Semestre: 01

Unité d'enseignement : Fondamentale

Matière: Analyse1

Crédits: 6

Coefficient: 4

Objectifs de l'enseignement:

Approfondissement de la notion de fonctions de R dans R.

Connaissances préalables recommandées

Principes des mathématiques (Notions d'analyse classique)

...

Analysis 1 program

Chapter one: The set of real numbers

Chapter Tow: Complex numbers

Chapter Three: Real sequences

Chapter Four: Real functions with real variable

Chapter five: Elementary functions

...

Chapter one: The set of real numbers

1 1.Algebraic structure of the set ℝ

The set of real numbers is a set that we denote by $\mathbb R$ equipped with the operation of addition (+) and multiplication (\cdot) and an total ordering relation" \leq "satisfies the following Axioms.

A1) $\forall x, y, z \in \mathbb{R}: x + (y + z) = (x + y) + z$. A2) $\forall x, y \in \mathbb{R}: x + y = y + x$. A3) $\forall x \in \mathbb{R}: x + 0 = 0 + x = x$. A4) $\forall x \in \mathbb{R}: x + (-x) = (-x) + x = 0.$ A5) $\forall x, y, z \in \mathbb{R}: x \cdot (y \cdot z) = (x \cdot y) \cdot z$. A6) $\forall x, y \in \mathbb{R}: x \cdot y = y \cdot x$.

A7) $\forall x \in \mathbb{R}: x \cdot 1 = 1 \cdot x = x$. A8) $\forall x \in \mathbb{R}^* : x \cdot x^{-1} = x^{-1} \cdot x = 1.$ A9) $\forall x, y, z \in \mathbb{R}: x \cdot (y + z) = x \cdot y + x \cdot z$. A10) $\forall x \in \mathbb{R}: x \leq x$. A11) $\forall x, y, z \in \mathbb{R} : (x \le y \le y \le z) \Rightarrow (x \le z).$ A12) $\forall x, y \in \mathbb{R} : (x \le y \text{ and } y \le x) \Rightarrow (x = y)$. A13) $\forall x, y \in \mathbb{R}: x \leq y$ or $y \leq x$. A14) $\forall x, y, z \in \mathbb{R} : (x \le y) \Leftrightarrow (x + z \le y + z).$ A15) $\{ \forall x, y \in \mathbb{R}; \forall z \in \mathbb{R}^*_+ : (x \le y) \Leftrightarrow (x \cdot z \le y \cdot z) \}$ $\forall x, y \in \mathbb{R}, \forall z \in \mathbb{R}^* : (x \leq y) \Leftrightarrow (x \cdot z \geq y \cdot z)$
 $\forall x, y \in \mathbb{R}; \forall z \in \mathbb{R}^* : (x \leq y) \Leftrightarrow (x \cdot z \geq y \cdot z)$

Properties

1)
$$
\forall x, y, x', y' \in \mathbb{R}: (x \le y \le x' \le y') \Rightarrow (x + x' \le y + y').
$$

\n2) $\forall x, y, x', y' \in \mathbb{R}_+^* : (x \le y \le x' \le y') \Rightarrow (x \cdot x' \le y \cdot y').$
\n4) $\forall x, y \in \mathbb{R}_+^* : (0 < x < y) \Leftrightarrow \left(0 < \frac{1}{y} < \frac{1}{x}\right).$

1.2 Absolute value

Definition 1.1 let it be $x \in \mathbb{R}$

The absolute value of the real number x is the positive real number which we denote by $|x|$ and defined as

$$
|x| = \begin{cases} x, & \text{if } x \ge 0 \\ -x, & \text{if } x \le 0 \end{cases}
$$

Properties : x . y r . is a real numbers where $r \ge 0$

1)
$$
|x| \ge 0
$$
; $|-x| = |x|$; $-|x| \le x \le |x|$
\n2) $|x| = 0 \Leftrightarrow x = 0$
\n3) $|x \cdot y| = |x||y|$
\n4) $\left|\frac{x}{y}\right| = \frac{|x|}{|y|} (y \ne 0)$
\n5) $|x + y| \le |x| + |y|$
\n6) $|x| \le r \Leftrightarrow -r \le x \le r$
\n7) $|x| \ge r \Leftrightarrow x \le -r \text{ or } x \ge r$
\n1.3. Bounded subset in \mathbb{R}

Definition 1.2

Let A be a non-empty sub set of ℝ.

- We say that A is bounded from above if and only if:

 $\exists b \in \mathbb{R}$; $\forall x \in A : x \leq b$

The number b is called upper bound of A

- We say that A is bounded from below if and only if

 $\exists a \in \mathbb{R}$; $\forall x \in A : x \ge a$

The number *a* is called lower bound of A.

A is bounded if and only if it is bounded from above and below.

Proposition 1.1 The three following conditions are equivalent

1*).A is bounded*

2) $\exists a \in \mathbb{R}$; $\exists b \in \mathbb{R}$: $\forall x \in A : a \leq x \leq b$.

3) ∃ $M \in \mathbb{R}_+^*$; $\forall x \in A : |x| \leq M$

1.3.1 Suppremum, infimum,.maximum and minimum

The least upper bound from A is called supremum of A and denote it by sup A.

The greatest lower bound from A is called infimum of A and denote it by inf A.

If supA \in *A is called maximum of A and denote it by max A.*

If inf $A \in A$ *is called minimum of A and denote it by min A.*

Note

If A is not bounded above (below, respectively) in $\mathbb R$ we write $\sup A = +\infty$

 $(infA = -\infty, respectively).$

proposition 1.2

1)Let be bounded from above, then

$$
M = \sup A \Leftrightarrow \begin{cases} \forall x \in A : x \le M \\ \text{and} \\ \forall \varepsilon > 0 \; ; \; \exists a \in A : M - \varepsilon < a \end{cases}
$$

2)Let be bounded from below, then

$$
m = \inf A \Leftrightarrow \begin{cases} \forall x \in A : x \ge m \\ \text{and} \\ \forall \varepsilon > 0 : \exists b \in A : m + \varepsilon > b \end{cases}
$$

Proof

1) M is the smallest of the upper bounds if and only if the following proposition is false .

 $\exists M' \leq M; \forall x \in A : x \leq M'$

 S *o* if the proposition $\forall M' < M$; $\exists x \in A : x > M'$, is true.

By putting $\varepsilon = M - M'(\varepsilon > 0)$ so, the last proposition is written in the form:

 $\forall \varepsilon > 0$; $\exists x \in A : M - \varepsilon < x$.

2) In the same way we prove the second case

Example

Let $A = \begin{bmatrix} 1, & 2 \end{bmatrix}$; $max A = unvalue$; $sup A = 2$; i $inf A = 1$ $min A = 1$

1.3.2 **The Completeness axiom***:*

Every nonempty subset of real numbers that is bounded from above has a **supremum**, and every nonempty subset of real numbers that is bounded from below has an **infimum**.

1.4 Archimedean axiom

Theorem $\mathbf{1.1:} \forall x > 0; \forall y \in \mathbb{R}$; $\exists n \in \mathbb{N}^* : y < nx$.

Proof: By contradiction

Suppose that: $\exists x > 0$; $\exists y \in \mathbb{R}$; $\forall n \in \mathbb{N}^*$: $y \ge nx$ or $\exists x > 0$; $\exists y \in \mathbb{R}$; $\forall n \in \mathbb{N}^*$: $n \le \frac{y}{x}$ $\frac{y}{x}$

then $\frac{y}{x}$ is an upper bound for \mathbb{N}^* ; hence by the completeness axiom, $M = \text{ sup} \mathbb{N}^*$ exists.

So

 $\forall \varepsilon > 0$; $\exists n_0 \in \mathbb{N}^* : M - \varepsilon < n_0$ and by putting $\varepsilon = 1$, we get $\exists n_0 \in \mathbb{N}^* : M < n_0 + 1 \in \mathbb{N}^*$; contradicting the fact that M is an upper bound for \mathbb{N}^* .

1.5 The integer part of a real number

For every real number x there is a unique integer number which we denote as $E(x)$ or $[x]$, such that $E(x) \leq x < E(x) + 1$.

 $E(x)$ is called the integer part of the real number x.

In other words $E(x)$ is the largest integer less than or equal to x.

Examples

\n- 1) For
$$
x = 0.13
$$
, suppose $E(x) = n$.
\n- So $(n \leq 0.13 < n + 1 \text{ where } n \in \mathbb{Z}) \Rightarrow n = 0.$
\n- So $E(0.13) = 0.$
\n- 2) For $x = -0.13$, suppose $E(x) = m$.
\n- So $(m \leq -0.13 < m + 1 \text{ where } m \in \mathbb{Z}) \Rightarrow m = -1.$
\n- So $E(-0.13) = -1.$
\n

Solved exercises

1) Let A be a subset of real numbers where $A = \left\{\frac{1}{n}\right\}$ $\frac{1}{n}$; $n \in \mathbb{N}^*$. Specify if possible $supA$, $maxA$, $infA$, $minA$.

Solution

We have $\forall n \in \mathbb{N}^* \colon n \geq 1 \Longrightarrow 0 < \frac{1}{n}$ $\frac{1}{n} \leq 1$ so the subset A is bounded, according to completeness axiom $supA$ and $infA$ exists.

Now we have $1 \in A$ so $maxA = supA = 1$.

The number 0 is an upper bound for A and $0 \notin A$, let we prove that $\inf A = 0$.

For this we will show that $\forall \varepsilon > 0$; $\exists b \in A : 0 + \varepsilon > b$ or $\forall \varepsilon > 0$; $\exists n \in \mathbb{N}^* : \varepsilon > \frac{1}{n}$ $\frac{1}{n}$ or $\forall \varepsilon >$ 0; $\exists n \in \mathbb{N}^* : 1 \leq \varepsilon n$, this last proposition is true according to Archimedean axiom.

2) a) Let A and B be non-empty bounded subsets of real numbers. The set $A - B$ is defined as $A - B = \{x - y : x \in A, y \in B\}$. Prove that $Sup(A - B) = Sup A - Inf B$. and $Inf(A - B) = InfA - SupB.$

b) Find the infimum and supremum of the subset $T = \left\{\frac{1}{n}\right\}$ $\frac{1}{n} - \frac{1}{n}$ $\frac{1}{m}$: $n, m \in \mathbb{N}^*$.

Solution

a) We have

$$
M = \sup A \Longleftrightarrow \begin{cases} \forall x \in A : x \le M \dots \dots \dots \dots \dots \dots \dots (1) \\ \text{and} \\ \forall \varepsilon > 0 : \exists a \in A : M - \frac{\varepsilon}{2} < a \dots \dots \dots (2) \end{cases}
$$

also

 = ⟺ { ∀ ∈ ∶ ≥ …… … … … … … … . . (3) and ∀ > 0 ; ∃ ∈ ∶ + 2 > … … … (4) . ⟺ { ∀ ∈ ∶ − ≤ − … … … … … … … … . . (5) and ∀ > 0 ; ∃ ∈ ∶ − − 2 < − … … … (6)

By adding the inequalities (1) and (5) as well as the inequalities (2) and (6) we get

$$
\begin{cases}\n\forall x \in A; \forall y \in B: x - y \le M - m \dots \dots \dots \dots \dots \dots \dots \dots (7) \\
\text{and} \\
\forall \varepsilon > 0; \exists a \in A; \exists b \in B: M - m - \frac{\varepsilon}{2} < a - b \dots \dots \dots (6)\n\end{cases}
$$

Thus $\text{S}uv(A - B) = M - m = \text{S}uvA - InfB$. Similarly, we can prove that: $Inf(A - B) = Inf A - Sup B$. b) We put $S = \left\{\frac{1}{n}\right\}$ $\frac{1}{n}$: $n \in \mathbb{N}^*$ and by the exercise 1 we have $supS = 1$ and $infS = 0$. So also we have $T = \left\{\frac{1}{n}\right\}$ $\frac{1}{n} - \frac{1}{m}$ $\frac{1}{m} : n, m \in \mathbb{N}^* \big\} = S - S$, and by the question a) we have

$$
Sup(T) = SupS - InfS = 1 - 0 = 1.
$$

$$
Inf(T) = InfS - SupS = 0 - 1 = -1.
$$

1.6 dense groups in ℝ

Theorem 1.2 ($\mathbb Q$ is dense in $\mathbb R$)

Between any two distinct real numbers there is an rational number.

Proof

Let x and y be two real numbers where $x < y$ so $y - x > 0$ *.*

 $\mathsf{According\ to\ } Archimedean\ axiom, \exists n\in\mathbb{N}^* \colon 1 < n(y - x) \text{ or } nx + 1 < ny.$

On the other hand we have $E(nx) \leq nx \leq E(nx) + 1$.

So

$$
nx < E(nx) + 1 \le nx + 1 < ny.
$$

So

$$
nx < E(nx) + 1 < ny
$$

then

$$
x < \frac{E(nx) + 1}{n} < y.
$$

It then follows that the rational number $r = \frac{E(nx)+1}{n}$ $\frac{x}{n}$ satisfies $x < r < y$.

Definition 1.3 I

Irrational numbers are real numbers that are not rational numbers and are symbolized by I *or* ℝ/ℚ*.*

proposition *1.3*

The number $\sqrt{2}$ *is an irrational number.*

Proof

Assume <code>that</code> $\sqrt{2} \in \mathbb{Q}$ *. Then let* $\frac{p}{q} = \sqrt{2}$ *where* $p, q \in \mathbb{N}^*$ *and* $gcd(p, q) = 1$ *.*

Then $\frac{p}{q} = \sqrt{2} \Longrightarrow p = q\sqrt{2} \Longrightarrow p^2 = 2q^2 \Longrightarrow q^2$ divide p^2 .

Since q^2 and p^2 prime $\Longrightarrow q^2$ divide $1 \Longrightarrow q=1$. By substitution in the previous equality we g et $\,p^2=2$ and this is a contradiction because there is no natural number squared equal to 2*.*

proposition *1.4*

if $x \in I$ *and* $r \in Q$ $*$ *then* $rx \in I$.

Proof

Assume that $x \in I$ *and* $r \in \mathbb{Q}^*$ *and that* $rx \in \mathbb{Q}$ *and from him:*

$$
\left(\frac{1}{r} \in \mathbb{Q}^* \text{or } rx \in \mathbb{Q}\right) \Rightarrow \frac{1}{r} rx \in \mathbb{Q} \Rightarrow x \in \mathbb{Q}
$$

This is a contradiction because $x \in I$.

Theorem 1.3

Between any two distinct real numbers there is an irrational number.

Proof

Let x, y be a real numbers, where $x < y$ *, according to the theorem 1.2, there is a rational number* r *(* $r \neq 0$ *)* such that: $\frac{x}{\sqrt{2}} < r < \frac{y}{\sqrt{2}}$ $\frac{y}{\sqrt{2}}$ or $x < r\sqrt{2} < y$ and according to propositions 1.3 and 1.4 we conclude that $r\sqrt{2}$ is a irrational number.

Corollary 1.1 The two sets Q and I is dense in \mathbb{R} .

1.7 Intervals in ℝ

Let a, b *a real numbers, where* $a < b$, we define

 $[a, b] = \{x \in \mathbb{R} : a \le x \le b\}$ *is called closed interval.* $[a, b] = \{x \in \mathbb{R} : a < x < b\}$ *is called open interval.* $[a, b] = \{x \in \mathbb{R} : a \le x < b\}$ *is called half open interval.*],] = { ∈ ℝ: < ≤ } *" " " " " " " " " " " " " " " " " "* $[a, +\infty] = \{x \in \mathbb{R} : x \ge a\}$ unbounded closed interval.]−*∞*,] = { ∈ ℝ: ≤ } *" " " " " " " " " " " " " " " " " "* $[a, +\infty] = \{x \in \mathbb{R} : x > a\}$ *unbounded open interval.*]−*∞*, [= { ∈ ℝ: < } *" " " " " " " " " " " " " " " " " " "* ℝ =]−∞, +*∞*[*" " " " " " " " " " " " " " " " " " " "*

Theorem 1.4

The nonempty subset I of ℝ *is an interval if and only if the following property is satisfied:*

 $\forall a, b \in I \ (a \leq b)$; $\forall x \in \mathbb{R} : a \leq x \leq b \Rightarrow x \in I$

Proof

 $\left(\leftarrow$ **Necessary condition**: It is a clear that: if the set *I* is a interval, then the property is true.

(⇒)Sufficient condition: If the property is true, then the set *I* is a interval.

We have four possible cases, case 1: I is bounded, case 2: I is bounded from above and unbounded from below, case $3: I$ is bounded from below and unbounded from above, case 4: I is neither bounded from above nor from below.

Let us prove that in the first case then: $I = [a, b]$ or $I = [a, b]$ or $I = [a, b]$ or $I = [a, b]$ where $a = inf I$ and $b = sup I$. *We have:* $b = \sup I \Leftrightarrow$ $\forall x \in I : x \leq b$

and

$$
a = \inf I \Leftrightarrow \begin{cases} \forall x \in I : x \ge a \\ y \\ \forall \delta > 0 \; ; \; \exists a' \in I : a + \delta > a' \dots (2) \end{cases}
$$

و $\forall \varepsilon > 0$; $\exists b^{'} \in I : b - \varepsilon < b^{'} (1)$

.

.

case 1: *If* $a \in I$ and $b \in I$, then:

$$
\forall x \in \mathbb{R}: x \in I \Rightarrow a \le x \le b \Rightarrow x \in [a, b] \Rightarrow I \subset [a, b]
$$

$$
\forall x \in \mathbb{R}: x \in [a, b] \Rightarrow a \le x \le b \Rightarrow x \in I \Rightarrow [a, b] \subset I
$$

So

$$
I=[a,b].
$$

case 2: *If* $a \in I$ and $b \notin I$, then:

$$
\forall x \in \mathbb{R}: x \in I \Rightarrow a \le x < b \Rightarrow x \in [a, b] \Rightarrow I \subset [a, b]
$$
\n
$$
\forall x \in \mathbb{R}: x \in [a, b] \Rightarrow a \le x < b \Rightarrow b - x > 0
$$

 $\textit{putting}\ \varepsilon = b - x\ \textit{in}\ (1)\ \textit{we get}\ x < b'\ \textit{and since}\ a,b^{'}\in I\ \textit{then:}$

$$
a \le x < b^{\prime} \Rightarrow x \in I \Rightarrow [a, b] \subset I
$$

so

 $I = [a, b].$

case 3: *If* $a \notin I$ and $b \in I$, then:

$$
\forall x \in \mathbb{R}: x \in I \Rightarrow a < x \le b \Rightarrow x \in [a, b] \Rightarrow I \subset [a, b]
$$
\n
$$
\forall x \in \mathbb{R}: x \in [a, b] \Rightarrow a < x \le b \Rightarrow x - a > 0
$$

By putting $\delta = x - a$ *in (2)we get* $x > a^{'}$ *and since* $a, a^{'} \in I$ *, then:*

$$
a^{'} < x \leq b \Rightarrow x \in I \Rightarrow [a, b] \subset I.
$$

So

$$
I=[a,b]
$$

case 4: *If* $a \notin I$ and $b \notin I$, Then:

$$
\forall x \in \mathbb{R}: x \in I \Rightarrow a < x < b \Rightarrow x \in [a, b] \Rightarrow I \subset [a, b]
$$
\n
$$
\forall x \in \mathbb{R}: x \in [a, b] \Rightarrow a < x < b \Rightarrow x - a > 0 \text{ and } b - x > 0.
$$

By putting $\varepsilon = b - x$ *in (1) and* $\delta = x - a$ *in (2) we get* $x < b'$ *and* $a' < x$ *, since* $a', b' \in I$ *, then:*

$$
a^{'} < x \leq b^{'} \Rightarrow x \in I \Rightarrow \left] a, b \right[\subset I.
$$

So

$I =]a, b[$.

In the same way we prove that is a interval in the other cases.