Chapter two: Complex numbers

2.1 Definitions and properties
Definition 2.1

Any number which can be expressed in the form x + yi where x, y are real numbers and

i? = —1, is called a complex number.

A complex number is, generally, denoted by the letter z.i.e. z = x + yi, 'x'is called the
real part of z and is written as Re z and 'y' is called the imaginary part of z and is written as
Im z.

If x = 0and y # 0, then the complex number becomes yi which is a purely imaginary
complex

If y = 0 then the complex number becomes 'x' which is a real number.
The set of complex numbers, denoted by C.

Definition 2.2 ( Algebra of complex numbers )

Letz; = x4 + iy, and z, = x, + iy, be two complex numbers.

(@) The complex numbers z; and z, are said to be equal if and only if x; = x, and y; = y,.
(b) zy + 2, = x1 + x5 + i(y; + ¥2).
(€) 2.2, = X1%, — Y1Y2 + (X2 + Xx371).

(d) For any non-zero complex number z = x + iy, there exists a multiplicative inverse
1 _ x—iy _ x . =y
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denoted -~ where- = —— = = +i .
z z x+iy x?+y? x%2+4 y2 x2 + y?

Note The set of complex numbers equipped with the operations of addition and
multiplication is a commutative filed.

Definition 2.3 ( Conjugate of a complex number )

Letz = x + iy be a complex number. The complex number x - iy is called the conjugate
of zand it is denoted by 7, i.e., Z = x - iy.
Properties

Let z, z; and z, be a complex numbers. We have :
1.m= Z.
2.z+ 7z =2Re(2),z-z = 2iIm(2).
Z & zisreal.
Z = 0 & zis purely imaginary.
= {Re (2)}* + {Im (2)}*.
(7 +2)=77 + Z;.
1.(21.2,) = 71 .23.
8.(%): % (z, #0).

Definition 2.4 ( Modulus of a complex humber )

Letz = x + iy be a complex number. Then the positive real number /x? + y?

is called modulus (absolute value) of z and it is denoted by |z| i.e., |z| = \/x? + y2.
Properties

Let z, z; and z, be complex numbers. We have :
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1. |Re (2)| < |zl.
2. [Im (2)| < |z|.
3.1z =0 <z =0.

4.7.7 = |z|?.
5.12125| = 24| |2,].
6. 2| = 2!
) |z2]
7. 0zy + 23|l = |z1 | + 12,

Definition 2.5 (Argument of the complex number)

The complex number z is represented by point P, we can join point P to the origin with a
line segment.

If z # 0 the angle from the positive axis to the line segment is called the argument of the
complex number z.

The argument of z is denoted by Arg z.

Properties

Let z, z; and z, be non zero complex numbers We have :
1. Arg z = —Arg z + 2mk, where k € Z.
2. Arg (z,2z,) = Arg z, + Arg z, + 2mk, where k € Z.

3. Arg 2_1 = Arg z, — Arg z, + 2rk, where k € Z.
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2.2.The trigonometric form and exponential form a complex number
Definition 2.6

The trigonometric form of a complex number z = x + yiisz = r(cos@ + isin8),
where r is the modulus of z, and 8 is the argument of z.

Putting e’ = cos@ + isin@ andsince z = r(cos 6 + isin @) we therefore obtain
another way in which to denote a complex number: z = re'®, called the exponential form.

So

z=x+yi= re® =r(cosf + isinb).
-7 ——

Algebraic form Exponentiel form Trigonometric form

wherer = \/x? + y?;cos 6 = %; isin %

Remark Letz € C*wherez = x + iy, so




T
5 ifx=0;y>0

—-= ifx=0y<0
Arg(z) = | y
arctan; ifx>0

arctan§+n ifx<O0

Properties

Let z, z; and z, be non zero complex numbers where z = re'?, z, = re'%1, z, = rye
We have :

1.Z2=re 9,
2. lez = T1T2€i(91+92).
31-1,-i0
-7 - .
4% =T ,i(6:1-62)
Z2 2

5.Vn € Z: z" =r"e™ (De moivre's formula).

i6_,—-i0

elf1ei0 . eV —e
——— ;sinf = — ( Euler formula).

6.cos 0 =
2.3 Application of complex numbers to trigonometry
2.3.1 Calculates cos nx and sin nx based en cos x and sin x
We have:

cosnx + isinnx = (cosx + isinx)"

n kik n—k ink
k=0 Cnicos™ " x sin

X

= Clcos™ x — Clcos™ 2 xsin? x + Cjcos™ * xsin*x — - ...
+i(Clcos™ 1 x sinx — C3cos™ 3 x sin3 x + C2cos™ > x sin® x + -+

So
cosnx = Cocos™ x — Cicos™ 2 x sin® x + Crcos™* x sin® x — - ... ... ..
sinnx = Chcos™ 1 x sinx — C>cos™3 x sin® x + Chcos™5 x sin® x — -+ ...
Or
E(3)
cosnx = Z (—1)"Crzlkcos"—2k x sin?* x
) A
2
sinnx = Z (—1)"—1C721k_1cos"—2k+1 x sin? 1 x
=0

Where E (g) denotes the integer part of the rational number %

2.3.2 Linearization of cos™x and sin™x.
For obtain linearization of cos™x and sin™x we use the relations.

et 4o et — ¢ "
V@ER:COS@ZT ;sin@zT,
and
- —ik - —ik .
VkeEZ VxeR: e +e " =2coskx; ek* —e " = 2isinkx.
Example

Write in the linear form cos3x and sin3x.
We have:

i0;




cos3x =

eix_l_e—ix 3
2 >

1 ) ) ) )
— g(eBLx + e 3ix + 3(elx + e—lx))

1
=3 (2 cos3x + 3(2sinx))
1 3

= ZCOS 3x +Zsinx.

eix _ e—ix 3
sin3x= E——
21

eBix _ e—3ix _ B(eix _ e—ix)
—8i
2isin 3x — 3(2isinx)
—8i
_ Lo 3
= —4sm x+451nx.

2.3.3 n'" roots of complex number

Definition 2.7

Letn € N* — {1} An nth root of complex number a is a complex number z such that

z" = a.

Theorem 2.1

Any nonzero complex number has exactly n € N distinct nth roots. The roots lie on a circle

of radius |z| centred at the origin and spaced out evenly by angles of %ﬂ Concretely, ifa =

. .0+2mk
re'?, then solutions to z" = a are given by Z = Vre ™ n fork € {0,1,...,n — 1}.
Proof
Assume thata = re' and z = pe'®, so
N = g pneina = retf
= peina = retf
prt=r1
= and
na=0+2nk,kez
p="r
and
=
0+ 2rk
a=——— kel
n
The expression for z takes n different values for k = 0; 1;...... ; n — 1, and the values start
torepeatfork = n,n + 1,.....
.0+21k

Hence the expression for the n nth roots of a: z, = Vre" = fork € {0,1,...,n — 1}.
Examples

.0+2mk
. 9+2mk
1) The n nth roots of unity are therefore the numbers z, = e n = cos —+n” +

b+2mk fork € {0,1,...,n — 1}.

n
2) Solve in C the equation z7 = Z.

Answer

i sin

i

7

one of solutions is obviously z = 0. For other solutions the simple way is to write z =re
then




727 = 7o rteint = re~i0
r’' =r
= and
70 = -0 + 2wk, k€ Z,
(r(r®—1)=0
and
=9 9= 2k L ez
- 8 ) E )
(r=1
Ny and
k
\0 = T,for k € {0,1,2,3,4,5,6,7}.

.k
So the set of solutions is S = {O, e's fork € {0,1,2,3,4,5,6, 7}}.

Exercises
1) Write cos® x in linear form.
2) a) Use the De Mover's formula to prove that: sin 50 = sin 6 (16 cos*8 — 12 cos? 6 —
1)
b) Solve the equation 16 x* — 12 x? — 1and determine the value of cos %
3) The following finite sum S, are given by S = 1 + cos 6 + cos 26 + - ...+ cos(n — 1)6,
where 8 # 2wk, k € Zandn € N”.
. . . sin(n—%)@ 1
Using the demoivre's formula prove that: § = ——3*—+ >

sin—
2

4)* One of the roots of the equation z7 — 1 = 0 is denoted by w , where 0 < argw < %
a) Find w intheformre®®,r > 0,0 < 6 < %

b) Show clearly that 1 + w? + w?® + w* + w° + w® = 0.

c) Using the results of the previous parts, deduce that: cosZT” + cos%ﬂ + cos%ﬂ =— %
* . ¢ — yn-158npx ; n-1_e®*
5)* Calculate: S = X725 o, (Using the sum 2p=0 )

Solutions

o _ ihr  _—ikx
1WVWkeZNzeR coske = =—F7—

22
1l

2

ix —ix
5 [EFTe
cos” I = —_—

20

32

_ 1 { ibx
= ﬁ[if

cos ;=

5
) the Pascal’s triangle for n = b 1z

" F.

+e ") +5 (€7 +e77F) + 10 (e + 7]

= 2 3

=
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= ﬁ? (cosbx + beos 3z + 10 cos x)

i 5
= —cosbx+ —cosdr+

16 16

ool
(]
[=]
i
=

2) a) we have:

[2£1]
- - I -—1 Vg — N i - y —
simnf = E (=1)7 €%l eogm ™! §ain® 149

i=1
B0
[5$] s
- P i—1 i— B—2i4 - — P i—1 i— —9; R .
smbf = Z (—1) Cf 1 og®~ 2t ggin2 16‘:2[—1] Cf 1 eost 2 @sin2~1 8
i=1 i=1
= C; coz* fzinf — C;" coz’ fzin’ 8 + C; sin® @
= beos*fsinf — 10cos’ fsin® O + =in 8
- . { V- V2 .
= aco.—fﬂs]n@—l[}ccszﬁu — cos® g) sinf + (1 —coszﬁ” sin @
S0
sin5t9:.-sinﬁ'{'lﬁcos49—']‘2::0.-3_29—1;1 ________________________ (1)
b) 16z*—122%+1 = 0, Solutions is: +/5+1,1-15. 151 —L/5-1

Let us take 8 = T in equality (1) we obtain:

.-sini (16c0.—34£ - ]?0032"; — ']) =10
b 5
50 — —
16cos* — — 12¢cos" = —1=0
b b

From the last equality, we conclude that cos T 1s one of the solutions to
the previous equation, so

cos% = %\-/5_—% [ because 0 < % < TI —- co.s% = ]%.'J[I
3) 5 15 the imaginary part of A =1+ e + 20 '
S0
A = 1_'_959_'_82!'3 o ei'.l'r..—'l]-ﬁ'
- ¢ oy 2 ‘5  (m—1)%
= 1+ef+ () + (&)
{E"‘"ﬁjn _ ‘I eine _ ‘I
T et -1 e
B einf _ 1o~ es{n—;]e _ %
- Eie —1 e_‘:-:! e“':li — e_izi
_ coafn—%}ﬁ—cos%—l—é[sml{n—%}9+3m7
- - 8
2sin 5

We ohtam:




