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Chapter one: The set of real numbers
1 1.Algebraic structure of the set R

The set of real numbers is a set that we denote by R equipped with the operation of

addition (+) and multiplication (-) and an total ordering relation" < "satisfies the following
Axioms.

Al Vx,y,zER:x+(y+2)=x+y)+z
A2)Vx,yERx+y=y+x.
A3)VxeER:x+0=0+x = x.

Ad)Vx E R:x + (—x) = (—x) + x = 0.
AS5)Vx,y,zER:x-(y-z)=(x-y)-z.

AB)Vx,yER:x-y=y"-x.




A7) VxER:x-1=1-x = x.

A8)Vx ER*:x-x 1 =x"1-x=1.
A)Vx,y,zERx - (y+2z)=x"y+x-z.
Al0) Vx € Rix < x.

Al Vx,y,zER: (x<ysy<z)= (x <2).
AL2)Vx,y e R:(x <yand y<x) = (x =y).
Al3)Vx,y e Rix <y or y < x.
Ald)Vx,y,zER: (x<y)o (x+z<y+2).

Vx,yERVZER:(x<y)e (x-z<y-z)

Als){Vx,ye]R;vZelR*_:(xSy)c)(x-zZy-z)'

Properties
1) vx,y,x",y' €R: (x Sy’ < y') >@+x'<y+y).
2)Vx,y,x',y' € R}: (x <ysx'< y') = @x' <y-y).
4)Vx,y€]Ri:(0<x<y)<:>(0<i<§).

1.2 Absolute value
Definition 1.1 letitbe x € R

The absolute value of the real number x is the positive real number which we denote by
|x|and defined as

|x|_{x, ifx>0
=, ifx <0

Properties : x. y r. is a real numbers where r > 0
1 |x| =0; |—x| =|x|;—]x] < x < |x]

x| =0 =x=0

3) lx.yl = |x||yl

x| _ |

4 ==
) y [v]

5)Ix+yl < x|+ |yl

(y #0)

6)|lx| <re-r<x<r
7)Ix|>rex< —rorx=>r
1.3.Bounded subset in R

Definition 1.2

Let A be a non-empty sub set of R.




- We say that A is bounded from above if and only if:
dbeR; Vxe€A:x<Db
The number b is called upper bound of A
- We say that A is bounded from below if and only if
JaeER;VxeEA:x=>a

The number a is called lower bound of A.
A is bounded if and only if it is bounded from above and below.
Proposition 1.1 The three following conditions are equivalent

1).A is bounded

2)3a€eER; IbeER:VxEA:a<x<h.

3)AMER, ; VxEA: |x|<M
1.3.1 Suppremum, infimum,.maximum and minimum
The least upper bound from A is called supremum of A and denote it by sup A.
The greatest lower bound from A is called infimum of A and denote it by inf A.
If supA € A is called maximum of A and denote it by max A.
IfinfA € Ais called minimum of A and denote it by min A.
Note
If Ais not bounded above (below, respectively) in R we write supA = +oo
(infA = —oo, respectively).
proposition 1.2

1)Let A be bounded from above, then

VxEA:x <M
M=supA<:>I and
Ve>0;3a€edld:-M—¢c<a

2)Let A be bounded from below, then

VxeEA:x=2m
m=ian<:){ and
Ve>0;3d3abeA:m+e>b>b

Proof
1) M is the smallest of the upper bounds if and only if the following proposition is false .

IM <M;Vx€e€A:x <M

So if the proposition VM' < M;3x € A: x > M’, is true.




By puttinge = M — M'(e > 0) so, the last proposition is written in the form:
Ve>0;IAx€EA: M —¢e < x.

2) In the same way we prove the second case

Example

Let A = [1,2[ ; maxA = unvailable ;supA =2;iinfA =1 mindA =1

1.3.2 The Completeness axiom:

Every nonempty subset of real numbers that is bounded from above has a supremum, and
every nonempty subset of real numbers that is bounded from below has an infimum.

1.4 Archimedean axiom
Theorem 1.1:Vx > 0; Vy € R;3n € N: y < nx.

Proof: By contradiction

Suppose that: 3x > 0; Ay e R;Vvn €Ny >nxordx > 0; Iy e R;Vvn e N:n <

’

4
x

then % is an upper bound for N*; hence by the completeness axiom, M = supN™ exists.

So

Ve>0; Ang EN*: M — ¢ < ngandby puttinge = 1,wegetan, EN*: M <ny+1 € N
contradicting the fact that M is an upper bound for N*.

1.5 The integer part of a real number

For every real number x there is a unique integer number which we denote as E(x) or [x],
suchthat E(x) < x <E(x)+1.

E(x) is called the integer part of the real number x.

In other words E(x) is the largest integer less than or equal to x.

Examples

1) For x = 0.13, suppose E(x) = n.
So
(n<013<n+1wheren€Z)= n=0.
So

E(0.13) = 0.
2) For x = —0.13, suppose E(x) = m.
So
(m<-013<m+1wherem € Z)= m=—1.
So

E(-0.13) = —1.

Solved exercises

1) Let A be a subset of real numbers where A = {%, ne N*}.




Specify if possible supA, maxA, inf A, minA.
Solution

WehaveVnEN:n>21=0< % < 1 so the subset A is bounded, according to
completeness axiom supA and inf A exists.

Now we have 1 € A so maxA = supA = 1.

The number 0 is an upper bound for A and 0 & A, let we prove that infA = 0.

For this we will show that Ve > 0; 3b € A:0+&>borVe > 0; In € N*:s>%or‘v’e>

0; 3n € N*: 1 < &n, this last proposition is true according to Archimedean axiom.

2) a) Let A and B be non-empty bounded subsets of real numbers. The set A — B is defined
asA— B ={x—y: x € A,y € B}. Provethat Sup(A — B) = SupA — InfB. and

Inf(A— B) = InfA — SupB.

b) Find the infimum and supremum of the subset T = {% — % :n,meE N*}.

Solution
a) We have
VXEA: XMoo e (D)
M =supAd & and c
Ve>0; ElaEA:M—§<a........(2)
also
VYEB:YyZ2M i i e vee e e e . (3)
m=inf B & and e .
Vs>0;3bEB:m+§>b ......... (4)
VYEB: =y < —Mueee v e e e e e .. (5)
JEN and
€
‘v’s>0;3bEB:—m—§<—b ......... (6)

By adding the inequalities (1) and (5) as well as the inequalities (2) and (6) we get

VXEA;VYEB:X—YS<M—M.uue coii s e .. (7)
and

e .

Vs>O;EIaEA;EleB:M—m—E<a—b ......... (6)

Thus Sup(A — B) = M —m = SupA — InfB.
Similarly, we can prove that: Inf(A — B) = InfA — SupB.

b) We put § = {% ‘n € N*} and by the exercise 1 we have supS = 1 and infS = 0.

Soalsowe have T = {% — i in,me N*} = § — §, and by the question a) we have




Sup(T) =SupS—InfS=1-0=1.
Inf(T) =InfS —SupS=0—-1=—1.
1.6 dense groups in R
Theorem 1.2 (Q is dense in R)
Between any two distinct real numbers there is an rational number.
Proof
Let x and y be two real numbers where x < ysoy —x > 0.
According to Archimedean axiom, 3n € N*:1 <n(y — x) ornx + 1 < ny.

On the other hand we have E(nx) < nx < E(nx) + 1.

So
nx<Emx)+1<nx+1<ny.
So
nx <E(nx)+1<ny
then

E(nx)+1
x<T<

E(nx)+1

It then follows that the rational number r = satisfies x < r < y.

Definition 1.3 |

Irrational numbers are real numbers that are not rational numbers and are symbolized by 1 or

R/Q.
proposition 1.3
The number V2 is an irrational number.

Proof

Assume that\/2 € Q. Then Iets = /2 where p,q € N* and gcd(p.q) = 1.

Thens =2 = p = qV2 = p? = 2q?% = q¢? divide p>.
Since q?and p?prime = q? divide 1 = q = 1. By substitution in the previous equality we
get p? = 2 and this is a contradiction because there is no natural number squared equal to
2.

proposition 1.4

ifx€landr e Q* thenrx €l.

Proof




Assume that x € [ and r € Q*and thatrx € Q and from him:

1 1
(;EQ*OTT}CEQ):;?‘xEQ:xEQ

This is a contradiction because x € I.
Theorem 1.3
Between any two distinct real numbers there is an irrational number.
Proof
Let x,y be a real numbers, where x < y, according to the theorem 1.2, there is a rational
numberr (r # 0) such that: % <r< % orx <rv2< y and according to propositions 1.3
and 1.4 we conclude that rv/2 is a irrational number.
Corollary 1.1 The two sets Q and [ is dense in R.
1.7 Intervals in R
Let a, b a real numbers, where a < b, we define
[a,b] = {x € R:a < x < b}is called closed interval.
a,b[ = {x € R:a < x < b}is called open interval.

a,b[ = {x € R:a < x < b}is called half open interval.

b
ab]_{xER'a<x<b}””””””””””””””””””
) - . —

]
[
]
[a, +oo[ = {x € R: x = a} unbounded closed interval.
]—eo,bl = {x € Rix < p} iy
la, +eo[ = {x € R: x > a} unbounded open interval.
]=eo,b]

oo, b[ = {xx € Rexx < b} """
R = ]—oo, 4o 0000
Theorem 1.4
The nonempty subset I of R is an interval if and only if the following property is satisfied:
Va,bel(a<b);VxeRa<x<b=>x€l

Proof

(<)Necessary condition: It is a clear that: if the set I is a interval, then the property is true.
(=)Sufficient condition: If the property is true, then the set I is a interval.
We have four possible cases, case 1: I is bounded, case 2: I is bounded from above and

unbounded from below, case 3: [ is bounded from below and unbounded from above, case

4: [ is neither bounded from above nor from below.




Let us prove that in the first case then: I = [a,b] or I = [a,b[or] = ]a,b] or I = ]a, b]

wherea = inf I and b = sup I.
Vx€l:x<bh
We have: b=supl & 3 .
Ve>0;3b €l:b—ec<b ....(1)
and

Vx€l:x=>a
a=infl 3 .
V6>0;3a €l:a+6>a ... (2)

casel:Ifa € I and b € I, then:
VxERix€El>a<x<b=>x€][ab]=>1Ic]ab]
Vx ER:x €Ela,b]>a<x<b=>x€l=][ablcl
So
I = [a, b].
case2:lIfa €l and b & I, then:
VxERix€El>a<x<b=>x€lab[=>Ic]ab|
VxER:x€[a,b[2a<x<b=>b—x>0
putting e = b — x in (1) we get x < b and since a,b’ € 1, then:
a<x<b=>x€l=[ablclI
so
= [a, bl[.
case3:Ifa &€ land b € I, then:
VxERix€El=>a<x<b>=>x€lab]l=>1c]a,b]
Vx ER:x €Ela,b]2a<x<b=>x—a>0
By putting § = x — a in (2)we get x > a'and since a,a’ € I, then:
a<x<b=>x€l=]ab]cl.
So
I =]a, b]
cased:If a€land b & I, Then:
VxERixEl2a<x<b=>x€lab[=>1Ic]ab|

Vx ER:x €Ela,b[2a<x<b=>x—a>0andb—x>0.

By puttinge =b —xin(1)and § = x —ain(2)wegetx < b anda’ < x, sincea’,b’ € I,
then:




a<x<b=x€el=]ab[cl
So
I =]a,bl.

In the same way we prove that lis a interval in the other cases.




