝑓(𝑥) − ℓ| < 𝜀) ⟺ ( lim
𝑥→+∞

𝑓(𝑥) = ℓ )   

(∀𝜀 > 0; ∃𝐴 > 0;∀𝑥 ∈ 𝑉−∞: 𝑥 < −𝐴 ⟹ |𝑓(𝑥) − ℓ| < 𝜀)⟺ ( lim
𝑥→−∞

𝑓(𝑥) = ℓ) 

(∀𝐴 > 0; ∃𝛿 > 0;∀𝑥 ∈ V𝑥0: |𝑥 − 𝑥0| < 𝛿 ⟹ 𝑓(𝑥) > 𝐴) ⟺ ( lim
𝑥→𝑥0

𝑓(𝑥) = +∞) 

(∀𝐴 > 0; ∃𝛿 > 0;∀𝑥 ∈ V𝑥0: |𝑥 − 𝑥0| < 𝛿 ⟹ 𝑓(𝑥) < −𝐴) ⟺ ( lim
𝑥→𝑥0

𝑓(𝑥) = −∞) 

       (∀𝐴 > 0; ∃𝐵 > 0;∀𝑥 ∈ 𝑉+∞: 𝑥 > 𝐵 ⟹ 𝑓(𝑥) > 𝐴) ⟺ ( lim
𝑥→+∞

𝑓(𝑥) = +∞) 

(∀𝐴 > 0; ∃𝐵 > 0; ∀𝑥 ∈ 𝑉+∞: 𝑥 > 𝐵 ⟹ 𝑓(𝑥) < −𝐴) ⟺ ( lim
𝑥→+∞

𝑓(𝑥) = −∞) 

 (∀𝐴 > 0; ∃𝐵 > 0;∀𝑥 ∈ 𝑉−∞: 𝑥 < −𝐵 ⟹ 𝑓(𝑥) > 𝐴) ⟺ ( lim
𝑥→−∞

𝑓(𝑥) = +∞)   

(∀𝐴 > 0; ∃𝐵 > 0; ∀𝑥 ∈ 𝑉−∞: 𝑥 < −𝐵 ⟹ 𝑓(𝑥) < −𝐴) ⟺ ( lim
𝑥→−∞

𝑓(𝑥) = −∞) 

Examples 

1) Prove that lim
𝑥→∞

2𝑥

𝑥−1
= 2. 

The function 𝑥 →
2𝑥

𝑥−1
 is defined on 𝑉+∞ =]1;+∞[, for 𝜀 ∈ ℝ+

∗  we have 

∀𝑥 ∈ 𝑉+∞: |𝑓(𝑥) − 2| < 𝜀 ⇔
2

|𝑥 − 1|
< 𝜀 ⇔

2

𝑥 − 1
< 𝜀 ⟺ 𝑥 >

2

𝜀
+ 1 
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Therefore, it is sufficient to choose 𝐵 =
2

𝜀
+ 1 to obtain: 

∀𝜀 > 0; ∃𝐵 ∈ ℝ+
∗  ; ∀𝑥 ∈ 𝑉+∞: 𝑥 > 𝐵 ⟹ |𝑓(𝑥) − 2| < 𝜀 

2) Prove that lim
𝑥
<
→1

2𝑥

𝑥−1
= −∞. 

Let V1 = ]0; 1[ , for 𝐴 ∈ ℝ+
∗  we have  

∀𝑥 ∈ V1: 𝑓(𝑥) < −𝐴 ⇔ 
2𝑥

𝑥 − 1
< −𝐴 ⇔ 2 +

2

𝑥 − 1
< −𝐴 

⇔ 0 > 𝑥 − 1 >
2

−𝐴 − 2
 

⇔ −
2

𝐴 + 2
< 𝑥 − 1 < 0 

Therefore, it is sufficient to choose 𝛿 =
2

𝐴+2
 to obtain: 

∀𝐴 > 0; ∃𝛿 ∈ ℝ+
∗  ;  ∀𝑥 ∈ V1: 0 < 1 − 𝑥 < 𝛿 ⟹ 𝑓(𝑥) < −𝐴. 

4.2.4 Operation on limits 

Theorem 4.3 

Let 𝑓 and 𝑔 be functions defined on the neighbourhood V𝑥0, with the possible exception of 𝑥0, 

where 

∀𝑥 ∈ V𝑥0: 𝑓(𝑥) < 𝑔(𝑥) (or 𝑓(𝑥) ≤ 𝑔(𝑥) ) 

1) If lim
𝑥→𝑥0

𝑓(𝑥) = ℓ and lim
𝑥→𝑥0

𝑔(𝑥) = ℓ′ then ℓ ≤ ℓ′. 

2) ) If lim
𝑥→𝑥0

𝑓(𝑥) = +∞ then lim
𝑥→𝑥0

𝑔(𝑥) = +∞. 

3) lim
𝑥→𝑥0

𝑔(𝑥) = −∞ then lim
𝑥→𝑥0

𝑓(𝑥) = −∞. 

Let 𝑓,𝑔 and ℎ be functions defined on the neighbourhood V𝑥0, with the possible exception of 𝑥0, 

where ∀𝑥 ∈ V𝑥0: ℎ(𝑥) < 𝑓(𝑥) < 𝑔(𝑥)  (or ℎ(𝑥) ≤ 𝑓(𝑥) ≤ 𝑔(𝑥) ) and lim
𝑥→𝑥0

𝑔(𝑥) = lim
𝑥→𝑥0

ℎ(𝑥) =

ℓ, then lim
𝑥→𝑥0

𝑓(𝑥) = ℓ. 

Proof 

Assume that ∀𝑥 ∈ V𝑥0: 𝑓(𝑥) < 𝑔(𝑥) and  lim
𝑥→𝑥0

𝑓(𝑥) = ℓ , lim
𝑥→𝑥0

𝑔(𝑥) = ℓ′ and suppose that  

ℓ > ℓ′. For ε =
ℓ−ℓʹ

2
 then  
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∃δ1 > 0: 0 < |𝑥 − 𝑥0| < δ1 ⟹ |𝑓(𝑥) − ℓ| < 𝜀 ⟹
ℓ + ℓʹ

2
< 𝑓(𝑥) <

3ℓ − ℓʹ

2
 

∃δ2 > 0: 0 < |𝑥 − 𝑥0| < δ2 ⟹ |𝑔(𝑥) − ℓʹ| < 𝜀 ⟹
3ℓʹ − ℓ

2
< 𝑔(𝑥) <

ℓ + ℓʹ

2
 

Bu taking δ = min{δ1, δ2} then 0 < |𝑥 − 𝑥0| < δ ⟹ 𝑔(𝑥) <
ℓ+ℓʹ

2
< 𝑓(𝑥) this is contradiction the 

hypothesis .∀𝑥 ∈ V𝑥0: 𝑓(𝑥) < 𝑔(𝑥). 

Theorem 4.4 

If 𝑓 and 𝑔 are functions defined in the neighbourhood V𝑥0, with the possible exception of 𝑥0, and 

have the limits  ℓ, ℓ′, at 𝑥0 respectively, then the functions 𝑓 +  𝑔, 𝑓 𝑔, 𝜆𝑓, |𝑓| it has the limits 

ℓ + ℓ′, 𝜆ℓ, ℓℓ′, |ℓ|, at 𝑥0 respectively. And if ℓʹ ≠ 0, then the function 
1

𝑔
 it has the limit 

1

ℓʹ
 at 𝑥0. 

Proof (Let us prove the last case ) 

Assume that lim
𝑥→𝑥0

𝑔(𝑥) = ℓʹ ≠ 0 for ε =
|ℓʹ|

2
, then 

∃δ1 > 0: 0 < |𝑥 − 𝑥0| < δ1 ⟹ |𝑔(𝑥) − ℓʹ| <
|ℓʹ|

2
 

                                                       ⟹ ||𝑔(𝑥)| − |ℓʹ|| <
|ℓʹ|

2
 

                                                         ⟹
|ℓʹ|

2
< |𝑔(𝑥)| <

3|ℓʹ|

2
 

                                          ⟹
1

|𝑔(𝑥)|
<
2

|ℓʹ|
. 

On the other hand we have: 

∀ε > 0 ; ∃δ2 > 0;∀𝑥 ∈ V𝑥0: 0 < |𝑥 − 𝑥0| < δ2 ⟹ |𝑔(𝑥) − ℓʹ| < 𝜀. 

For δ = min{δ1, δ2}, then 

.0 < |𝑥 − 𝑥0| < δ ⟹ |
1

𝑔(𝑥)
−

1

ℓʹ
| = |

ℓʹ−𝑔(𝑥)

ℓʹ𝑔(𝑥)
| <

2|𝑔(𝑥)−ℓʹ|

|ℓʹ|2
<

2𝜀

|ℓʹ|2
= 𝜀′ 

4.2.5 Indeterminate form 

We say that we are in the presence of an indeterminate form. If when 𝑥 → 𝑥0 

1) 𝑓 → +∞ and 𝑔 → −∞ then 𝑓 + 𝑔 →  indeterminate form +∞ −∞. 

2) 𝑓 → ∞ and 𝑔 → 0 then 𝑓. 𝑔 →  indeterminate form ∞. 0. 

3) 𝑓 → ∞ and 𝑔 → ∞ then 
𝑓

𝑔
→  indeterminate form 

∞

∞
. 
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4) 𝑓 → 0 and 𝑔 → 0 then 
𝑓

𝑔
→  indeterminate form 

0

0
. 

5) 𝑓 → 0 and 𝑔 → 0 then 𝑓𝑔 →  indeterminate form 00. 

6) 𝑓 → ∞ and 𝑔 → 0 then 𝑓𝑔 →  indeterminate form ∞0. 

7) 𝑓 → 1 and 𝑔 → ∞ then 𝑓𝑔 →  indeterminate form 1∞. 

Remarks 

1) The indeterminate forms ∞.0, 
∞

∞
 can be reduced to the form 

0

0
. by writing  

𝑓

𝑔
=

1

𝑔
1

𝑓

 in (3) and 

𝑓. 𝑔 =
𝑔
1

𝑓

 in (2)/ 

2) The indeterminate forms 00, ∞0, 1∞ can be reduced to the form ∞.0 by passing the logarithm. 

Exercise 

1) Calculate the limits: lim
𝑥→−1

𝑥2+3𝑥+2

𝑥4+1
. 

2) Using the limit lim
ℎ→0

ln(ℎ+1)

ℎ
, calculate the limits:a) lim

𝑥→∞
𝑥ln

𝑥+1

𝑥−2
 , b) lim

𝑥→∞
(
𝑥+1

𝑥−2
)
𝑥

. 

Solution 

1) lim
𝑥→−1

𝑥2+3𝑥+2

𝑥4+1
= IF 

0

0
. So 

    lim
𝑥→−1

𝑥2+3𝑥+2

𝑥4+1
= lim
𝑥→−1

(𝑥+2)(𝑥+1)

(𝑥3−𝑥2+𝑥−1)(𝑥+1)
= lim

𝑥→−1

(𝑥+2)

(𝑥3−𝑥2+𝑥−1)
= −

1

4
. 

2) a) lim
𝑥→∞

𝑥ln
𝑥+1

𝑥−2
= IF ∞. 0. So 

 Putting 
𝑥+1

𝑥−2
= 1 + ℎ we get ℎ =

−3

𝑥−2
 and for 𝑥 → ∞ then ℎ → 0 therefore   

      lim
𝑥→∞

𝑥ln
𝑥+1

𝑥−2
= lim
𝑥→∞
ℎ→0

𝑥ℎ
ln(1+ℎ)

ℎ
= lim
𝑥→∞
ℎ→0

−3𝑥

𝑥−2

ln(1+ℎ)

ℎ
= −3 × 1 = −3. 

   b) lim
𝑥→∞

(
𝑥+1

𝑥−2
)
𝑥

= IF 1∞. So 

  Putting 𝑓(𝑥) = (
𝑥+1

𝑥−2
)
𝑥

 and passing the logarithm we get 𝑔(𝑥) = ln𝑓(𝑥) = 𝑥ln
𝑥+1

𝑥−2
, according to 

the first question we have lim
𝑥→∞

𝑔(𝑥) = lim
𝑥→∞

𝑥ln
𝑥+1

𝑥−2
= −3. So ln𝑓(𝑥) = −3 and we obtain 

lim
𝑥→∞

𝑓(𝑥) = 𝑒−3. 

4.2.6 Cauchy’s criterion for functions: 

Theorem 4.4 
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A function 𝑓 has a finite limit at 𝑥0 if and only if 

∀ε > 0 ; ∃δ > 0;∀𝑥′, 𝑥′′ ∈ V𝑥0: (0 < |𝑥
′ − 𝑥0| < 𝛿 and 0 < |𝑥

′′ − 𝑥0| < 𝛿) ⟹ 

                                                                                                                                    |𝑓(𝑥′) − 𝑓(𝑥′′)| < 𝜀 

Proof 

Necessary condition 

Assume that lim
𝑥→𝑥0

𝑓(𝑥) = ℓ, then 

   ∀ε > 0 ; ∃δ > 0;∀𝑥′, 𝑥′′ ∈ V𝑥0: (0 < |𝑥
′ − 𝑥0| < 𝛿 and  0 < |𝑥

′′ − 𝑥0| < 𝛿) ⟹ 

                                                                                                                    |𝑓(𝑥′) − ℓ| <
ε

2
𝑓(𝑥′′)|و − ℓ| <

ε

2
. 

So 

|𝑓(𝑥′) − 𝑓(𝑥′′)| = |𝑓(𝑥′) − ℓ − (𝑓(𝑥′′) − ℓ)| ≤ |𝑓(𝑥′) − ℓ| + |(𝑓(𝑥′′) − ℓ)| <
ε

2
+
ε

2
= ε.  

Sufficient condition 

   Assume that ∀ε > 0 ; ∃δ > 0; ∀𝑥′, 𝑥′′ ∈ V𝑥0: 

(0 < |𝑥′ − 𝑥0| < 𝛿 0و < |𝑥
′′ − 𝑥0| < 𝛿) ⟹ |𝑓(𝑥′) − ℓ| <

ε

2
𝑓(𝑥′′)|و − ℓ| <

ε

2
. 

Let (𝑥𝑛) be a sequence of V𝑥0 elements where ∀𝑛 ∈ ℕ: 𝑥𝑛 ≠ 𝑥0 and lim
𝑛→∞

𝑥𝑛 = 𝑥0. 

So for δ > 0, then ∃N0 ∈ ℕ: ∀𝑛 ∈ ℕ; 𝑛 > N0 ⟹ |𝑥𝑛 − 𝑥0| < 𝛿. 

So ∀𝑝, 𝑞 ∈  ℕ: 𝑝 > N0 and 𝑞 > N0 ⟹ 0 < |𝑥𝑝 − 𝑥0| < 𝛿  𝑎𝑛𝑑 0 < |𝑥𝑞 − 𝑥0| < 𝛿 

⟹ |𝑓(𝑥𝑝) − 𝑓(𝑥𝑞)| < 𝜀. 

So (𝑥𝑛) is a Cauchy sequence, and therefore convergent. 

Let us now show that the limit lim
𝑛→∞

𝑓(𝑥𝑛) is independent of the choice of sequence (𝑥𝑛). 

Let (𝑥𝑛) and (𝑥𝑛
′ ) where lim

𝑛→∞
𝑥𝑛
′ = lim

𝑛→∞
𝑥𝑛 = 𝑥0. 

So ∃N ∈ ℕ; ∀𝑛 ∈ ℕ: 𝑛 > 𝑁 ⟹ (0 < |𝑥𝑛 − 𝑥0| < 𝛿 and 0 < |𝑥𝑛
′ − 𝑥0| < 𝛿) 

                                                    ⟹ |𝑓(𝑥𝑛) − 𝑓(𝑥𝑛
′ )| < 𝜀. 

So 

lim
𝑛→∞

(𝑓(𝑥𝑛) − 𝑓(𝑥𝑛
′ )) = 0, 

we obtain 
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lim
𝑛→∞

𝑓(𝑥𝑛) = lim
𝑛→∞

𝑓(𝑥𝑛
′ ). 

4.2.7 Comparison of functions in the neighbourhood of a point - Landau notation 

Let 𝑓 and 𝑔 be a functions defined in the neighbourhood V𝑥0  of the point 𝑥0, with the possible 

exception of 𝑥0 

Definition 4.8 

We say that 𝑓 is negligible in front of 𝑔 when 𝑥 ⟶ 𝑥0, and we write 𝑓 = 𝑜(𝑔), if 

∀𝜀 > 0; ∃𝛿 > 0;∀𝑥 ∈ V𝑥0:    0 < |𝑥 − 𝑥0| < 𝛿 ⟹ |𝑓(𝑥)| ≤ 𝜀|𝑔(𝑥)|. 

Definition 4.9 

We say that f is dominated by g when 𝑥 ⟶ 𝑥0, and we write 𝑓 = 𝑜(𝑔), if 

∃𝑘 > 0; ∃𝛿 > 0;∀𝑥 ∈ V𝑥0:    0 < |𝑥 − 𝑥0| < 𝛿 ⟹ |𝑓(𝑥)| ≤ 𝑘|𝑔(𝑥)|. 

The symbols o and O are called Landau symbols. 

Corollary 4.1 

If 𝑔 is non-zero on V𝑥0 − {𝑥0} then: 

 𝑓 = 𝑜(𝑔) ⇔ lim
𝑥→𝑥0

𝑓(𝑥)

𝑔(𝑥)
= 0. 

 𝑓 = 𝑂(𝑔)⟺ |
𝑓(𝑥)

𝑔(𝑥)
| is bounded in V𝑥0. 

And if 𝑔 = 1, then  

 𝑓 = 𝑜(1) ⇔ lim
𝑥→𝑥0

𝑓(𝑥) = 0 and 𝑓 = 𝑂(1) ⇔ 𝑓 is bounded in V𝑥0. 

Remark  

We obtain a similar definition for 𝑥0 = +∞ and 𝑥0 = −∞. 

Examples 

1) When 𝑥 ⟶ 0 we have. 

 𝑥3 = 𝑜(𝑥2)  ,  𝑥2 cos
1

𝑥
= 𝑂(𝑥2)  ,  (

1

𝑥
)
3

= 𝑜 ((
1

𝑥
)
4

). 

2) When 𝑥 ⟶ +∞ we have 

𝑥2 = 𝑜(𝑥3)  ,  𝑥2 𝑠𝑖𝑛 𝑥 = 𝑂(𝑥2)  ,  (
1

𝑥
)
4

= 𝑜 ((
1

𝑥
)
3

). 

Theorem 4.5 

1) 𝑓 = 𝑔ℎ ⇔ 𝑓 = 𝑜(𝑔) where ℎ = 𝑜(1). 
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2) 𝑓 = 𝑔ℎ ⇔ 𝑓 = 𝑂(𝑔) where ℎ = 𝑂(1). 

Proof  ( Let's prove 1) 

Necessary condition 

Assume that 𝑓 = 𝑜(𝑔). 

We put ℎ(𝑥) = {

𝑓(𝑥)

𝑔(𝑥)
, 𝑔(𝑥) ≠ 0 

   0     , 𝑔(𝑥) = 0
. 

We have 𝑓 = 𝑜(𝑔) ⇔ ∀𝜀 > 0; ∃𝛿 > 0;∀𝑥 ∈ V𝑥0:    0 < |𝑥 − 𝑥0| < 𝛿 ⟹ |𝑓(𝑥)| ≤ 𝜀|𝑔(𝑥)|. 

First: Let us prove that 𝑓 = 𝑔ℎ. 

If 𝑔(𝑥) = 0 then  0 < |𝑥 − 𝑥0| < 𝛿 ⟹ |𝑓(𝑥)| ≤ 𝜀|𝑔(𝑥)| = 0, we get 𝑓 = 𝑔ℎ. 

If 𝑔(𝑥) ≠ 0 then 𝑓(𝑥) = 𝑔(𝑥)
𝑓(𝑥)

𝑔(𝑥)
, we get 𝑓 = 𝑔ℎ. 

second: 

Let us show that ℎ = 𝑜(1), i:e ∀𝜀 > 0; ∃𝛿 > 0; ∀𝑥 ∈ V𝑥0:    0 < |𝑥 − 𝑥0| < 𝛿 ⟹ |ℎ(𝑥)| ≤ 𝜀 

If 𝑔(𝑥) = 0 then ℎ(𝑥)=0, i.e |ℎ(𝑥)| ≤ 𝜀 

If 𝑔(𝑥) ≠ 0 then |𝑓(𝑥)| ≤ 𝜀|𝑔(𝑥)| and from it |
𝑓(𝑥)

𝑔(𝑥)
| ≤ 𝜀 i.e |ℎ(𝑥)| ≤ 𝜀. 

Sufficient condition 

Assume that 𝑓 = 𝑔ℎ and ℎ = 𝑜(1) and show that 𝑓 = 𝑜(𝑔). 

We have (ℎ = 𝑜(1)) ⟺ (∀𝜀 > 0; ∃𝛿 > 0;∀𝑥 ∈ V𝑥0:    0 < |𝑥 − 𝑥0| < 𝛿 ⟹ |ℎ(𝑥)| ≤ 𝜀) and 

from there |𝑓(𝑥)| = |ℎ(𝑥)𝑔(𝑥)| ≤ 𝜀|𝑔(𝑥)| i.e. 𝑓 = 𝑜(𝑔). 

In the same way we prove property 2. 

Note: The previous two properties are summarized in the following writing. 

𝑜(𝑔) = 𝑔. 𝑜(1)   and  𝑂(𝑔) = 𝑔. 𝑂(1) 

Properties 

1) 𝑓 = 𝑂(𝑔) and ℎ =  𝑂(𝑔) ⟹ 𝑓 + ℎ = 𝑂(𝑔). 

2) 𝑓 = 𝑜(𝑔) and ℎ =  𝑜(𝑔) ⟹ 𝑓 + ℎ = 𝑜(𝑔). 

3) 𝑓 = 𝑜(𝑔) and ℎ =   𝑂(1) ⟹ 𝑓ℎ = 𝑜(𝑔). 

4) 𝑓 = 𝑜(𝑔) and ℎ =  𝑂(𝑔) ⟹ 𝑓 + ℎ = 𝑂(𝑔). 

5) 𝑓 = 𝑂(𝑔) and ℎ =  𝑂(1) ⟹ 𝑓ℎ = 𝑂(𝑔). 
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6) ℎ = 𝑂(𝑓) and 𝑓 =  𝑜(𝑔) ⟹ ℎ = 𝑜(𝑔). 

7) ℎ = 𝑜(𝑓) and 𝑓 =  𝑂(𝑔) ⟹ ℎ = 𝑜(𝑔). 

Note 

The previous properties are summarized in the following writing. 

1) 𝑂(𝑔) + 𝑂(𝑔) = 𝑂(𝑔). 

2) 𝑜(𝑔) + 𝑜(𝑔) = 𝑜(𝑔). 

3) 𝑜(𝑔)𝑂(1) = 𝑜(𝑔). 

4) 𝑜(𝑔) + 𝑂(𝑔) = 𝑂(𝑔). 

5) 𝑂(𝑔).𝑂(1) = 𝑂(𝑔). 

6) 𝑂(𝑜(𝑔)) = 𝑜(𝑔). 

7) 𝑜(𝑂(𝑔)) = 𝑜(𝑔). 

4.2.8 Equivalent functions: 

Let 𝑓 and 𝑔 be a functions defined in the neighbourhood V𝑥0  of the point 𝑥0, with the possible 

exception of 𝑥0. 

Definition 4.11 

We say that 𝑓 is equivalent to g for 𝑥 ⟶ 𝑥0 and write 𝑓 ∼ 𝑔 if 𝑓 − 𝑔 = 𝑜(𝑓) for 𝑥 ⟶ 𝑥0. 

Results 4.1 

1) 𝑓 − 𝑔 = 𝑜(𝑓) ⇔ 𝑓 − 𝑔 = 𝑜(𝑔). 

2) The relation ∼ is an equivalence relation on the set of functions defined in the neighborhood 

V𝑥0 − {𝑥0} of the point 𝑥0. 

3) If 𝑓 and 𝑔 are non-zero on V𝑥0 − {𝑥0} then: 𝑓 ∼ 𝑔 ⇔ lim
𝑥→𝑥0

𝑓(𝑥)

𝑔(𝑥)
= 1. 

Theorem 4.7 

Let 𝑓 , 𝑔 , 𝑓1 and 𝑔1 be a functions defined in the neighbourhood V𝑥0 of the point 𝑥0, with the 

possible exception of 𝑥0 where 𝑓 ∼ 𝑓1 and 𝑔 ∼ 𝑔1 for 𝑥 ⟶ 𝑥0. If  

If the limit lim
𝑥→𝑥0

𝑓(𝑥)

(𝑥)
 it exists then the limit lim

𝑥→𝑥0

𝑓1(𝑥)

𝑔1(𝑥)
 olso exists and we have: 

lim
𝑥→𝑥0

𝑓1(𝑥)

𝑔1(𝑥)
= lim
𝑥→𝑥0

𝑓(𝑥)

𝑔(𝑥)
 

Proof 
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Since 
𝑓(𝑥)

𝑔(𝑥)
 accepts a limit when 𝑥 → 𝑥0, there is a neighbourhood V𝑥0 to the point 𝑥0, such that 𝑔 is 

non-zero on V𝑥0 − {𝑥0} and that 𝑔 ∼ 𝑔1 (that is, |𝑔(𝑥)| ≤ 𝜀|𝑔1(𝑥)|) then 𝑔1  is also non-zero on 

V𝑥0 − {𝑥0} and hence 

{
𝑓 ∼ 𝑓1
𝑔 ∼ 𝑔1

⇒ {
𝑓1 ∼ 𝑓
𝑔1 ∼ 𝑔

⇒ {
𝑓1 = 𝑓(1 + 𝑜(1))

𝑔1 = 𝑔(1 + 𝑜(1))
⇒
𝑓1
𝑔1
=
𝑓

𝑔

(1 + 𝑜(1))

(1 + 𝑜(1))
. 

And since 
(1+𝑜(1))

(1+𝑜(1))
= 1+ 𝑜(1) ⟶ 1, then lim

𝑥→𝑥0

𝑓1(𝑥)

𝑔1(𝑥)
= lim
𝑥→𝑥0

𝑓(𝑥)

𝑔(𝑥)
. 

Remark 

Note: The concept of equivalent functions is used in calculating limits, especially in removing 

indeterminacy. 

Examples 

1) Calculate the limit lim
𝑥→0

√4+𝑥−2

√𝑥+1
3 −1

. 

For 𝑥 → 0 we have √4 +− 2 ∼
1

2
𝑥 and √𝑥 + 1

3
− 1 ∼

1

3
𝑥, and from it  

lim
𝑥→0

√4 + 𝑥 − 2

√𝑥 + 1
3

− 1
= lim

𝑥→0

1
2 𝑥

1
3 𝑥

=
3

2
. 

2) Calculate the limit lim
𝑥→+∞

√𝑥2−2𝑥+𝑥

2+𝑥𝑒
1
𝑥

. 

For 𝑥 → +∞ we have √𝑥2 − 2𝑥 + 𝑥 ∼ 2𝑥 and 2 + 𝑥𝑒
1

𝑥 ∼ 𝑥, and from it  

lim
𝑥→+∞

√𝑥2 − 2𝑥 + 𝑥

2 + 𝑥𝑒
1
𝑥

= lim
𝑥→+∞

2𝑥

𝑥
= 2. 

4.3 Continuous functions: 

Definitions 4.12 

1) Let 𝑓 be a function defined on the neighbourhood V𝑥0 of the point 𝑥0. We say that 𝑓 is 

continuous at 

𝑥0 if and only if: lim
𝑥→𝑥0

𝑓(𝑥) = 𝑓(𝑥0). 

In other words 𝑓 is continuous at 𝑥0 if and only if: 

(∀𝜀 > 0; ∃𝛿 > 0;∀𝑥 ∈ V𝑥0: 0 < |𝑥 − 𝑥0| < 𝛿 ⟹ |𝑓(𝑥) − 𝑓(𝑥0)| < 𝜀 ). 



15 
 

2) Let 𝑓 be a function defined on the neighbourhood V𝑥0  of the form [𝑥0, b[. We say that 𝑓 is 

continuous at 𝑥0 from the right if and only if: lim
𝑥
>
→𝑥0

𝑓(𝑥) = 𝑓(𝑥0). 

3) Let 𝑓 be a function defined on the neighbourhood V𝑥0  of the form ]𝑎, 𝑥0]. We say that 𝑓 is 

continuous at 𝑥0 from the left if and only: lim
𝑥
<
→𝑥0

𝑓(𝑥) = 𝑓(𝑥0). 

Result 4.2 

A function f is continuous at 𝑥0 if and only if it is continuous at 𝑥0 from the right and from the left 

Examples 

1) Let the function 𝑓 defined on ℝ by 𝑓(𝑥) = {
|𝑥2−1|

𝑥−1
  if 𝑥 ≠ 1

2          if    𝑥 = 1  
. 

lim
𝑥
>
→1

𝑓(𝑥) = 2 = 𝑓(1)  ⟹ 𝑓 is continuous at 𝑥0 = 1, from the right. 

lim
𝑥
<
→1

𝑓(𝑥) = −2 ≠ 𝑓(1)  ⟹ 𝑓 is discontinuous at 𝑥0 = 1, from the left. So 𝑓 is discontinuous at 

𝑥0 = 1. 

Definition 4.13 

Le 𝐼 be a interval of ℝ. 

We say that a function 𝑓 is continuous on the interval 𝐼 if and only if it is continuous at every point 

in this interval. We denote the set of continuous functions on the interval 𝐼 by C(𝐼). 

We say that the function 𝑓 is continuous uniformly over the domain 𝐼 if and only if 

∀𝜀 > 0; ∃𝛿 > 0: ∀𝑥′, 𝑥" ∈ 𝛪: |𝑥′ − 𝑥"| < 𝛿 ⟹ |𝑓(𝑥′) − 𝑓(𝑥")| < 𝜀. 

It is clear from the definition that every uniformly continuous function in the interval 𝐼 is 

continuous in this interval (the opposite is not always true). 

4.3.1 Continuous functions in a closed interval 

Theorem 4.8 

Every continuous function in a closed interval [𝑎, 𝑏] is uniformly continuous in this interval. 

Proof 

We assume that 𝑓 is continuous and uniformly discontinuous on [𝑎, 𝑏] i.e. 

∃𝜀 > 0; ∀𝛿 > 0: ∃𝑥′, 𝑥" ∈ [𝑎, 𝑏]: |𝑥′ − 𝑥"| < 𝛿  and |𝑓(𝑥′) − 𝑓(𝑥")| ≥ 𝜀. 

We put 𝛿 =
1

𝑛
> 0 where 𝑛 ∈ ℕ∗ and from it: 
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∃𝜀 > 0;∀𝑛 ∈ ℕ∗; ∃𝑥𝑛
′ , 𝑥𝑛

′′ ∈ [𝑎, 𝑏]: |𝑥𝑛
′ − 𝑥𝑛

′′| <
1

𝑛
 and |𝑓(𝑥𝑛

′ ) − 𝑓(𝑥𝑛
′′)| ≥ 𝜀. 

Since the sequence (𝑥𝑛
′ )  is bounded, according to the BOLZANO-WEIERSTRASS theorem, then 

a subsequence (𝑥𝑛𝑘
′ ) can be extracted from it that converges towards �̅� in [𝑎, 𝑏] and since  

∀𝑘 ∈ ℕ: |𝑥𝑛𝑘
′ − 𝑥𝑛𝑘

′′ | <
1

𝑛𝑘
, the partial sequence (𝑥𝑛𝑘

′′ ) also converges towards �̅�, and since 𝑓 is 

continuous at �̅�, then lim
𝑘→∞

(𝑓(𝑥𝑛𝑘
′ ) − 𝑓(𝑥𝑛𝑘

′′ )) = 𝑓(�̅�) − 𝑓(�̅�) = 0. This is a contradiction because 

∀𝑘 ∈ ℕ: |𝑓(𝑥𝑛𝑘
′ ) − 𝑓(𝑥𝑛𝑘

′′ )| ≥ 𝜀. 

Theorem 4.9 

Every continuous function on the closed interval [𝑎, 𝑏], is bounded. 

Proof 

Assume that 𝑓 continuous and unbounded on the interval [𝑎, 𝑏], i.e. ∀𝑛 ∈ ℕ;∃𝑥𝑛 ∈
[𝑎, 𝑏]: |𝑓(𝑥𝑛)| > 𝑛. 

Since the sequence (𝑥𝑛) is bounded, it is possible to extract from it a partial sequence (𝑥𝑛𝑘) that 

converges towards �̅� from [𝑎, 𝑏]. Since 𝑓 is continuous at �̅�, then lim
𝑘→∞

|𝑓(𝑥𝑛𝑘)| = |𝑓(�̅�)|. 

This is a contradiction because ∀𝑘 ∈ ℕ: |𝑓(𝑛𝑘)| > 𝑛𝑘 ≥ 𝑘, and hence lim
𝑘→∞

|𝑓(𝑥𝑛𝑘)| = +∞. 

Theorem 4.10 

Let 𝑓 be a continuous function on a closed interval [𝑎;𝑏]. 

Then 𝑓 attains its upper and lower bounds on [𝑎;𝑏], i.e. there exist some points 𝑐, 𝑑 ∈ [𝑎, 𝑏] such 

that 𝑓(𝑐) = sup𝑥∈[𝑎 ;𝑏] 𝑓(𝑥)   and  𝑓(𝑑) = 𝑖𝑛𝑓𝑥∈[𝑎 ;𝑏] 𝑓(𝑥). 

Proof 

Let 𝑀 = sup𝑥∈[𝑎 ;𝑏] 𝑓(𝑥). And assume that ∀𝑥 ∈ [𝑎 ; 𝑏]: 𝑓(𝑥) ≠ 𝑀 i.e. ∀𝑥 ∈ [𝑎; 𝑏]: 𝑓(𝑥) ≠ 𝑀. 

So the function 𝑔 defined on [𝑎;𝑏] by ∀𝑥 ∈ [𝑎; 𝑏]: 𝑔(𝑥) =
1

𝑀−𝑓(𝑥)
 it is continuous and strictly 

positive and therefore it is bounded to this interval, i.e.: ∃𝑚 > 0;∀𝑥 ∈ [𝑎; 𝑏]: 𝑔(𝑥) ≤ 𝑚 or  

∃𝑚 > 0; ∀𝑥 ∈ [𝑎; 𝑏]: 𝑓(𝑥) ≤ 𝑀 −
1

𝑚
. This contradicts the hypothesis 𝑀 = sup𝑥∈[𝑎;𝑏] 𝑓(𝑥). 

Theorem 4.11 

Let 𝑓 be a continuous function in the interval [𝑎; 𝑏], if the signs of 𝑓(𝑎) and 𝑓(𝑏) are different, 

then there is at least a point 𝑐 in the interval ]𝑎; 𝑏[ satisfies: 𝑓(𝑐) = 0. 

Proof 
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Assume that 𝑓(𝑎) < 0 𝑎𝑛𝑑  𝑓(𝑏) > 0. Let the set E = {𝑥 ∈ [𝑎; 𝑏] 𝑓(𝑥) > 0⁄ }, then E ≠ ∅ because 

𝑏 ∈ E. We put inf E = 𝑐 and let us prove that: 𝑓(𝑐) = 0. 

Assume that 𝑓(𝑐) ≠ 0 Since 𝑓 is continuous at 𝑐, there exists at least a interval of the form 𝐼 =
]𝑐 − 𝛼; 𝑐 + 𝛼[ ⊂ [𝑎; 𝑏] with 𝛼 > 0, where 𝑓(𝑥) and 𝑓(𝑐) have the same sign. (See Proposition 

1.3).So 

if 𝑓(𝑐) > 0, then ∀𝑥 ∈ 𝐼: 𝑓(𝑥) > 0 by taking 𝑥 = 𝑐 −
𝛼

2
 we get 𝑓 (𝑐 −

𝛼

2
) > 0 so 𝑐 −

𝛼

2
∈ E and 

therefore 𝑐 −
𝛼

2
≥ 𝑐 = inf E. and this is a contradiction. 

if 𝑓(𝑐) < 0, then ∀𝑥 ∈ 𝐼: 𝑓(𝑥) < 0.  

We have inf E = 𝑐 ⟹ ∃𝑥0 ∈ E: 𝑐 + 𝛼 > 𝑥0 ≥ 𝑐 ⟹ 𝑥0 ∈ 𝐼 ⟹ 𝑓(𝑥0) < 0. This is a contradiction 

because 𝑥0 ∈ E ⟹ 𝑓(𝑥0) > 0.So 𝑓(𝑐) = 0. 

Theorem 4.12 

Let 𝑓 be a continuous function in the interval [𝑎; 𝑏]. For every real number λ between 𝑓(𝑎) and 

𝑓(𝑏), there exists at least one real number 𝑐 of the interval [𝑎; 𝑏] satisfies: 𝑓(𝑐) = λ. 

Proof 

case 1: If λ = 𝑓(𝑎) it is enough to take 𝑐 = 𝑎, but if λ = 𝑓(𝑏) it is enough to take 𝑐 = 𝑏. 

case 2: If λ ≠ 𝑓(𝑎) and λ ≠ 𝑓(𝑏). Then the function 𝑔 defined on the interval [𝑎; 𝑏] by  

𝑔(𝑥) = 𝑓(𝑥) − λ, satisfies the conditions of Theorem 4.11, So there exists at least one real number 

𝑐 of the interval [𝑎; 𝑏] where 𝑔(𝑐) = 0 and from which we get 𝑓(𝑐) = λ. 

Proposition 3.2 

Let 𝐼 be an interval of ℝ, and 𝑓 a real function. 

If the function 𝑓 is continuous on 𝐼, then the image of the interval 𝐼 by the function 𝑓 is a interval 

of ℝ, i.e. the set 𝑓(𝐼) is a interval. 

Proof 

Let 𝑦1; 𝑦2 be two numbers of 𝑓(𝐼) where 𝑦1 ≤ 𝑦2 then there are at least two numbers 𝑥1, 𝑥2 of the 

interval 𝐼 where 𝑦1 = 𝑓(𝑥1) and 𝑦2 = 𝑓(𝑥2) according to the theorem 4.12, then for every number 

𝑦 where 𝑦1 ≤ 𝑦 ≤ 𝑦2, there exists at least number 𝑥 confined between 𝑥1  and 𝑥2 ( i.e. 𝑥 ∈ 𝐼), 

where 𝑦 = 𝑓(𝑥) therefore 𝑦 ∈ 𝑓(𝐼). 

4.3.2 Extension by continuity 

Definition 4 14 
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Let 𝑓 be a function defined on the domain 𝐼. With exception of the point 𝑥0 of 𝐼, we assume that 

lim
𝑥→𝑥0

𝑓(𝑥) = ℓ. Then the function 𝑓, defined by 𝑓(𝑥) = {
𝑓(𝑥)   ; 𝑥 ∈ 𝐼 − {𝑥0}

ℓ         ;  𝑥 = 𝑥0
, coincides with 𝑓 on 

𝐼 − {𝑥0} and is continuous at 𝑥0. The function 𝑓 is called the extension of 𝑓 with continuity at 𝑥0. 

Example 

Let 𝑓 be a function defined on ℝ∗ by 𝑓(𝑥) =
sin 2𝑥

𝑥
. Since lim

𝑥→0

sin 2𝑥

𝑥
= 2, then 𝑓 can be extended by 

continuity at 𝑥0 = 0 to the function 𝑓 where: 𝑓(𝑥) = {
sin 2𝑥

𝑥
 ; 𝑥 ≠ 0

2         ; 𝑥 ≠ 0
. 

4.3.3 Properties of monotone functions on an interval 

Theorem 4.13 

Let 𝑓: ]𝑎, 𝑏[ → ℝ be a monotonic function where −∞ < 𝑎 < 𝑏 < +∞, then the limits lim
𝑥
>
→𝑎

𝑓(𝑥) ، 

lim
𝑥
<
→𝑏

𝑓(𝑥), are exists ( finite or infinite ) and we have  

If 𝑓 increasing ⟹ −∞ ≤ inf𝑥∈]𝑎,𝑏[ 𝑓(𝑥) = lim
𝑥
>
→𝑎

𝑓(𝑥) ≤ lim
𝑥
<
→𝑏

𝑓(𝑥) = sup𝑥∈]𝑎,𝑏[ 𝑓(𝑥) ≤ +∞ 

If 𝑓 decreasing ⟹ −∞ ≤ inf𝑥∈]𝑎,𝑏[ 𝑓(𝑥) = lim
𝑥
<
→𝑏

𝑓(𝑥) ≤ lim
𝑥
>
→𝑎

𝑓(𝑥) = sup𝑥∈]𝑎,𝑏[ 𝑓(𝑥) ≤ +∞ 

Proof 

Assume that 𝑓 increasing and sup𝑥∈]𝑎,𝑏[ 𝑓(𝑥) = 𝑀 < +∞ and let us prove that: lim
𝑥
<
→𝑏

𝑓(𝑥) = 𝑀. 

We have sup𝑥∈]𝑎,𝑏[ 𝑓(𝑥) = 𝑀 ⟹ ∀ε > 0; ∃α ∈ ]𝑎, 𝑏[: 𝑀 − 𝜀 < 𝑓(𝛼) ≤ 𝑀. 

By putting 𝛿 = 𝑏 − 𝛼 > 0, then 𝑏 − 𝛿 < 𝑥 < 𝑏 ⇒ 𝛼 < 𝑥 < 𝑏 ⟹⏞
𝑓 increasing

 𝑓(𝛼) ≤ 𝑓(𝑥) 

                                                                                                        ⇒ 𝑀 − 𝜀 < 𝑓(𝛼) ≤ 𝑓(𝑥) ≤ 𝑀 < 𝑀 + 𝜀 

                                                                                                        ⇒ 𝑀 − 𝜀 < 𝑓(𝑥) < 𝑀 + 𝜀. 

So ∀ε > 0; ∃δ > 0:−𝛿 < 𝑥 − 𝑏 < 0 ⇒ |𝑓(𝑥) −𝑀| < 𝜀 we get lim
𝑥
<
→𝑏

𝑓(𝑥) = 𝑀. 

In the same way we prove the second case. 

Corollary 4.1 

1) Let 𝑓: ]𝑎, 𝑏[ → ℝ be a monotonic function then: 

a) If 𝑓 increasing ⟹ 𝑓(𝑎) ≤ lim
𝑥
>
→𝑎

𝑓(𝑥) ≤ lim
𝑥
<
→𝑏

𝑓(𝑥) ≤ 𝑓(𝑏). 

b) If 𝑓 decreasing ⟹ 𝑓(𝑏) ≤ lim
𝑥
<
→𝑏

𝑓(𝑥) ≤ lim
𝑥
>
→𝑎

𝑓(𝑥) ≤ 𝑓(𝑎). 
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2) Let 𝐼 be an interval of ℝ bounded by 𝑎 and 𝑏 (𝑎 < 𝑏), and let 𝑓: [𝑎, 𝑏] → ℝ be an increasing 

function. For each 𝑥0, where 𝑎 < 𝑥0 < 𝑏 then: 

a) −∞ < 𝑓(𝑥0 − 0) ≤ 𝑓(𝑥0) ≤ 𝑓(𝑥0 + 0) < +∞. 

b) If 𝑎 ∈ 𝐼 ⟹  𝑓(𝑎) ≤ 𝑓(𝑎 + 0) < +∞. 

c) If 𝑏 ∈ 𝐼 ⟹ −∞ < 𝑓(𝑏 − 0) ≤ 𝑓(𝑏). 

Remark 

We obtain a corollary similar to corollary 4.1 if 𝑓 is decreasing over the interval 𝐼. 

Theorem 4.14 

Let 𝐼 be an interval of ℝ and let 𝑓: [𝑎, 𝑏] → ℝ be an monotonic function Then 𝑓 is continuous on 𝐼 

if and only if 𝑓(𝐼) is a interval. 

Proof 

Necessary conditions 

According to Proposition 2.3, if 𝑓 is continuous, then 𝑓(𝐼) is an interval. 

sufficient condition 

We assume 𝑓 is increasing and 𝑓(𝐼) is a interval and prove that 𝑓 is continuous on 𝐼. 

Suppose the opposite and let 𝑥0 be a point of discontinuity of 𝑓. As 𝑓 is increasing, then at least 

one of the relations 𝑓(𝑥0) < 𝑓(𝑥0 + 0), 𝑓(𝑥0 − 0) < 𝑓(𝑥0).  is verified (According to corollary 

4.1). 

Assume, for example, that 𝑓(𝑥0) < 𝑓(𝑥0 + 0) in this case, then for each 𝑥 of 𝐼, we have 

𝑥 ≤ 𝑥0 ⇒ 𝑓(𝑥) < 𝑓(𝑥0) and  𝑥 > 𝑥0 ⇒ 𝑓(𝑥) ≥ 𝑓(𝑥0 + 0) that is ](𝑥0), 𝑓(𝑥0 + 0)[ ∩ 𝑓(𝐼) = ∅. 

Let 𝑥1 ∈ 𝐼 where 𝑥1 > 𝑥0 then 𝑓(𝑥0) ∈ 𝑓(𝐼) and 𝑓(𝑥1) ∈ 𝑓(𝐼) and from it [𝑓(𝑥0), 𝑓(𝑥1)] ⊂ 𝑓(𝐼) 

(because 𝑓(𝐼) is a interval) and since 𝑓(𝑥1) > 𝑓(𝑥0 + 0) then ]𝑓(𝑥0), 𝑓(𝑥0 + 0)[ ⊂
[𝑓(𝑥0), 𝑓(𝑥1)] 

i.e. ]𝑓(𝑥0), 𝑓(𝑥0 + 0)[ ∩ 𝑓(𝐼) ≠ ∅. This is a contradiction. 

4.4.3 The inverse function of a strictly monotonic continuous function 

Theorem 4.15 

Let 𝐼 be an interval of ℝ and 𝑓: 𝐼 → ℝ a real function. 

If 𝑓 is continuous and strictly monotonic over the interval 𝐼, then 𝑓 is a bijective of the interval 𝐼 to 

the interval 𝑓(𝐼). Therefore, 𝑓 accepts an inverse function that we denote by 𝑓−1, which is defined, 

continuous, and strictly monotonic over the interval 𝑓(𝐼)  and has the same direction of change of 

𝑓, and we have 
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∀𝑥 ∈ 𝐼; ∀𝑦 ∈ 𝑓(𝐼): 𝑦 = 𝑓(𝑥) ⟺ 𝑥 = 𝑓−1(𝑦)… . (∗) 

Remark 

Relation (∗) is used to give the expression 𝑓−1(𝑥) if it is possible. 

Proof 

If 𝑓 is strictly monotonic over 𝐼, it is injective, and from the definition of the set 𝑓(𝐼), it is 

surjective, so 𝑓 is bijective. 

𝑓 is continuous, 𝑓(𝐼) is an interval. On the other hand, as 𝑓 is strictly monotonic, 𝑓−1 is also 

monotonic. Therefore, 𝑓−1 is continuous because 𝑓−1(𝑓(𝐼)) = 𝐼 is an interval (according to the 

theorem 4.14 ). 

Example  

Let the function 𝑓 defined on the interval I = [0;+∞[  by 𝑓(𝑥) = 𝑥2 + 3, then 𝑓 is continuous and 

strictly monotonic (increasing) on the interval I = [0;+∞[ where 𝑓(I) = [3;+∞[ according to the 

theorem (4.15), 𝑓 is a bijective to the interval [0;+∞[ in the interval [3;+∞[, so it accepts an inverse 

function 𝑓−1 and we have: 

∀𝑥 ∈ [0;+∞[;∀𝑦 ∈ [3;+∞[: 𝑦 = 𝑥2 + 3 ⟺ 𝑥2 = 𝑦 − 3 

                                                     ⟺ {
𝑥 = √𝑦 − 3                                     

∨

    𝑥 = −√𝑦 − 3 < 0(unacceptable).

 

So 𝑓−1(𝑥) = √𝑦 − 3, after replacing 𝑥 by 𝑦, the definition of the function 𝑓−1 becomes as 

follows: 

𝑓−1: [3;+∞[→ [0;+∞[

𝑥 → √𝑥 − 3
 

Exercise* 

Let the function 𝑓 defined on ℝ by 𝑓(𝑥) = {
𝑥2 − 2𝑥 + 1   𝑠𝑖 𝑥 ≤ 1
−𝑥+1

2𝑥−1
               𝑠𝑖 𝑥 > 1

. 

1) Prove That 𝑓 is continuous and strictly monotonic over ℝ. 

2) Concluding that 𝑓 accepts an inverse function 𝑓−1, and write the expression 𝑓−1(𝑥) in terms of 

𝑥. 

Solution 

lim
𝑥
>
→1

𝑓(𝑥) = lim
𝑥
<
→1

(𝑥) = 𝑓(1) = 0 ⟹ continuous at 0 ⟹ 𝑓 continuous over ℝ. 

𝑓 is strictly decreasing over ℝ and 𝑓(ℝ) = ]−
1

2
; +∞[. So 
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𝑓−1: ]−
1
2 ; +∞

[ → ℝ

𝑥 → 𝑓(𝑥) = {  
𝑥 + 1
2𝑥 + 1      if  

−1
2 < 𝑥 < 0

1 − √𝑥      if  𝑥 ≥ 0

 

4.4 Differentiable functions 

4.4.1 Definition and basic properties 

Definition 4.15 

Let 𝑓 be a function defined on the neighborhood 𝑉𝑥0 of the point 𝑥0. We say that the function 𝑓 is 

differentiable at 𝑥0 if and only if lim
𝑥
>
→𝑥0

𝑓(𝑥)−𝑓(𝑥0)

𝑥−𝑥0
= L, exists. We call 𝐿 the derivative of 𝑓 at 𝑥0, 

and we denote it by. 𝑓′(𝑥0). 
If 𝑓 is differentiable in each point of  𝐼, then it is called differentiable on 𝐼, in this case we define 

the derivative function by 
𝑓′:𝐼⟶   ℝ   

      𝑥→𝑓′(𝑥)
. The derivative is sometimes written as 

𝑑𝑓

𝑑𝑥
 or  

𝑑𝑦

𝑑𝑥
 where 𝑦 =

𝑓(𝑥). 
Remarks 

1) By putting 𝑥 − 𝑥0 = ℎ, the previous limit is written as lim
ℎ→0

𝑓(𝑥0+ℎ)−𝑓(𝑥0)

ℎ
= 𝑓′(𝑥0). 

2) The function 𝑓 is differentiable at 𝑥0 if and only if there exists a function ε defined in the 

neighborhood 𝑉𝑥0 to the point 𝑥0 where 

∀𝑥 ∈ 𝑉𝑥0: 𝑓(𝑥) − 𝑓(𝑥0) = (𝑓
′(𝑥0) + 𝜀(𝑥))(𝑥 − 𝑥0)و lim

𝑥→𝑥0
𝜀(𝑥) = 0 

If lim
𝑥
>
→𝑥0

𝑓(𝑥)−𝑓(𝑥0)

𝑥−𝑥0
= 𝐿𝑑 ( lim

𝑥
<
→𝑥0

𝑓(𝑥)−𝑓(𝑥0)

𝑥−𝑥0
= 𝐿𝑔 , respectively ), we say that the function 𝑓 is 

differentiable at 𝑥0 from the right (from the left, respectively) And we write 𝐿𝑑 = 𝑓
′(𝑥0 + 0) 

( 𝐿𝑔 = 𝑓′(𝑥0 − 0), respectively ). 

Corollary 4.2 

A function 𝑓 is differentiable at 𝑥0 if and only if 𝑓′(𝑥0 − 0) and 𝑓′(𝑥0 + 0) exist and 

𝑓′(𝑥0 + 0) = 𝑓′ (𝑥0 − 0). 

Example 

Let 𝑓 be a function defined in ℝ by 𝑓(𝑥) = |𝑥2 − 1|, let us study the differentiability 

of 𝑓 at 𝑥0 = 1.We have 

lim
𝑥
>
→1

𝑓(𝑥)−𝑓(1)

𝑥−1
= lim
𝑥
>
→1

𝑥2−1

𝑥−1
= 2 = 𝑓′(1 + 0) and lim

𝑥
<
→1

𝑓(𝑥)−𝑓(1)

𝑥−1
= lim
𝑥
<
→1

−(𝑥2−1)

𝑥−1
= −2 = 𝑓′(1 − 0). 
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𝑓 is differentiable at 𝑥0 = 1 from the right and from the left, but it is not differentiable at 𝑥0 = 1 

because 𝑓′(1 + 0) ≠ 𝑓′(1 − 0). 

Geometric interpretation 

The derivative of the function 𝑓 at 𝑥0 is the slope of the line tangent to the graph 

of 𝑓 at the point M0(𝑥0, f(𝑥0)). Thus, the equation of this tangent line is 

 𝑦 = 𝑓′(𝑥0)(𝑥 − 𝑥0) + 𝑓(𝑥0). 

The left and right derivatives are also interpreted by the half-tangents to the left and right of the 

point M0(𝑥0, f(𝑥0)). 

Theorem 4.16 

If 𝑓 is differentiable at 𝑥0, then 𝑓 is continuous at 𝑥0. 

Proof 

Let 𝑓 be differentiable at 𝑥0 then there is a neighborhood 𝑉𝑥0 where 

∀𝑥 ∈ 𝑉𝑥0: 𝑓(𝑥) − 𝑓(𝑥0) = (𝑓
′(𝑥0) + 𝜀(𝑥))(𝑥 − 𝑥0) and lim

𝑥→𝑥0
𝜀(𝑥) = 0.So 

lim
𝑥→𝑥0

(𝑓(𝑥) − 𝑓(𝑥0)) = lim
𝑥→𝑥0

(𝑓′(𝑥0) + 𝜀(𝑥))(𝑥 − 𝑥0) =0 So 𝑓 is continuous at 𝑥0. 

4.4.2 Higher order derivative 

Let 𝑓 be a function differentiable on the interval 𝐼. If 𝑓′ differentiable on the interval 𝐼, then we 

denote its derivative by 𝑓′′  and is called the second derivative. In the same way, we define the 

successive derivatives of the function 𝑓 as follows: 

∀𝑛 ∈ ℕ:  𝑓(𝑛+1)(𝑥) = (𝑓(𝑛)(𝑥))
′

  and  𝑓(0)(𝑥) = 𝑓(𝑥), 

Where 𝑓(𝑛) symbolizes the 𝑛th order derivative of the function 𝑓, sometimes we denote 𝑓(𝑛) by 
𝑑𝑛𝑦

𝑑𝑥𝑛
 or 𝑦(𝑛), where 𝑦 = 𝑓(𝑥). 

Exercise 

Prove that: 

1) ∀𝑛 ∈ ℕ ∶  𝑐𝑜𝑠(𝑛)𝑥 = cos (𝑥 +
𝜋

2
𝑛).                           2) ∀𝑛 ∈ ℕ ∶   [

1

𝑥
]
(𝑛)

=
(−1)𝑛𝑛!

𝑥𝑛+1
. 

Definition 4.16 

Let 𝑓 be a function defined on the interval 𝐼. 

We say that 𝑓 is of a class 𝐶𝑛 if it is differentiable to order 𝑛 and the derivative 𝑓(𝑛) is continuous 

over 𝐼. We denote the set of functions of class 𝐶𝑛 on 𝐼 by . 𝐶𝑛(𝐼). 
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By definition we have: 𝐶0(𝐼) = 𝐶(𝐼). 

The set of infinitely differentiable functions on the interval 𝐼, symbolizes it by 𝐶∞(𝐼). 

4.4.3 Operations on differentiable functions 

Theorem 4.17 

Let 𝑢 and 𝑣 be differentiable functions on the interval 𝐼, then the functions 𝑢 + 𝑣 , 𝛼𝑢 , 𝑢. 𝑣 ,
𝑢

𝑣
   

( 𝑣 ≠ 0 ) are differentiable over 𝐼 and we have: 

(𝑢 + 𝑣)′ = 𝑢′ + 𝑣′        ,       (𝛼𝑢)′ = 𝛼𝑢′ 

(
𝑢

𝑣
)
′

=
𝑢′𝑣 − 𝑢𝑣′

𝑣²
             ,           (𝑢𝑣)′ = 𝑢′𝑣 + 𝑢𝑣′ . 

Proof ( Let us prove the last case ) 

Let 𝑥0 ∈ 𝐼 we have 

𝑢

𝑣
(𝑥)−

𝑢

𝑣
(𝑥0)

𝑥−𝑥0
=

𝑢(𝑥)𝑣(𝑥0)−𝑢(𝑥0)𝑣(𝑥)

𝑣(𝑥)𝑣(𝑥0)(𝑥−𝑥0)
=

𝑢(𝑥)−𝑢(𝑥0)

(𝑥−𝑥0)
𝑣(𝑥0)−𝑢(𝑥0)

𝑣(𝑥)−𝑣(𝑥0)

(𝑥−𝑥0)

𝑣(𝑥)𝑣(𝑥0)
. 

When 𝑥 → 𝑥0 then  
𝑢(𝑥)−𝑢(𝑥0)

(𝑥−𝑥0)
→ 𝑢′(𝑥0) ; 

𝑣(𝑥)−𝑣(𝑥0)

(𝑥−𝑥0)
→ 𝑣′(𝑥0) ; 𝑢(𝑥) → 𝑢(𝑥0) and 

 𝑣(𝑥) → 𝑣(𝑥0). So 
𝑢

𝑣
(𝑥)−

𝑢

𝑣
(𝑥0)

𝑥−𝑥0
⟶

𝑢′(𝑥0)𝑣(𝑥0)−𝑢(𝑥0)𝑣
′(𝑥0)

(𝑣(𝑥0))
2 . 

Theorem 4.18 (Leibniz formula) 

If 𝑢 and 𝑣 admit 𝑛th order derivatives on the interval 𝐼 then the function 𝑢. 𝑣 admits an 𝑛th order 

derivative on the interval 𝐼 and we have: 

∀𝑛 ∈ ℕ: (𝑢. 𝑣)(𝑛) =∑𝐶𝑛
𝑝

𝑛

𝑝=0

𝑢(𝑛−𝑝)𝑣(𝑝). 

Proof 

We use proof by induction and by noting that: ∀𝑛, 𝑝 ∈ ℕ ( 1 ≤ 𝑝 ≤ 𝑛 − 1 ): 𝐶𝑛
𝑝
= 𝐶𝑛−1

𝑝
+ 𝐶𝑛−1

𝑝−1
. 

Theorem 4.19 

Let 𝑢 and 𝑣 be functions where 𝑢 is differentiable on the interval 𝐼 and 𝑣 is differentiable on the 

interval 𝑢(𝐼), then the function 𝑣 ∘ 𝑢 is differentiable on the interval 𝐼 and (𝑣 ∘ 𝑢)′ = 𝑣′ ∘ 𝑢 . 𝑢′. 

Proof 

Let 𝑥0 ∈ 𝐼 since 𝑢 is differentiable at 𝑥0 and 𝑣 is differentiable at 𝑦0 = 𝑢(𝑥0), Then  
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𝑢(𝑥) − 𝑢(𝑥0) = (𝑢
′(𝑥0) + 𝜀1(𝑥))(𝑥 − 𝑥0) w𝑖𝑡ℎ lim

𝑥→𝑥0
𝜀1(𝑥) = 0 

and  

 𝑣(𝑦) − 𝑣(𝑦0) = (𝑣
′(𝑦0) + 𝜀2(𝑦))(𝑦 − 𝑦0) with lim

𝑦→𝑦0
𝜀2(𝑦) = 0. 

For 𝑦 = 𝑢(𝑥) then 𝑦 → 𝑦0when 𝑥 → 𝑥0 (since 𝑢 is continuous at 𝑥0) and from there 

𝑣(𝑢(𝑥)) − 𝑣(𝑢(𝑥0)) = (𝑣
′(𝑢(𝑥0)) + 𝜀2(𝑦)) (𝑢

′(𝑥0) + 𝜀1(𝑥))(𝑥 − 𝑥0) and 

𝑣(𝑢(𝑥)) − 𝑣(𝑢(𝑥0))

𝑥 − 𝑥0
= (𝑣′(𝑢(𝑥0)) + 𝜀2(𝑦)) (𝑢

′(𝑥0) + 𝜀1(𝑥)) 

For 𝑥 → 𝑥0 then 𝑦 → 𝑦0, 𝜀1(𝑥) → 0 and 𝜀2(𝑦) → 0.So 

𝑣(𝑢(𝑥)) − 𝑣(𝑢(𝑥0))

𝑥 − 𝑥0
→ 𝑣′(𝑢(𝑥0)). 𝑢

′(𝑥0). 

Examples 

1) Let the function 𝑓 defined on ℝ+ by 𝑓(𝑥) = cos(3√𝑥 + 𝑥2). 

Putting 𝑓 = 𝑣 ∘ 𝑢 where {
 𝑢(𝑥) = 3√𝑥 + 𝑥2

𝑣(𝑥) = cos 𝑥       
, we have {

 𝑢′(𝑥) = 3√𝑥 + 𝑥2

𝑣′(𝑥) = cos𝑥       
. 

So  

𝑓′(𝑥) = (𝑣′ ∘ 𝑢)(𝑥).𝑢′(𝑥) = −sin(3√𝑥 + 𝑥2) (
3

2√𝑥
+ 2𝑥) 

                                                 = −(
3

2√𝑥
+ 2𝑥) sin(√𝑥 + 𝑥2). 

2) Let the function 𝑔 defined by 𝑔(𝑥) = ln (sin
𝑥+1

2𝑥−3
). 

Putting 𝑔 = 𝑣 ∘ 𝑢 where { 
 𝑢(𝑥) = sin

𝑥+1

2𝑥−3
 

𝑣(𝑥) = ln 𝑥       
, we have 𝑣′(𝑥) =

1

𝑥
. 

So  

𝑔′(𝑥) = (𝑣′ ∘ 𝑢)(𝑥). 𝑢′(𝑥) =
1

sin
𝑥 + 1
2𝑥 − 3

 𝑢′(𝑥). 

Next putting 𝑢 = 𝑣1 ∘ 𝑢1 where { 
 𝑢1(𝑥) =

𝑥+1

2𝑥−3
  

 𝑣1(𝑥) = sin 𝑥 
, we have { 

 𝑢1
′ (𝑥) = −

5

(2𝑥−3)2
 

𝑣1
′ (𝑥) = cos 𝑥       

. 

So  
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𝑢′(𝑥)(𝑥) = (𝑣1
′ ∘ 𝑢1)(𝑥). 𝑢1

′ (𝑥) = cos
𝑥 + 1

2𝑥 − 3
 × (−

5

(2𝑥 − 3)2
). 

So 

𝑔′(𝑥) =
1

sin
𝑥 + 1
2𝑥 − 3

 cos
𝑥 + 1

2𝑥 − 3
 × (−

5

(2𝑥 − 3)2
) = −

5

(2𝑥 − 3)2
cotang

𝑥 + 1

2𝑥 − 3
 

Theorem 4.20 

If 𝑓 is a strictly monotonic continuous function on the interval 𝐼, and differentiable at 𝑥0 in 𝐼 where 

𝑓′(𝑥0) ≠ 0, then the inverse function 𝑓−1 is differentiable at 𝑦0 = 𝑓(𝑥0). And we have: 

(𝑓−1)′(𝑦0) =
1

𝑓′(𝑥0)
=

1

𝑓′[𝑓−1(𝑦0)]
. 

Proof 

Let 𝑓 is differentiable at 𝑥0 in 𝐼 where 𝑓′(𝑥0) ≠ 0, and let 𝑦0 be a point in 𝑓(𝐼) where  

𝑦0 = 𝑓(𝑥0). For every 𝑦 of 𝑓(𝐼) there is a single real number 𝑥 of 𝐼 where 𝑦 = 𝑓(𝑥), since 𝑓 is 

continuous and strictly monotonic on 𝐼, then 𝑓−1 is continuous and strictly monotonic on 𝑓(𝐼) 

(according to the Theorem 4.15), so ∀𝑦 ∈ 𝑓(𝐼): 𝑦 ≠ 𝑦0 ⇒ 𝑥 ≠ 𝑥0.and for 𝑦 ⟶ 𝑦0, then 𝑥 → 𝑥0. 

Putting 𝑔 = 𝑓−1 then 𝑦0 = 𝑓(𝑥0) ⇔ 𝑥0 = 𝑔(𝑦0) and 𝑦 = 𝑓(𝑥) ⇔ 𝑥 = 𝑔(𝑦). So 

lim
𝑦→𝑦0

𝑔(𝑦) − 𝑔(𝑦0)

𝑦 − 𝑦0
= lim
𝑦→𝑦0

𝑥 − 𝑥0
𝑦 − 𝑦0

= lim
𝑥⟶𝑥0

1
𝑦 − 𝑦0
𝑥 − 𝑥0

=
1

𝑓′(𝑥0)
. 

Examples 

1) Let  𝑓:[0;+∞[→ℝ
𝑥→𝑓(𝑥)=𝑥𝑛

. The function 𝑓 is continuous and strictly increasing on the interval 𝐼 = [0;+∞[, 

and from it, 𝑓 accepts an inverse function 𝑓−1 defined, continuous and strictly increasing on the 

interval 𝑓(𝐼) = [0;+∞[, denoted by " √ .  
𝑛  " or " (. )

1

𝑛 ", is called 𝑛th-root function. 

Since: ∀𝑥 ∈ ]0,+∞[: (𝑥𝑛)′ = 𝑛𝑥𝑛−1 ≠ 0, Then the function 𝑓−1 is differentiable at every number 

𝑦 where 𝑦 = 𝑥𝑛 ( i.e. 𝑓−1 is differentiable on the interval ]0,+∞[ ) and we have: 

(𝑓−1)′(𝑦) =
1

𝑓′(𝑥)
=

1

𝑛𝑥𝑛−1
=

1

𝑛 ((𝑦)
1
𝑛)
𝑛−1 =

1

𝑛
𝑦
1
𝑛
−1. 

After changing 𝑥 with 𝑦 we get: 

∀𝑥 ∈ ]0,+∞[: (√𝑥
𝑛 )

′
= (𝑥

1
𝑛)
′

=
1

𝑛
𝑥
1
𝑛
−1. 
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2) Let  
ℎ:]−

𝜋

2
;
𝜋

2
[→ℝ

𝑥→ℎ(𝑥)=tan𝑥
. The function ℎ is continuous and strictly increasing on the interval 𝐼 =

]−
𝜋

2
;
𝜋

2
[, and from it, ℎ accepts an inverse function ℎ−1 defined, continuous and strictly increasing 

on the interval ℎ(𝐼) = ℝ, denoted by " arctan ". Since: ∀𝑥 ∈ ]−
𝜋

2
;
𝜋

2
[ : ℎ′(𝑥) = (tan 𝑥)′ =

1

𝑐𝑜𝑠2𝑥
≠

0. Then the function ℎ−1 is differentiable at every number 𝑦 where 𝑦 = tan 𝑥 ( i.e. ℎ−1 is 

differentiable on ℝ ) and we have: (ℎ−1)′(𝑦) =
1

ℎ′(𝑥)
= 𝑐𝑜𝑠2𝑥 =

1

1+𝑡𝑎𝑛2𝑥
=

1

1+𝑦2
. 

After changing 𝑥 with 𝑦 we get: 

∀𝑥 ∈ ℝ: (arctan 𝑥)′ =
1

1 + 𝑥2
. 

Theorem 4.21 

If the function 𝑓 has an extremum at point 𝑥0 and is differentiable at 𝑥0 then 𝑓′(𝑥0) = 0. 

Proof 

The existence of 𝑓′(𝑥0) entails the existence and equality of 𝑓′(𝑥0 + 0) and 𝑓′(𝑥0 − 0). Assume 

that 𝑓(𝑥0) is a maximum, then exists a neighbourhood 𝑉𝑥0 of the point 𝑥0 where∀𝑥 ∈ 𝑉𝑥0:  

𝑓(𝑥) ≤ 𝑓(𝑥0). So if 𝑥 > 𝑥0 then 
𝑓(𝑥)−𝑓(𝑥0)

𝑥−𝑥0
≤ 0 and if 𝑥 < 𝑥0 then 

𝑓(𝑥)−𝑓(𝑥0)

𝑥−𝑥0
≥ 0. So 

𝑓′(𝑥0) = 𝑓
′(𝑥0 + 0) = lim

𝑥
<
→𝑥0

𝑓(𝑥)−𝑓(𝑥0)

𝑥−𝑥0
≥ 0 and 

𝑓′(𝑥0) = 𝑓
′(𝑥0 − 0) = lim

𝑥
>
→𝑥0

𝑓(𝑥)−𝑓(𝑥0)

𝑥−𝑥0
≤ 0. 

This implies that 𝑓′(𝑥0) = 0 

4.4.4 Mean value theorem 

4.4.4.1 Rolle's Theorem 

Theorem 4 22 

If a function 𝑓 [𝑎, 𝑏]  →  ℝ  is continuous on the closed interval [𝑎, 𝑏] and differentiable on the 

open interval ]𝑎, 𝑏[ and 𝑓(𝑎)  = 𝑓(𝑏), then there exists a point 𝑐 in ]𝑎, 𝑏[ such that 𝑓′(c) = 0. 

Proof 

Since the function 𝑓 is continuous on [𝑎, 𝑏], there exist a points 𝑥m and 𝑥M in [𝑎, 𝑏] where 𝑓 take 

their minimum and maximum values respectively. 

If 𝑓(𝑥m) = 𝑓(𝑥M) then the function 𝑓 is constant on [𝑎, 𝑏] so in this case we have: ∀𝑥 ∈
]𝑎; 𝑏[: 𝑓′(𝑥) = 0. 
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If 𝑓(𝑥m) < 𝑓(𝑥M) then since 𝑓(𝑎)  = 𝑓(𝑏) one of the two points 𝑥m and 𝑥M belongs to the open 

interval ]𝑎, 𝑏[. We denote it by 𝑐. According to the theorem 4.21 we obtain 𝑓′(c) = 0. 

4.4.4.1 Mean value theorem 

Theorem 4 23 (Lagrange’s theorem) 

If a function 𝑓 [𝑎, 𝑏]  →  ℝ  is continuous on the closed interval [𝑎, 𝑏] and differentiable on the 

open interval ]𝑎, 𝑏[, then there exists a point 𝑐 ∈]𝑎, 𝑏[ such that 𝑓(𝑏) − 𝑓(𝑎) = 𝑓′(𝑐)(𝑏 − 𝑎). 

Proof 

It suffices to verify that the function 𝑔, defined on the interval [𝑎, 𝑏] by 𝑔(𝑥) = 𝑓(𝑥) −
𝑓(𝑏)−𝑓(𝑎)

𝑏−𝑎
𝑥, satisfies the conditions of Theorem 4.22. Then there is at least one number c in the 

interval ]𝑎, 𝑏[which satisfies 𝑔′(𝑐) = 0 therefore 𝑓′(𝑐) =
𝑓(𝑏)−𝑓(𝑎)

𝑏−𝑎
. 

Remark 

This theorem is used in approximate calculations and in proving many inequalities. 

Example 

Using the mean value theorem, prove that: ∀𝑥 ≥ 0: 
𝑥

1+𝑥
≤ ln(𝑥 + 1) ≤ 𝑥. 

Answer 

By applying the mean value theorem to the function 𝑓(𝑥) = ln(𝑥 + 1) on the interval [0⏟
𝑎

; 𝑥⏟
𝑏

] 

where 𝑥 ≥ 0, we get: 

  ∀𝑥 ≥ 0 ∶  ln(𝑥 + 1)⏟      
𝑓(𝑏)

− ln1⏟
𝑓(𝑎)

= 𝑓′(𝑐)(𝑥⏟
𝑏

− 0⏟
𝑎

)    ,    0⏟
𝑎

< c < 𝑥⏟
𝑏

. 

So 

                ln(𝑥 + 1) = 𝑓′(𝑐)𝑥 =
1

1 + 𝑐
⋅ 𝑥     ,     0 < c < 𝑥.  

We have 

  0 < c < 𝑥 ⟹
1

1 + 𝑥
<

1

1 + 𝑐
< 1⟹

𝑥

1 + 𝑥
≤

1

1 + 𝑐
𝑥 ≤ 𝑥. 

We obtain 

∀𝑥 ≥ 0 ∶
𝑥

1 + 𝑥
≤ ln(𝑥 + 1) ≤ 𝑥. 

For example if 𝑥 = 0.02 then 0.0196 ≤
0.02

1.02
≤ ln(1.02) ≤ 0.02. 
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4.4.4.3 Generalized mean value theorem 

Theorem 4 24 (Cauchy's theorem) 

If a functions 𝑓, 𝑔 [𝑎, 𝑏]  →  ℝ  are continuous on the closed interval [𝑎, 𝑏] and differentiable on 

the open interval ]𝑎, 𝑏[, and 𝑔′ is non-zero in the interval ]𝑎, 𝑏[ then there exists a point 𝑐 ∈]𝑎, 𝑏[ 

such that 
𝑓(𝑏)−𝑓(𝑎)

𝑔(𝑏)−𝑔(𝑎)
=

𝑓′(𝑐)

𝑔′(𝑐)
. 

Proof 

We have (∀𝑥 ∈ ]𝑎 ; 𝑏[: 𝑔′(𝑥) ≠ 0) ⟹ (𝑔(𝑏) ≠ 𝑔(𝑎)), so it is suffices to verify that the function 

φ, defined on the interval [𝑎, 𝑏] by φ(𝑥) = 𝑓(𝑥) −
𝑓(𝑏)−𝑓(𝑎)

𝑔(𝑏)−𝑔(𝑎)
𝑔(𝑥), satisfies the conditions of 

theorem 4.22. Then there is at least one number c in the interval ]𝑎, 𝑏[ which satisfies φ′(𝑐) = 0 

therefore 
𝑓′(𝑐)

𝑔′(𝑐)
=
𝑓(𝑏)−𝑓(𝑎)

𝑏−𝑎
. 

Theorem 4 25 (Hospital Rule) 

Let 𝑓 and 𝑔 be a continuous functions on a neighbourhood 𝑉𝑎  of the point 𝑎 and differentiable on 

𝑉 − {𝑎} then:  

If the lim
𝑥→𝑎

𝑓′(𝑥)

𝑔′(𝑥)
 exists, then the lim

𝑥→𝑎

𝑓(𝑥)−𝑓(𝑎)

𝑔(𝑥)−𝑔(𝑎)
 exists also and lim

𝑥→𝑎

𝑓′(𝑥)

𝑔′(𝑥)
= lim
𝑥→𝑎

𝑓(𝑥)−𝑓(𝑎)

𝑔(𝑥)−𝑔(𝑎)
. 

In particular if 𝑓(𝑎) = 𝑔(𝑎) = 0 we have lim
𝑥→𝑎

𝑓′(𝑥)

𝑔′(𝑥)
= lim
𝑥→𝑎

𝑓(𝑥)

𝑔(𝑥)
. 

Proof 

Assume that lim
𝑥→𝑎

𝑓′(𝑥)

𝑔′(𝑥)
= ℓ. 

If 𝑥 > 𝑎 (If 𝑥 < 𝑎, respectively ) by applying the theorem 4 24 on the interval [𝑎, 𝑥] (on the 

interval [𝑥, 𝑎] respectively ) we get: 

𝑓(𝑥) − 𝑓(𝑎)

𝑔(𝑥) − 𝑔(𝑎)
=
𝑓′(𝑐)

𝑔′(𝑐)
  where  𝑐 between 𝑎 and 𝑥. 

So  (𝑥 → 𝑎) ⟹ (𝑐 → 𝑎) ⟹ 
𝑓′(𝑐)

𝑔′(𝑐)
→ ℓ ⟹ 

𝑓(𝑥)−𝑓(𝑎)

𝑔(𝑥)−𝑔(𝑎)
→ ℓ. So lim

𝑥→𝑎

𝑓′(𝑥)

𝑔′(𝑥)
= lim
𝑥→𝑎

𝑓(𝑥)

𝑔(𝑥)
= ℓ. 

Remarks 

1) The Hospital Rule remains true if 𝑓 and 𝑔 are not defined in 𝑎, but have two finite limits. 

2) The Hospital Rule can be applied several times in a row. 

3) The Hospital Rule can be applied in the following cases: 

a) lim
𝑥→∞

𝑓(𝑥) = 0 and lim
𝑥→∞

𝑔(𝑥) = 0. 
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b) ) lim
𝑥→𝑎

𝑓(𝑥) = ∞ and lim
𝑥→𝑎

𝑔(𝑥) = ∞. 

c) ) lim
𝑥→∞

𝑓(𝑥) = ∞ and lim
𝑥→∞

𝑔(𝑥) = ∞. 

Examples 

1) lim
𝑥→1

√𝑥+3−2

𝑥−1
 ( I.F 

0

0
 ). 

lim
𝑥→1

√𝑥 + 3 − 2

𝑥 − 1
= lim
𝑥→1

1

2√𝑥 + 3
1

=
1

4
. 

2) lim
𝑥→0

𝑒𝑥−𝑥−1

𝑥2
 ( I.F 

0

0
 ). 

lim
𝑥→0

𝑒𝑥 − 𝑥 − 1

𝑥2
= lim
𝑥→0

𝑒𝑥 − 1

2𝑥
= lim
𝑥→0

𝑒𝑥

2
=
1

2
. 

3) lim
𝑥→+∞

 𝑒𝑥+𝑥²

𝑥3−𝑥+1
 ( I.F 

∞

∞
 ). 

 lim
𝑥→+∞

 𝑒𝑥+𝑥²

𝑥3−𝑥+1
= lim
𝑥→+∞

 𝑒𝑥+2𝑥

3𝑥2−1
= lim 𝑒𝑥

𝑥→+∞

 𝑒𝑥+1

6𝑥
= lim

𝑥→+∞

 𝑒𝑥

6
= +∞. 

4) lim
𝑥→+∞

2𝑥2

𝑥+3
ln
𝑥−1

𝑥+2
 ( I.F ∞.0 ) 

 lim
𝑥→+∞

2𝑥2

𝑥+3
ln
𝑥−1

𝑥+2
= lim
𝑥→+∞

2𝑥

𝑥+3
lim
𝑥→+∞

ln
𝑥−1

𝑥+2
1

𝑥

. 

Calculate lim
𝑥→+∞

ln
𝑥−1

𝑥+2
1

𝑥

 ( I.F 
0

0
 ). 

lim
𝑥→+∞

ln
𝑥 − 1
𝑥 + 2
1
𝑥

= lim
𝑥→+∞

(ln
𝑥 − 1
𝑥 + 2)

′

(
1
𝑥)

′ = lim
𝑥→+∞

3
(𝑥 + 2)(𝑥 − 1)

−
1
𝑥2

= −3 

So lim
𝑥→+∞

2𝑥2

𝑥+3
ln
𝑥−1

𝑥+2
= 2 × (−3) = −6. 
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Chapter Five: Elementary functions 

5.1 Inverse Trigonometric functions 

5.1.1 Arcsine Function 

Definition 5.1 

The function 𝑓 defined in the interval 𝐼 = [−
𝜋

2
;
𝜋

2
] by 𝑓(𝑥) = sin 𝑥, is continuous and strictly 

increasing in the interval 𝐼, it accepts an inverse function 𝑓−1 that is defined, continuous and 

strictly increasing on the interval 𝑓(𝐼) = [−1; 1]. We denote the function 𝑓−1 by "arcsin" or 

"sin−1". And  we have ∀𝑥 ∈ [−
𝜋

2
;
𝜋

2
] ; ∀𝑦 ∈ [−1; 1] ∶ 𝑦 = sin 𝑥 ⟺ 𝑥 = arcsin 𝑦. 

Derived Function 

We have ∀𝑥 ∈ ]−
𝜋

2
;
𝜋

2
[ : 𝑓′(𝑥) = (sin 𝑥)′ = cos 𝑥 ≠ 0. 

According to the Theorem 4.20 then, the function " arcsin " is differentiable at every number 𝑦 

where 𝑦 = sin 𝑥 ( i.e. on the interval ]−1; 1[ ) and we have:  

[𝑓−1(𝑦)]′ =
1

𝑓′(𝑥)
                                      

 =
1

cos 𝑥
                   

                                                                  =
1

√1 − sin2𝑥
 (
Since cos2 𝑥 + sin2 𝑥 = 1, and 

  𝑥 ∈ ]−
𝜋
2 ;
𝜋
2
[ ⟹ cos𝑥 > 0

)    

         =
1

√1 − 𝑦2
.                   

After changing 𝑥 with 𝑦 we get: 

∀𝑥 ∈ ]−1; 1[ ∶ (arcsin 𝑥)′ =
1

√1 − 𝑥2
. 

5.1.2 Arccosine Function 
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Definition 5.2 

The function 𝑔 defined in the interval 𝐼 = [0; 𝜋] by 𝑔(𝑥) = cos𝑥, is continuous and strictly 

decreasing in the interval 𝐼, it accepts an inverse function 𝑔−1 that is defined, continuous and 

strictly decreasing on the interval 𝑔(𝐼) = [−1; 1]. We denote the function 𝑔−1 by "arccos" or 

"cos−1". And we have ∀𝑥 ∈ [0; 𝜋]; ∀𝑦 ∈ [−1; 1] ∶ 𝑦 = cos 𝑥 ⟺ 𝑥 = arccos 𝑦. 

Derived Function 

We have ∀𝑥 ∈ ]0; 𝜋[: 𝑔′(𝑥) = (cos 𝑥)′ = −sin 𝑥 ≠ 0. 

Then the function " arccos " is differentiable at every number 𝑦 where 𝑦 = cos 𝑥 ( i.e. on the 

interval ]−1; 1[ ) and we have:  

[𝑔−1(𝑦)]′ =
1

𝑔′(𝑥)
                                      

 =
1

−sin 𝑥
                   

                                                                  =
1

−√1 − sin2𝑥
 (
Since cos2 𝑥 + sin2 𝑥 = 1, and 

  𝑥 ∈ ]0;𝜋[ ⟹ sin 𝑥 > 0
)    

         =
1

−√1 − 𝑦2
.                   

After changing 𝑥 with 𝑦 we get: 

∀𝑥 ∈ ]−1; 1[ ∶ (arccos 𝑥)′ =
−1

√1 − 𝑥2
. 

5.1.3 Arctangent Function 

Definition 5.3 

The function ℎ defined in the interval 𝐼 = ]−
𝜋

2
;
𝜋

2
[by ℎ(𝑥) = tan 𝑥, is continuous and strictly 

increasing in the interval 𝐼, it accepts an inverse function ℎ−1 that is defined, continuous and 

strictly increasing on the interval ℎ(𝐼) = ℝ. We denote the function ℎ−1 by " arctan " or "tan−1". 

And we have ∀𝑥 ∈ ]−
𝜋

2
;
𝜋

2
[ ; ∀𝑦 ∈ ℝ ∶ 𝑦 = tan 𝑥 ⟺ 𝑥 = arctan 𝑦. 

Derived function 

We have ∀𝑥 ∈ ]−
𝜋

2
;
𝜋

2
[ : ℎ′(𝑥) = (tan 𝑥)′ =

1

cos2 𝑥
≠ 0  

Then, the function " arctan " is differentiable at every number 𝑦 where 𝑦 = tan 𝑥 ( i.e. on ℝ ) and 

we have:  
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[𝑔−1(𝑦)]′ =
1

𝑔′(𝑥)
                                      

 = cos2 𝑥                   

=
1

1 + tan2 𝑥
           

         =
1

1 + 𝑦2
.                         

After changing 𝑥 with 𝑦 we get: 

∀𝑥 ∈ ℝ ∶ (arctan 𝑥)′ =
1

1 + 𝑥2
. 

5.1.4 Arccotangent Function 

Definition 5.4 

The function 𝑘 defined in the interval 𝐼 = ]0; 𝜋[ by 𝑘(𝑥) = cotan 𝑥, is continuous and strictly 

decreasing in the interval 𝐼, it accepts an inverse function 𝑘−1 that is defined, continuous and 

strictly decreasing on the interval 𝑘(𝐼) = ℝ. We denote the function 𝑘−1 by " arccotan " or 

" cotan−1 ". And we have ∀𝑥 ∈ ]0;𝜋[; ∀𝑦 ∈ ℝ ∶ 𝑦 = cotan 𝑥 ⟺ 𝑥 = arccotan 𝑦. 

Derived function 

Similarly we have  

∀𝑥 ∈ ℝ ∶ (arccotan 𝑥)′ = −
1

1 + 𝑥2
. 

Properties 

1) ∀𝑥 ∈ [−1; 1] ∶ arcsin 𝑥 + arccos 𝑥 =
𝜋

2
. 

2) ∀𝑥 ∈ [−1 ; 1] ∶ sin(arccos 𝑥) = √1 − 𝑥2. 

3) ∀𝑥 ∈ [−1; 1] ∶ cos(arcsin 𝑥) = √1 − 𝑥2. 

4) ∀𝑥 ∈ ℝ ∶ arc tan 𝑥 + arc cotan 𝑥 =
𝜋

2
. 

5) ∀𝑥 > 0 ∶ arctan 𝑥 + arctan
1

𝑥
=
𝜋

2
. 

6) ∀𝑥 < 0 ∶ arctan 𝑥 + arctan
1

𝑥
= −

𝜋

2
.  

Proof 

1) We put ∀𝑥 ∈ [−1; 1]: 𝑓(𝑥) = arcsin 𝑥 + arccos 𝑥. 
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We have ∀𝑥 ∈ ]−1; 1[: 𝑓′(𝑥) =
1

√1−𝑥²
−

1

√1−𝑥²
= 0. So the function 𝑓  is constant in the interval 

[−1; 1]. So ∀𝑥 ∈ [−1; 1]: 𝑓(𝑥) = 𝑓(0) =
𝜋

2
. 

2) We have ∀𝑥 ∈ [−1; 1] ∶ arc sin 𝑥 𝑥 ∈ [−
𝜋

2
;
𝜋

2
] ⟹ cos(arc sin 𝑥) ≥ 0. So  

∀𝑥 ∈ [−1; 1]: cos(arc sin 𝑥) = √1 − (sin (arc sin 𝑥))
2
= √1− 𝑥2. 

6) We put ∀𝑥 < 0 ∶ 𝑓(𝑥) = arc tan 𝑥 + arc tan
1

𝑥
. We have  

∀𝑥 < 0 ∶ 𝑓′(𝑥) =
1

1+𝑥2
−

1

𝑥2
1

1+(
1

𝑥
)
2 = 0. So the function 𝑓  is constant in the interval ]−∞; 0[. So 

∀𝑥 ∈ ]−∞;0[: 𝑓(𝑥) = 𝑓(−1) = −
𝜋

4
−
𝜋

4
= −

𝜋

2
. 

Remark 

The properties of inverse trigonometric functions are deduced from the properties of trigonometric 

functions. For example, property 1 is deduced from the property: sin (
𝜋

2
− 𝛼) = cos𝛼, which we 

will explain later. 

We have 
𝜋

2
− 𝛼 ∈ [−

𝜋

2
;
𝜋

2
] ⇔ 𝛼 ∈ [0, 𝜋]. 

By putting cos𝛼 = 𝑥 we get 𝛼 = arc cos 𝑥 and we have  

sin (
𝜋

2
− 𝛼) = cos𝛼 ⇔ sin (

𝜋

2
− 𝛼) = 𝑥 

                                        ⇔
𝜋

2
− 𝛼 = arc sin 𝑥 

                                                    ⇔
𝜋

2
− arc cos 𝑥 = arc sin 𝑥 

                                                    ⇔
𝜋

2
= arc cos 𝑥 + arc sin 𝑥. 

5.2 Hyperbolic functions and their inverses 

5.2.1 Hyperbolic functions 

Definition 5.5 The hyperbolic sine function, which we denote by “sh,” is defined as  

∀𝑥 ∈ ℝ: sh 𝑥 =
𝑒𝑥 − 𝑒−𝑥

2
 

Definition 5.6 The hyperbolic cosine function, which we denote by “ch,” is defined as  

∀𝑥 ∈ ℝ: ch 𝑥 =
𝑒𝑥 + 𝑒−𝑥

2
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Definition 5.7 The hyperbolic tangent function, which we denote by “th,” is defined as  

∀𝑥 ∈ ℝ: th 𝑥 =
𝑠ℎ 𝑥

𝑐ℎ 𝑥
=
𝑒𝑥 − 𝑒−𝑥

𝑒𝑥 + 𝑒−𝑥
 

Definition 5.8 The hyperbolic cotangent function, which we denote by “th,” is defined as  

∀𝑥 ∈ ℝ∗: coth 𝑥 =
𝑐ℎ 𝑥

𝑠ℎ 𝑥
=
𝑒𝑥 + 𝑒−𝑥

𝑒𝑥 − 𝑒−𝑥
 

Properties 

For all 𝑥, 𝑦 ∈ ℝ we have: 

1) 𝑠ℎ (−𝑥) = −𝑠ℎ 𝑥   ،   𝑐ℎ (−𝑥) = 𝑐ℎ 𝑥. 

2) 1 − 𝑡ℎ2 𝑥 =
1

𝑐ℎ2𝑥
،ch2𝑥 − 𝑠ℎ2𝑥 = 1. 

3) 𝑐ℎ(𝑥 + 𝑦) = 𝑐ℎ 𝑥 𝑐ℎ 𝑦 + 𝑠ℎ 𝑥 𝑠ℎ𝑦. 

4) 𝑠ℎ(𝑥 + 𝑦) = 𝑐ℎ 𝑥 𝑠ℎ 𝑦 + 𝑠ℎ 𝑥 𝑐ℎ 𝑦. 

5) 𝑡ℎ(𝑥 + 𝑦) =
𝑡ℎ 𝑥+𝑡ℎ 𝑦

1+𝑡ℎ 𝑥 𝑡ℎ 𝑦
. 

6)   (𝑠ℎ 𝑥)′ = 𝑐ℎ 𝑥    , (𝑐ℎ 𝑥)′ = 𝑠ℎ 𝑥 , (𝑡ℎ 𝑥)′ =
1

𝑐ℎ2𝑥
  , (𝑐𝑜𝑡ℎ 𝑥)′ = −

1

𝑠ℎ2𝑥
 . 

5.2.2 Inverses Hyperbolic functions  

Definition 5.9 

The function 𝑓 defined in the interval 𝐼 = [0;+∞[ by 𝑓(𝑥) = ch 𝑥, is continuous and strictly 

increasing in the interval 𝐼, it accepts an inverse function 𝑓−1 that is defined, continuous and 

strictly increasing on the interval 𝑓(𝐼) = [1;+∞[. We denote the function 𝑓−1 by " arg ch " or 

"ch−1".And we have: 

∀𝑥 > 0;∀𝑦 > 1 ∶ 𝑦 = ch 𝑥 ⟺ 𝑐ℎ 𝑥 =
𝑒𝑥 + 𝑒−𝑥

2
                                                                     

⟺ 𝑒2𝑥 − 2𝑦𝑒𝑥 + 1 = 0.          

       ⟺

{
 
 

 
 𝑥 = ln (𝑦 + √𝑦² − 1)

𝑥 = ln (𝑦 − √𝑦² − 1)

          

                                                              ⟺ 𝑥 = ln(𝑦 − √𝑦² − 1) ( because ln (𝑦 − √𝑦2 − 1) ≤ 0 ).  

After changing 𝑥 with 𝑦 we get: 
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∀𝑥 ≥ 1 ∶ arg ch 𝑥 = ln(𝑥 + √𝑥2 − 1). 

Derived Function: ∀𝑥 ∈ ]1;+∞[ ∶ (arg ch 𝑥)′ =
1

√𝑥2−1
. 

Definition 5.10 

The function 𝑔 defined in the interval 𝐼 = ℝ by 𝑔(𝑥) = sh 𝑥, is continuous and strictly increasing 

in the interval 𝐼, it accepts an inverse function 𝑔−1 that is defined, continuous and strictly 

increasing on the interval 𝑓(𝐼) = ℝ. We denote the function 𝑔−1 by " arg sh " or " sh−1 ". And we 

have: 

∀𝑥 ∈ ℝ ∶ arg sh 𝑥 = ln(𝑥 + √𝑥2 + 1). 

Derived function 

∀𝑥 ∈ ℝ ∶ (arg sh 𝑥)′ =
1

√𝑥2 + 1
. 

Definition 5.11 

The function ℎ defined in the interval 𝐼 = ℝ by ℎ(𝑥) = th𝑥, is continuous and strictly increasing 

in the interval 𝐼, it accepts an inverse function ℎ−1 that is defined, continuous and strictly 

increasing on the interval ℎ(𝐼) = ]−1; 1[. We denote the function ℎ−1 by " arg th " or " th−1 ". 

And we have: 

∀𝑥 ∈ ]−1; 1[ ∶ arg th 𝑥 =
1

2
ln
1 + 𝑥

1 − 𝑥
. 

Derived function 

∀𝑥 ∈ ]−1; 1[ ∶ (arg th 𝑥)′ =
1

1 − 𝑥2
. 


