Semestre: 01

Unité d'enseignement : Fondamentale

Matière: Analyse1

Crédits: 6

Coefficient: 4

Objectifs de l'enseignement:

Approfondissement de la notion de fonctions de R dans R.

Connaissances préalables recommandées

Principes des mathématiques (Notions d'analyse classique)

.....

Analysis 1 program

Chapter one: The set of real numbers

Chapter Tow: Complex numbers

Chapter Three: Real sequences

Chapter Four: Real functions with real variable

Chapter five: Elementary functions

.....

Chapter one: The set of real numbers

1 1.Algebraic structure of the set ${\mathbb R}$

The set of real numbers is a set that we denote by \mathbb{R} equipped with the operation of addition (+) and multiplication (·) and an total ordering relation" \leq "satisfies the following Axioms.

A1) $\forall x, y, z \in \mathbb{R}: x + (y + z) = (x + y) + z.$ A2) $\forall x, y \in \mathbb{R}: x + y = y + x.$ A3) $\forall x \in \mathbb{R}: x + 0 = 0 + x = x.$ A4) $\forall x \in \mathbb{R}: x + (-x) = (-x) + x = 0.$ A5) $\forall x, y, z \in \mathbb{R}: x \cdot (y \cdot z) = (x \cdot y) \cdot z.$ A6) $\forall x, y \in \mathbb{R}: x \cdot y = y \cdot x.$ A7) $\forall x \in \mathbb{R}: x \cdot 1 = 1 \cdot x = x.$ A8) $\forall x \in \mathbb{R}^*: x \cdot x^{-1} = x^{-1} \cdot x = 1.$ A9) $\forall x, y, z \in \mathbb{R}: x \cdot (y + z) = x \cdot y + x \cdot z.$ A10) $\forall x \in \mathbb{R}: x \leq x.$ A11) $\forall x, y, z \in \mathbb{R}: (x \leq y \land y \leq z) \Rightarrow (x \leq z).$ A12) $\forall x, y \in \mathbb{R}: (x \leq y \text{ and } y \leq x) \Rightarrow (x = y).$ A13) $\forall x, y \in \mathbb{R}: x \leq y \text{ or } y \leq x.$ A14) $\forall x, y, z \in \mathbb{R}: (x \leq y) \Leftrightarrow (x + z \leq y + z).$ A15) $\begin{cases} \forall x, y \in \mathbb{R}; \forall z \in \mathbb{R}^*_+: (x \leq y) \Leftrightarrow (x \cdot z \leq y \cdot z) \\ \forall x, y \in \mathbb{R}; \forall z \in \mathbb{R}^*_-: (x \leq y) \Leftrightarrow (x \cdot z \geq y \cdot z). \end{cases}$

Properties

1)
$$\forall x, y, x', y' \in \mathbb{R}: (x \le y \cdot y') \Rightarrow (x + x' \le y + y').$$

2) $\forall x, y, x', y' \in \mathbb{R}^*_+: (x \le y \cdot y') \Rightarrow (x \cdot x' \le y \cdot y').$
4) $\forall x, y \in \mathbb{R}^*_+: (0 < x < y) \Leftrightarrow (0 < \frac{1}{y} < \frac{1}{x}).$

1.2 Absolute value

Definition 1.1 let it be $x \in \mathbb{R}$

The absolute value of the real number x is the positive real number which we denote by |x| and defined as

$$|x| = \begin{cases} x, & \text{if } x \ge 0\\ -x, & \text{if } x \le 0 \end{cases}$$

Properties : *x*. *y r*. is a real numbers where $r \ge 0$

1)
$$|x| \ge 0$$
; $|-x| = |x|$; $-|x| \le x \le |x|$
2) $|x| = 0 \Leftrightarrow x = 0$
3) $|x.y| = |x||y|$
4) $\left|\frac{x}{y}\right| = \frac{|x|}{|y|} (y \ne 0)$
5) $|x + y| \le |x| + |y|$
6) $|x| \le r \Leftrightarrow -r \le x \le r$
7) $|x| \ge r \Leftrightarrow x \le -r \text{ or } x \ge r$
1.3.Bounded subset in \mathbb{R}
Definition 1.2

Let A be a non-empty sub set of \mathbb{R} .

- We say that A is bounded from above if and only if:

 $\exists b \in \mathbb{R}$; $\forall x \in A : x \leq b$

The number *b* is called upper bound of A

- We say that A is bounded from below if and only if

 $\exists a \in \mathbb{R}$; $\forall x \in A : x \ge a$

The number *a* is called lower bound of *A*.

A is bounded if and only if it is bounded from above and below.

Proposition 1.1 The three following conditions are equivalent

1).A is bounded

2) $\exists a \in \mathbb{R}$; $\exists b \in \mathbb{R} : \forall x \in A : a \leq x \leq b$.

3) $\exists M \in \mathbb{R}^*_+$; $\forall x \in A : |x| \le M$

1.3.1 Suppremum, infimum, maximum and minimum

The least upper bound from A is called supremum of A and denote it by sup A.

The greatest lower bound from A is called infimum of A and denote it by inf A.

If $sup A \in A$ is called maximum of A and denote it by max A.

If $inf A \in A$ is called minimum of A and denote it by min A.

Note

If A is not bounded above (below, respectively) in \mathbb{R} we write $supA = +\infty$

 $(infA = -\infty, respectively).$

proposition 1.2

1)Let A be bounded from above, then

$$M = \sup A \Leftrightarrow \begin{cases} \forall x \in A : x \le M \\ and \\ \forall \varepsilon > 0 ; \exists a \in A : M - \varepsilon < a \end{cases}$$

2)Let A be bounded from below, then

$$m = \inf A \Leftrightarrow \begin{cases} \forall x \in A : x \ge m \\ and \\ \forall \varepsilon > 0 ; \exists b \in A : m + \varepsilon > b \end{cases}$$

Proof

1) M is the smallest of the upper bounds if and only if the following proposition is false.

 $\exists M' < M; \forall x \in A : x \leq M'$

So if the proposition $\forall M' < M$; $\exists x \in A : x > M'$, is true.

By putting $\varepsilon = M - M'(\varepsilon > 0)$ so, the last proposition is written in the form:

 $\forall \varepsilon > 0$; $\exists x \in A : M - \varepsilon < x$.

2) In the same way we prove the second case

Example

Let A = [1,2]; maxA = unvailable; supA = 2; i infA = 1 minA = 1

1.3.2 The Completeness axiom:

Every nonempty subset of real numbers that is bounded from above has a **supremum**, and every nonempty subset of real numbers that is bounded from below has an **infimum**.

1.4 Archimedean axiom

Theorem 1.1: $\forall x > 0$; $\forall y \in \mathbb{R}$; $\exists n \in \mathbb{N}^*$: y < nx.

Proof: By contradiction

Suppose that: $\exists x > 0$; $\exists y \in \mathbb{R}$; $\forall n \in \mathbb{N}^*$: $y \ge nx$ or $\exists x > 0$; $\exists y \in \mathbb{R}$; $\forall n \in \mathbb{N}^*$: $n \le \frac{y}{x}$,

then $\frac{y}{r}$ is an upper bound for \mathbb{N}^* ; hence by the completeness axiom, $M = \sup \mathbb{N}^*$ exists.

So

 $\forall \varepsilon > 0$; $\exists n_0 \in \mathbb{N}^* : M - \varepsilon < n_0$ and by putting $\varepsilon = 1$, we get $\exists n_0 \in \mathbb{N}^* : M < n_0 + 1 \in \mathbb{N}^*$; contradicting the fact that M is an upper bound for \mathbb{N}^* .

1.5 The integer part of a real number

For every real number x there is a unique integer number which we denote as E(x) or [x], such that $E(x) \le x < E(x) + 1$.

E(x) is called the integer part of the real number x.

In other words E(x) is the largest integer less than or equal to x.

Examples

1) For
$$x = 0.13$$
, suppose $E(x) = n$.
So
 $(n \le 0.13 < n + 1 \text{ where } n \in \mathbb{Z}) \Longrightarrow n = 0$.
So
 $E(0.13) = 0$.
2) For $x = -0.13$, suppose $E(x) = m$.
So
 $(m \le -0.13 < m + 1 \text{ where } m \in \mathbb{Z}) \Longrightarrow m = -1$.
So
 $E(-0.13) = -1$.

Solved exercises

1) Let *A* be a subset of real numbers where $A = \left\{\frac{1}{n}; n \in \mathbb{N}^*\right\}$.

Specify if possible *supA*, *maxA*, *infA*, *minA*.

Solution

We have $\forall n \in \mathbb{N}^*$: $n \ge 1 \implies 0 < \frac{1}{n} \le 1$ so the subset *A* is bounded, according to completeness axiom *supA* and *infA* exists.

Now we have $1 \in A$ so maxA = supA = 1.

The number 0 is an upper bound for A and $0 \notin A$, let we prove that inf A = 0.

For this we will show that $\forall \varepsilon > 0$; $\exists b \in A: 0 + \varepsilon > b$ or $\forall \varepsilon > 0$; $\exists n \in \mathbb{N}^*: \varepsilon > \frac{1}{n}$ or $\forall \varepsilon > 0$; $\exists n \in \mathbb{N}^*: 1 < \varepsilon n$, this last proposition is true according to Archimedean axiom.

2) a) Let A and B be non-empty bounded subsets of real numbers. The set A - B is defined as $A - B = \{x - y : x \in A, y \in B\}$. Prove that Sup(A - B) = SupA - InfB. and Inf(A - B) = InfA - SupB.

b) Find the infimum and supremum of the subset $T = \left\{\frac{1}{n} - \frac{1}{m} : n, m \in \mathbb{N}^*\right\}$.

Solution

a) We have

also

By adding the inequalities (1) and (5) as well as the inequalities (2) and (6) we get

Thus Sup(A - B) = M - m = SupA - InfB. Similarly, we can prove that: Inf(A - B) = InfA - SupB. b) We put $S = \left\{\frac{1}{n} : n \in \mathbb{N}^*\right\}$ and by the exercise 1 we have supS = 1 and infS = 0. So also we have $T = \left\{\frac{1}{n} - \frac{1}{m} : n, m \in \mathbb{N}^*\right\} = S - S$, and by the question a) we have

$$Sup(T) = SupS - InfS = 1 - 0 = 1.$$

 $Inf(T) = InfS - SupS = 0 - 1 = -1.$

1.6 dense groups in ${\mathbb R}$

Theorem 1.2 (\mathbb{Q} is dense in \mathbb{R})

Between any two distinct real numbers there is an rational number.

Proof

Let x and y be two real numbers where x < y so y - x > 0.

According to Archimedean axiom, $\exists n \in \mathbb{N}^*: 1 < n(y - x) \text{ or } nx + 1 < ny$.

On the other hand we have $E(nx) \le nx < E(nx) + 1$.

So

$$nx < E(nx) + 1 \le nx + 1 < ny.$$

So

$$nx < E(nx) + 1 < ny$$

then

$$x < \frac{E(nx) + 1}{n} < y.$$

It then follows that the rational number $r = \frac{E(nx)+1}{n}$ satisfies x < r < y.

Definition 1.3 I

Irrational numbers are real numbers that are not rational numbers and are symbolized by I or $\mathbb{R}/\mathbb{Q}.$

proposition 1.3

The number $\sqrt{2}$ is an irrational number.

Proof

Assume that $\sqrt{2} \in \mathbb{Q}$. Then let $\frac{p}{q} = \sqrt{2}$ where $p, q \in \mathbb{N}^*$ and gcd(p,q) = 1.

Then $\frac{p}{q} = \sqrt{2} \Longrightarrow p = q\sqrt{2} \Longrightarrow p^2 = 2q^2 \Longrightarrow q^2$ divide p^2 .

Since q^2 and p^2 prime $\Rightarrow q^2$ divide $1 \Rightarrow q = 1$. By substitution in the previous equality we get $p^2 = 2$ and this is a contradiction because there is no natural number squared equal to 2.

proposition 1.4

if $x \in I$ and $r \in Q *$ then $rx \in I$.

Proof

Assume that $x \in I$ and $r \in \mathbb{Q}^*$ and that $rx \in \mathbb{Q}$ and from him:

$$\left(\frac{1}{r} \in \mathbb{Q}^* \text{ or } rx \in \mathbb{Q}\right) \Rightarrow \frac{1}{r} rx \in \mathbb{Q} \Rightarrow x \in \mathbb{Q}$$

This is a contradiction because $x \in I$.

Theorem 1.3

Between any two distinct real numbers there is an irrational number.

Proof

Let x, y be a real numbers, where x < y, according to the theorem 1.2, there is a rational number $r \ (r \neq 0)$ such that: $\frac{x}{\sqrt{2}} < r < \frac{y}{\sqrt{2}}$ or $x < r\sqrt{2} < y$ and according to propositions 1.3 and 1.4 we conclude that $r\sqrt{2}$ is a irrational number.

Corollary 1.1 The two sets \mathbb{Q} and *I* is dense in \mathbb{R} .

1.7 Intervals in ${\mathbb R}$

Let a, b a real numbers, where a < b, we define

Theorem 1.4

The nonempty subset I of \mathbb{R} is an interval if and only if the following property is satisfied:

 $\forall a, b \in I \ (a \le b); \ \forall x \in \mathbb{R}: a \le x \le b \Rightarrow x \in I$

Proof

(\leftarrow)Necessary condition: It is a clear that: if the set I is a interval, then the property is true.

 (\Rightarrow) Sufficient condition: If the property is true, then the set *I* is a interval.

We have four possible cases, case 1: *I* is bounded, case 2: *I* is bounded from above and unbounded from below, case 3: *I* is bounded from below and unbounded from above, case 4: *I* is neither bounded from above nor from below.

$$\forall \varepsilon > 0 ; \exists b' \in I : b - \varepsilon < b' \dots \dots (1)$$

and

$$a = \inf I \Leftrightarrow \begin{cases} \forall x \in I : x \ge a \\ g \\ \forall \delta > 0 ; \exists a' \in I : a + \delta > a' \dots \dots (2) \end{cases}$$

case 1: If $a \in I$ and $b \in I$, then:

$$\forall x \in \mathbb{R} : x \in I \Rightarrow a \le x \le b \Rightarrow x \in [a, b] \Rightarrow I \subset [a, b]$$
$$\forall x \in \mathbb{R} : x \in [a, b] \Rightarrow a \le x \le b \Rightarrow x \in I \Rightarrow [a, b] \subset I$$

So

$$I = [a, b].$$

case 2: If $a \in I$ and $b \notin I$, then:

$$\forall x \in \mathbb{R} : x \in I \Rightarrow a \le x < b \Rightarrow x \in [a, b] \Rightarrow I \subset [a, b]$$
$$\forall x \in \mathbb{R} : x \in [a, b] \Rightarrow a \le x < b \Rightarrow b - x > 0$$

putting $\varepsilon = b - x$ in (1) we get x < b' and since $a, b' \in I$, then:

$$a \leq x < b' \Rightarrow x \in I \Rightarrow [a, b] \subset I$$

SO

I = [a, b[.

case 3: If $a \notin I$ and $b \in I$, then:

$$\forall x \in \mathbb{R} : x \in I \Rightarrow a < x \le b \Rightarrow x \in]a, b] \Rightarrow I \subset]a, b]$$
$$\forall x \in \mathbb{R} : x \in]a, b] \Rightarrow a < x \le b \Rightarrow x - a > 0$$

By putting $\delta = x - a$ in (2)we get x > a and since $a, a \in I$, then:

$$a' < x \le b \Rightarrow x \in I \Rightarrow]a, b] \subset I.$$

So

$$I =]a, b]$$

case 4: If $a \notin I$ and $b \notin I$, Then:

$$\forall x \in \mathbb{R} : x \in I \Rightarrow a < x < b \Rightarrow x \in]a, b[\Rightarrow I \subset]a, b[$$
$$\forall x \in \mathbb{R} : x \in]a, b[\Rightarrow a < x < b \Rightarrow x - a > 0 \text{ and } b - x > 0.$$

By putting $\varepsilon = b - x$ in (1) and $\delta = x - a$ in (2) we get x < b' and a' < x, since $a', b' \in I$, then:

$$a' < x \le b' \Rightarrow x \in I \Rightarrow]a, b[\subset I.$$

So

I =]a, b[.

In the same way we prove that I is a interval in the other cases.