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Chapter one: The set of real numbers 

1 1.Algebraic structure of the set ℝ 

The set of real numbers is a set that we denote by ℝ equipped with the operation of 

the following  satisfies" ≤" relation total ordering nd ana) ⋅( and multiplication (+) addition
Axioms. 

A1) ∀𝑥, 𝑦, 𝑧 ∈ ℝ: 𝑥 + (𝑦 + 𝑧) = (𝑥 + 𝑦) + 𝑧. 

A2) ∀𝑥, 𝑦 ∈ ℝ: 𝑥 + 𝑦 = 𝑦 + 𝑥. 

A3) ∀𝑥 ∈ ℝ: 𝑥 + 0 = 0 + 𝑥 = 𝑥. 

A4) ∀𝑥 ∈ ℝ: 𝑥 + (−𝑥) = (−𝑥) + 𝑥 = 0. 

A5) ∀𝑥, 𝑦, 𝑧 ∈ ℝ: 𝑥 ∙ (𝑦 ∙ 𝑧) = (𝑥 ∙ 𝑦) ∙ 𝑧. 

A6) ∀𝑥, 𝑦 ∈ ℝ: 𝑥 ∙ 𝑦 = 𝑦 ∙ 𝑥. 
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A7) ∀𝑥 ∈ ℝ: 𝑥 ∙ 1 = 1 ∙ 𝑥 = 𝑥. 

A8) ∀𝑥 ∈ ℝ∗: 𝑥 ∙ 𝑥−1 = 𝑥−1 ∙ 𝑥 = 1. 

A9) ∀𝑥, 𝑦, 𝑧 ∈ ℝ: 𝑥 ∙ (𝑦 + 𝑧) = 𝑥 ∙ 𝑦 + 𝑥 ∙ 𝑧. 

A10) ∀𝑥 ∈ ℝ: 𝑥 ≤ 𝑥. 

A11) ∀𝑥, 𝑦, 𝑧 ∈ ℝ: (𝑥 ≤ 𝑦 و  𝑦 ≤ 𝑧) ⇒ (𝑥 ≤ 𝑧). 

A12) ∀𝑥, 𝑦 ∈ ℝ: (𝑥 ≤ 𝑦 and  𝑦 ≤ 𝑥) ⇒ (𝑥 = 𝑦). 

A13) ∀𝑥, 𝑦 ∈ ℝ: 𝑥 ≤ 𝑦  or  𝑦 ≤ 𝑥. 

A14) ∀𝑥, 𝑦, 𝑧 ∈ ℝ: (𝑥 ≤ 𝑦 ) ⇔ (𝑥 + 𝑧 ≤ 𝑦 + 𝑧). 

A15) {
∀𝑥, 𝑦 ∈ ℝ; ∀𝑧 ∈ ℝ+

∗ : ( 𝑥 ≤ 𝑦 ) ⇔ ( 𝑥 ∙ 𝑧 ≤ 𝑦 ∙ 𝑧)

∀𝑥, 𝑦 ∈ ℝ; ∀𝑧 ∈ ℝ−
∗ : ( 𝑥 ≤ 𝑦 ) ⇔ ( 𝑥 ∙ 𝑧 ≥ 𝑦 ∙ 𝑧)

. 

Properties 

   1) ∀𝑥, 𝑦, 𝑥′, 𝑦′ ∈ ℝ: (𝑥 ≤ 𝑦و𝑥′ ≤ 𝑦′) ⇒ (𝑥 + 𝑥′ ≤ 𝑦 + 𝑦′). 

   2) ∀𝑥, 𝑦, 𝑥′, 𝑦′ ∈ ℝ+
∗ : (𝑥 ≤ 𝑦 و𝑥′ ≤ 𝑦′) ⇒ (𝑥 ∙ 𝑥′ ≤ 𝑦 ∙ 𝑦′). 

   4) ∀𝑥, 𝑦 ∈ ℝ+
∗ : (0 < 𝑥 < 𝑦 ) ⇔ (0 <

1

𝑦
<

1

𝑥
). 

1.2 Absolute value 

Definition 1.1 let it be 𝑥 ∈ ℝ  

The absolute value of the real number 𝑥 is the positive  real number which we denote by 
|𝑥|and defined as 

|𝑥| = {
𝑥, if 𝑥 ≥ 0

−𝑥, if 𝑥 ≤ 0
 

Properties : 𝑥. 𝑦 𝑟. is a real numbers where 𝑟 ≥ 0 

1) |𝑥| ≥ 0; |−𝑥| = |𝑥| ; −|𝑥| ≤ 𝑥 ≤ |𝑥| 

2)|𝑥| = 0 ⟺ 𝑥 = 0 

3) |𝑥. 𝑦| = |𝑥||𝑦| 

4) |
𝑥

𝑦
| =

|𝑥|

|𝑦|
  (𝑦 ≠ 0) 

5) |𝑥 + 𝑦| ≤ |𝑥| + |𝑦| 

6) |𝑥| ≤ 𝑟 ⟺ −𝑟 ≤ 𝑥 ≤ 𝑟 

7) |𝑥| ≥ 𝑟 ⟺ 𝑥 ≤ −𝑟 𝑜𝑟𝑥 ≥ 𝑟 

1.3.Bounded subset in ℝ 

Definition 1.2 

Let A be a non-empty sub set of ℝ. 
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- We say that A is bounded from above if and only if: 

∃𝑏 ∈ ℝ ; ∀𝑥 ∈ 𝐴 ∶ 𝑥 ≤ 𝑏  

The number 𝑏 is called upper bound of A  

- We say that A is bounded from below if and only if 

∃𝑎 ∈ ℝ ;  ∀𝑥 ∈ 𝐴 ∶ 𝑥 ≥ 𝑎 

The number 𝑎 is called lower bound of 𝐴. 

A is bounded if and only if it is bounded from above and below.  

Proposition 1.1 The three following  conditions are equivalent 

1).A is bounded 

2) ∃𝑎 ∈ ℝ ; ∃𝑏 ∈ ℝ ∶ ∀𝑥 ∈ 𝐴 ∶ 𝑎 ≤ 𝑥 ≤ 𝑏. 

3) ∃𝑀 ∈ ℝ+
∗  ;  ∀𝑥 ∈ 𝐴 ∶ |𝑥| ≤ 𝑀 

1.3.1 Suppremum, infimum,.maximum and minimum  

The least upper bound from A  is called supremum of A and denote it by sup A. 

The greatest lower bound from A  is called infimum of A and denote it by inf A. 

If 𝑠𝑢𝑝𝐴 ∈ 𝐴 is called maximum of 𝐴 and denote it by max 𝐴. 

If 𝑖𝑛𝑓𝐴 ∈ 𝐴 is called minimum of 𝐴 and denote it by min 𝐴. 

Note 

If  A is not bounded above (below, respectively) in ℝ we write 𝑠𝑢𝑝𝐴 = +∞  

(𝑖𝑛𝑓𝐴 = −∞, respectively). 

proposition 1.2 

1)Let 𝐴 be bounded from above, then 

𝑀 = sup 𝐴 ⟺ {
∀𝑥 ∈ 𝐴 ∶ 𝑥 ≤ 𝑀 

and
∀𝜀 > 0 ; ∃𝑎 ∈ 𝐴 ∶ 𝑀 − 𝜀 < 𝑎

 

2)Let 𝐴 be bounded from below, then 

𝑚 = 𝑖𝑛𝑓 𝐴 ⟺ {
∀𝑥 ∈ 𝐴 ∶ 𝑥 ≥ 𝑚

and
∀𝜀 > 0 ; ∃𝑏 ∈ 𝐴 ∶ 𝑚 + 𝜀 > 𝑏

 

Proof 

1) M is the smallest of the upper bounds if and only if the following proposition is false . 

∃𝑀′ < 𝑀; ∀𝑥 ∈ 𝐴 ∶ 𝑥 ≤ 𝑀′ 

So if the proposition ∀𝑀′ < 𝑀; ∃𝑥 ∈ 𝐴 ∶ 𝑥 > 𝑀′, is true. 
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By putting ε = 𝑀 − 𝑀′(𝜀 > 0) so, the last proposition is written in the form: 

∀𝜀 > 0 ; ∃𝑥 ∈ 𝐴 ∶ 𝑀 − 𝜀 < 𝑥. 

2) In the same way we prove the second case 

Example 

Let 𝐴 = [1,2[ ;   𝑚𝑎𝑥𝐴 = unvailable ;𝑠𝑢𝑝𝐴 =2 ; i 𝑖𝑛𝑓𝐴 = 1 𝑚𝑖𝑛𝐴 = 1 

1.3.2 The Completeness axiom: 

Every nonempty subset of real numbers that is bounded from above has a supremum, and 
every nonempty subset of real numbers that is bounded from below has an infimum. 

1.4 Archimedean axiom 

Theorem 1.1:∀𝑥 > 0; ∀𝑦 ∈ ℝ ; ∃𝑛 ∈ ℕ∗: 𝑦 < 𝑛𝑥. 

Proof: By contradiction 

Suppose that: ∃𝑥 > 0; ∃𝑦 ∈ ℝ ; ∀𝑛 ∈ ℕ∗: 𝑦 ≥ 𝑛𝑥 or ∃𝑥 > 0; ∃𝑦 ∈ ℝ ; ∀𝑛 ∈ ℕ∗: 𝑛 ≤  
𝑦

𝑥
, 

then 
𝑦

𝑥
 is an upper bound for ℕ∗; hence by the completeness axiom, 𝑀 =  supℕ∗ exists. 

So 

∀𝜀 > 0 ; ∃𝑛0 ∈ ℕ∗ ∶ 𝑀 − 𝜀 < 𝑛0 and by putting ε = 1,we get ∃𝑛0 ∈ ℕ∗ ∶ 𝑀 < 𝑛0 + 1 ∈ ℕ∗; 
contradicting the fact that 𝑀 is an upper bound for ℕ∗. 

1.5 The integer part of a real number 

For every real number 𝑥 there is a unique integer number which we denote as E(𝑥) or [𝑥], 
such that E(𝑥) ≤ 𝑥 < E(𝑥) + 1 . 

E(𝑥) is called the integer part of the real number 𝑥. 

In other words E(𝑥) is the largest integer less than or equal to 𝑥. 

Examples 

1) For 𝑥 = 0.13, suppose 𝐸(𝑥) = 𝑛. 
So  
(𝑛 ≤ 0.13 < 𝑛 + 1 where 𝑛 ∈ ℤ)⟹  𝑛 = 0. 
So  

𝐸(0.13) = 0. 
2) For 𝑥 = −0.13, suppose 𝐸(𝑥) = 𝑚. 
So  
(𝑚 ≤ −0.13 < 𝑚 + 1 where 𝑚 ∈ ℤ)⟹  𝑚 = −1. 
So  

𝐸(−0.13) = −1. 

Solved exercises 

1) Let 𝐴 be a subset of real numbers where 𝐴 = {
1

𝑛
;  𝑛 ∈ ℕ∗}. 
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Specify if possible 𝑠𝑢𝑝𝐴, 𝑚𝑎𝑥𝐴, 𝑖𝑛𝑓𝐴, 𝑚𝑖𝑛𝐴. 

Solution 

We have ∀𝑛 ∈ ℕ∗: 𝑛 ≥ 1 ⟹ 0 <
1

𝑛
≤ 1 so the subset 𝐴 is bounded, according to 

completeness axiom 𝑠𝑢𝑝𝐴 and 𝑖𝑛𝑓𝐴 exists. 

Now we have 1 ∈ 𝐴 so 𝑚𝑎𝑥𝐴 = 𝑠𝑢𝑝𝐴 = 1. 

The number 0  is an upper bound for 𝐴 and 0 ∉ 𝐴, let we prove that 𝑖𝑛𝑓𝐴 = 0. 

For this we will show that ∀𝜀 > 0; ∃𝑏 ∈ 𝐴: 0 + 𝜀 > 𝑏 or ∀𝜀 > 0; ∃𝑛 ∈ ℕ∗: 𝜀 >
1

𝑛
 or ∀𝜀 >

0; ∃𝑛 ∈ ℕ∗: 1 < 𝜀𝑛, this last proposition is true according to Archimedean axiom. 

2) a) Let 𝐴 and 𝐵 be non-empty bounded subsets of real numbers. The set 𝐴 − 𝐵 is defined 
as 𝐴 −  𝐵 =  {𝑥 −  𝑦 ∶  𝑥 ∈  𝐴, 𝑦 ∈  𝐵}. Prove that 𝑆𝑢𝑝(𝐴 −  𝐵 ) = 𝑆𝑢𝑝𝐴 − 𝐼𝑛𝑓𝐵. and 

𝐼𝑛𝑓(𝐴 −  𝐵 ) = 𝐼𝑛𝑓𝐴 − 𝑆𝑢𝑝𝐵. 

b) Find the infimum and supremum of the subset 𝑇 = {
1

𝑛
−

1

𝑚
∶ 𝑛, 𝑚 ∈ ℕ∗}. 

Solution 

a) We have  

𝑀 = sup 𝐴 ⟺ {

∀𝑥 ∈ 𝐴 ∶ 𝑥 ≤ 𝑀 … … … … … … … … . (1)
and

∀𝜀 > 0 ; ∃𝑎 ∈ 𝐴 ∶ 𝑀 −
𝜀

2
< 𝑎 … … . . (2)

               

also 

𝑚 = 𝑖𝑛𝑓 𝐵 ⟺ {

∀𝑦 ∈ 𝐵 ∶ 𝑦 ≥ 𝑚 … … … … … … … … . . (3)
and

∀𝜀 > 0 ;  ∃𝑏 ∈ 𝐵 ∶ 𝑚 +
𝜀

2
> 𝑏 … … … (4)

. 

                           ⟺ {

∀𝑦 ∈ 𝐵 ∶ −𝑦 ≤ −𝑚 … … … … … … … … . . (5)
and

∀𝜀 > 0 ; ∃𝑏 ∈ 𝐵 ∶ −𝑚 −
𝜀

2
< −𝑏 … … … (6)

 

By adding the inequalities (1) and (5) as well as the inequalities (2) and (6) we get 

{

∀𝑥 ∈ 𝐴 ; ∀𝑦 ∈ 𝐵: 𝑥 − 𝑦 ≤ 𝑀 − 𝑚 … … … … … … … … . . (7)
and

∀𝜀 > 0 ; ∃𝑎 ∈ 𝐴; ∃𝑏 ∈ 𝐵 ∶ 𝑀 − 𝑚 −
𝜀

2
< 𝑎 − 𝑏 … … … (6)

. 

Thus 𝑆𝑢𝑝(𝐴 −  𝐵 ) = 𝑀 − 𝑚 = 𝑆𝑢𝑝𝐴 − 𝐼𝑛𝑓𝐵. 

Similarly, we can prove that: 𝐼𝑛𝑓(𝐴 −  𝐵 ) = 𝐼𝑛𝑓𝐴 − 𝑆𝑢𝑝𝐵. 

b) We put 𝑆 = {
1

𝑛
∶ 𝑛 ∈ ℕ∗} and by the exercise 1 we have 𝑠𝑢𝑝𝑆 = 1 and 𝑖𝑛𝑓𝑆 = 0. 

So also we have 𝑇 = {
1

𝑛
−

1

𝑚
∶ 𝑛, 𝑚 ∈ ℕ∗} = 𝑆 − 𝑆, and by the question a) we have 
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𝑆𝑢𝑝(𝑇 ) = 𝑆𝑢𝑝𝑆 − 𝐼𝑛𝑓𝑆 = 1 − 0 = 1. 

𝐼𝑛𝑓(𝑇 ) = 𝐼𝑛𝑓𝑆 − 𝑆𝑢𝑝𝑆 = 0 − 1 = −1. 

1.6 dense groups in ℝ 

Theorem 1.2 (ℚ is dense in ℝ) 

Between any two distinct real numbers there is an rational number. 

Proof  

Let 𝑥 and 𝑦 be two real numbers where 𝑥 < 𝑦 so 𝑦 − 𝑥 > 0. 

According to Archimedean axiom, ∃𝑛 ∈ ℕ∗: 1 < 𝑛(𝑦 −  𝑥) or 𝑛𝑥 + 1 < 𝑛𝑦. 

On the other hand we have 𝐸(𝑛𝑥) ≤ 𝑛𝑥 < 𝐸(𝑛𝑥) + 1. 

So 

𝑛𝑥 < 𝐸(𝑛𝑥) + 1 ≤ 𝑛𝑥 + 1 < 𝑛𝑦. 

So 

𝑛𝑥 < 𝐸(𝑛𝑥) + 1 < 𝑛𝑦 

then 

𝑥 <
𝐸(𝑛𝑥) + 1

𝑛
< 𝑦. 

It then follows that the rational number 𝑟 =
𝐸(𝑛𝑥)+1

𝑛
 satisfies 𝑥 < 𝑟 < 𝑦.  

Definition 1.3 I 

Irrational numbers are real numbers that are not rational numbers and are symbolized by I or 

ℝ/ℚ. 

proposition 1.3 

The number √2 is an irrational number. 

Proof 

Assume that √2 ∈ ℚ . Then let 
𝑝

𝑞
= √2  where 𝑝, 𝑞 ∈ ℕ∗ and 𝑔𝑐𝑑(𝑝. 𝑞) = 1. 

Then 
𝑝

𝑞
= √2 ⟹ 𝑝 = 𝑞√2 ⟹ 𝑝2 = 2𝑞2 ⟹ 𝑞2 divide 𝑝2. 

Since 𝑞2and 𝑝2prime ⟹ 𝑞2 divide 1 ⟹  𝑞 = 1. By substitution in the previous equality we 
get  𝑝2 = 2 and this is a contradiction because there is no natural number squared equal to 
2. 

proposition 1.4 

if 𝑥 ∈ I and r ∈ Q ∗   then r𝑥 ∈ I .  

Proof 
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Assume that 𝑥 ∈ 𝐼 𝑎𝑛𝑑 𝑟 ∈ ℚ∗and that 𝑟𝑥 ∈ ℚ  and from him: 

(
1

𝑟
∈ ℚ∗𝑜𝑟 𝑟𝑥 ∈ ℚ ) ⇒

1

𝑟
𝑟𝑥 ∈ ℚ ⇒ 𝑥 ∈ ℚ  

This is a contradiction because 𝑥 ∈ 𝐼. 

Theorem 1.3 

Between any two distinct real numbers there is an irrational number. 

Proof 

Let 𝑥, 𝑦 be a real numbers, where 𝑥 < 𝑦, according to the theorem 1.2, there is a rational 

number 𝑟 (𝑟 ≠ 0) such that: 
𝑥

√2
< 𝑟 <

𝑦

√2
 or 𝑥 < 𝑟√2 < 𝑦 and according to propositions 1.3 

and 1.4 we conclude that 𝑟√2 is a irrational number. 

Corollary 1.1 The two sets ℚ and 𝐼 is dense in ℝ. 

1.7 Intervals in ℝ 

Let 𝑎, 𝑏 a real numbers, where 𝑎 < 𝑏, we define 

    [𝑎, 𝑏] = {𝑥 ∈ ℝ: 𝑎 ≤ 𝑥 ≤ 𝑏} is called closed interval. 

    ]𝑎, 𝑏[ = {𝑥 ∈ ℝ: 𝑎 < 𝑥 < 𝑏} is called open interval. 

    [𝑎, 𝑏[ = {𝑥 ∈ ℝ: 𝑎 ≤ 𝑥 < 𝑏} is called half open interval. 

    ]𝑎, 𝑏] = {𝑥 ∈ ℝ: 𝑎 < 𝑥 ≤ 𝑏} " " " " " " " " " " " " " " " " " " 

    [𝑎, +∞[ = {𝑥 ∈ ℝ: 𝑥 ≥ 𝑎}  unbounded closed interval. 

    ]−∞, 𝑏] = {𝑥 ∈ ℝ: 𝑥 ≤ 𝑏} " " " " " " " " " " " " " " " " " " 

    ]𝑎, +∞[ = {𝑥 ∈ ℝ: 𝑥 > 𝑎} unbounded open interval. 

    ]−∞, 𝑏[ = {𝑥 ∈ ℝ: 𝑥 < 𝑏} " " " " " " " " " " " " " " " " " " "  

    ℝ = ]−∞, +∞[                  " " " " " " " " " " " " " " " " " " " "  

Theorem 1.4 

The nonempty subset 𝐼 of ℝ is an interval if and only if the following property is satisfied: 

∀𝑎, 𝑏 ∈ 𝐼 (𝑎 ≤ 𝑏); ∀𝑥 ∈ ℝ: 𝑎 ≤ 𝑥 ≤ 𝑏 ⇒ 𝑥 ∈ 𝐼 

Proof 

(⇐)Necessary condition: It is a clear that: if the set 𝐼 is a interval, then the property is true. 

(⇒)Sufficient condition: If the property is true, then the set 𝐼 is a interval. 

We have four possible cases, case 1: 𝐼 is bounded, case 2: 𝐼 is bounded from above and 

unbounded from below, case 3: 𝐼 is bounded from below and unbounded from above, case 

4: 𝐼 is neither bounded from above nor from below. 
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Let us prove that in the first case then: 𝐼 = [𝑎, 𝑏] or 𝐼 = [𝑎, 𝑏[ or 𝐼 = ]𝑎, 𝑏] or 𝐼 = ]𝑎, 𝑏[ 

where 𝑎 = 𝑖𝑛𝑓 𝐼 and 𝑏 = 𝑠𝑢𝑝 𝐼. 

We have:              𝑏 = 𝑠𝑢𝑝 𝐼 ⟺ {

∀𝑥 ∈ 𝐼 ∶ 𝑥 ≤ 𝑏 

و

∀𝜀 > 0 ; ∃𝑏′ ∈ 𝐼 ∶ 𝑏 − 𝜀 < 𝑏′ … … (1)

. 

and 

𝑎 = 𝑖𝑛𝑓 𝐼 ⟺ {

∀𝑥 ∈ 𝐼 ∶ 𝑥 ≥ 𝑎

و

∀𝛿 > 0 ; ∃𝑎′ ∈ 𝐼 ∶ 𝑎 + 𝛿 > 𝑎′ … … (2)

 . 

case 1: If 𝑎 ∈ 𝐼 and 𝑏 ∈ 𝐼, then: 

∀𝑥 ∈ ℝ: 𝑥 ∈ 𝐼 ⇒ 𝑎 ≤ 𝑥 ≤ 𝑏 ⇒ 𝑥 ∈ [𝑎, 𝑏] ⇒ 𝐼 ⊂ [𝑎, 𝑏] 

∀𝑥 ∈ ℝ: 𝑥 ∈ [𝑎, 𝑏] ⇒ 𝑎 ≤ 𝑥 ≤ 𝑏 ⇒ 𝑥 ∈ 𝐼 ⇒ [𝑎, 𝑏] ⊂ 𝐼 

So 

𝐼 = [𝑎, 𝑏]. 

case 2: If 𝑎 ∈ 𝐼 and 𝑏 ∉ 𝐼, then: 

∀𝑥 ∈ ℝ: 𝑥 ∈ 𝐼 ⇒ 𝑎 ≤ 𝑥 < 𝑏 ⇒ 𝑥 ∈ [𝑎, 𝑏[ ⇒ 𝐼 ⊂ [𝑎, 𝑏[ 

∀𝑥 ∈ ℝ: 𝑥 ∈ [𝑎, 𝑏[ ⇒ 𝑎 ≤ 𝑥 < 𝑏 ⇒ 𝑏 − 𝑥 > 0 

putting 𝜀 = 𝑏 − 𝑥 in (1)  we get 𝑥 < 𝑏′ and since 𝑎, 𝑏′ ∈ 𝐼, then: 

𝑎 ≤ 𝑥 < 𝑏′ ⇒ 𝑥 ∈ 𝐼 ⇒ [𝑎, 𝑏[ ⊂ 𝐼 

so 

𝐼 = [𝑎, 𝑏[. 

case 3: If 𝑎 ∉ 𝐼 and 𝑏 ∈ 𝐼, then: 

∀𝑥 ∈ ℝ: 𝑥 ∈ 𝐼 ⇒ 𝑎 < 𝑥 ≤ 𝑏 ⇒ 𝑥 ∈ ]𝑎, 𝑏] ⇒ 𝐼 ⊂ ]𝑎, 𝑏] 

∀𝑥 ∈ ℝ: 𝑥 ∈ ]𝑎, 𝑏] ⇒ 𝑎 < 𝑥 ≤ 𝑏 ⇒ 𝑥 − 𝑎 > 0 

By putting 𝛿 = 𝑥 − 𝑎 in (2)we get 𝑥 > 𝑎′and since 𝑎, 𝑎′ ∈ 𝐼, then: 

𝑎′ < 𝑥 ≤ 𝑏 ⇒ 𝑥 ∈ 𝐼 ⇒ ]𝑎, 𝑏] ⊂ 𝐼. 

So 

𝐼 = ]𝑎, 𝑏] 

case 4: If  𝑎 ∉ 𝐼 and 𝑏 ∉ 𝐼, Then:  

∀𝑥 ∈ ℝ: 𝑥 ∈ 𝐼 ⇒ 𝑎 < 𝑥 < 𝑏 ⇒ 𝑥 ∈ ]𝑎, 𝑏[ ⇒ 𝐼 ⊂ ]𝑎, 𝑏[ 

∀𝑥 ∈ ℝ: 𝑥 ∈ ]𝑎, 𝑏[ ⇒ 𝑎 < 𝑥 < 𝑏 ⇒ 𝑥 − 𝑎 > 0 and 𝑏 − 𝑥 > 0. 

By putting 𝜀 = 𝑏 − 𝑥 in (1) and 𝛿 = 𝑥 − 𝑎 in (2) we get 𝑥 < 𝑏′ and 𝑎′ < 𝑥,  since 𝑎′, 𝑏′ ∈ 𝐼, 
then: 
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𝑎′ < 𝑥 ≤ 𝑏′ ⇒ 𝑥 ∈ 𝐼 ⇒ ]𝑎, 𝑏[ ⊂ 𝐼 . 

So 

 𝐼 = ]𝑎, 𝑏[. 

In the same way we prove that 𝐼is a interval in the other cases. 


