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Chapter three: Real sequences 

3 Real sequences 
3.1 Generalities 
Definition 3.1 
 We call each function 𝑈 of ℕ in ℝ; a real sequence. 

 
𝑈 ∶ ℕ ⟶  ℝ

                         𝑛 ⟶  𝑈(𝑛) = 𝑈𝑛
 

. 𝑈𝑛 is called the general term of the sequence 𝑈. 

. We also symbolize the sequence by (𝑈𝑛) or (𝑈𝑛)𝑛∈ℕ or (𝑈𝑛)𝑛≥𝑛0  if the sequence is defined 

for each 𝑛 ≥ 𝑛0. 
. A real sequence is defined explicitly or with a recurrent relation. 

Examples 3.1 

1) (𝑢𝑛)𝑛≥2 is a sequence defined by its general term: 

∀𝑛 ≥ 2: 𝑢𝑛 = √𝑛− 2. 
we have 

𝑢2 = 0; 𝑢3 = 1; 𝑢4 = √2; 𝑢5 = √3………… ;𝑢12 = √10;…… 
2) (𝑣𝑛)𝑛∈ℕ  is a sequence defined by the following recurrent relation: 

𝑢0 = 1; ∀𝑛 ∈ ℕ: 𝑢𝑛+1 =
𝑢𝑛

𝑢𝑛 + 1
 

So 

𝑢0 = 1; 𝑢1 =
𝑢0

𝑢0 + 1
=
1

2
; 𝑢2 =

𝑢1
𝑢1 + 1

=
1

3
; 𝑢3 =

𝑢2
𝑢2 + 1

=
1

4
;………… .. 

Prove that ∀𝑛 ∈ ℕ: 𝑢𝑛 =
1

𝑛+1
. 

Definition 3.2  
Let (𝑢𝑛) be a real sequence. 
. (𝑢𝑛) is bounded from above if and only if : 

∃𝑀 ∈ ℝ; ∀𝑛 ∈ ℕ: 𝑢𝑛 ≤ 𝑀. 
. (𝑢𝑛) is bounded from below if and only if : 

∃𝑚 ∈ ℝ; ∀𝑛 ∈ ℕ: 𝑢𝑛 ≥ 𝑚. 
. (𝑢𝑛) is bounded if and only if it is bounded from above and from below, in other words:  

((𝑢𝑛)is bounded)  ⟺ ∃𝑀 ∈ ℝ+
∗ ; ∀𝑛 ∈ ℕ: |𝑢𝑛| ≤ 𝑀. 

Example 3.2 

Let (𝑢𝑛)𝑛∈ℕ  be a real sequence defined by: ∀𝑛 ∈ ℕ: 𝑢𝑛 =
𝑛

2𝑛+1
. 

We have ∀𝑛 ∈ ℕ: 𝑢𝑛 =
𝑛

2𝑛+1
=

1

2
−

1

2

1

2𝑛+1
, so ∀𝑛 ∈ ℕ: 

𝑛 ≥ 0 ⟹ 2𝑛 + 1 ≥ 1         

                          ⟹ 0 > −
1

2

1

2𝑛 + 1
≥ −

1

2
  

                          ⟹
1

2
>
1

2
−
1

2

1

2𝑛 + 1
≥ 0  

        ⟹
1

2
> 𝑢𝑛 ≥ 0.  

Then the sequence (𝑢𝑛)𝑛∈ℕ  is bounded. 
Definition 3.3 

Let (𝑢𝑛) be a real sequence. 
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. (𝑢𝑛) is increasing (strictly increasing, respectively ) if and only if : 

∀𝑛 ∈ ℕ: 𝑢𝑛 ≤ 𝑢𝑛+1  ( 𝑢𝑛 < 𝑢𝑛+1 , respectively). 

. (𝑢𝑛) is decreasing (strictly decreasing, respectively ) if and only if : 

∀𝑛 ∈ ℕ: 𝑢𝑛 ≥ 𝑢𝑛+1  ( 𝑢𝑛 > 𝑢𝑛+1 , respectively). 

. (𝑢𝑛) is constant if and only if : 

∀𝑛 ∈ ℕ: 𝑢𝑛 = 𝑢𝑛+1. 

A sequence of real numbers (𝑢𝑛) is said to be monotonic if it is either increasing 

or decreasing. 

Example 3.3 

The sequence (𝑢𝑛)𝑛∈ℕ , defined in the previous example, is increasing. Indeed 

∀𝑛 ∈ ℕ: 𝑢𝑛+1 − 𝑢𝑛 =
𝑛 + 1

2𝑛 + 3
−

𝑛

2𝑛 + 1
 

                                       =
1

(2𝑛 + 3)(2𝑛 + 1)
 

         ≥ 0. 

3.2 Convergent sequences 

Definition 3.4 

A sequence (𝑢𝑛) is convergent and its limit is the real number ℓ if and only if: 

∀𝜀 > 0; ∃𝑁 ∈ ℕ; ∀𝑛 ∈ ℕ: (𝑛 > 𝑁 ⟹ |𝑢𝑛 − ℓ| < 𝜀). 

And we write lim
𝑛→∞

𝑢𝑛 = ℓ or lim 𝑢𝑛 = ℓ. 

Example 3.4 

Let (𝑢𝑛)𝑛∈ℕ  be a real sequence defined by: ∀𝑛 ∈ ℕ: 𝑢𝑛 =
𝑛

2𝑛+1
. 

Let's prove that lim 𝑢𝑛 =
1

2
. 

Let 𝜀 > 0 where |𝑢𝑛 −
1

2
| < 𝜀, so 

|𝑢𝑛 −
1

2
| < 𝜀 ⟺ |

𝑛

2𝑛 + 1
−
1

2
| < 𝜀 

              ⟺  
1

4𝑛 + 2
< 𝜀 

               ⟺  𝑛 >
1

4𝜀
−
1

2
. 

We have 
1

4𝜀
−

1

2
≤ |

1

4𝜀
−

1

2
| < 𝐸 (|

1

4𝜀
−

1

2
|) + 1, so it is enough to take 𝑁 = 𝐸 (|

1

4𝜀
−

1

2
|) + 1. 

Remark 3.1 
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We can be determine the number 𝑁 in another way. According to Archimedean axiom there 

exists 𝑁0 ∈ ℕ, where 𝑁0 >
1

4𝜀
−

1

2
, so it is enough to chose 𝑁 = 𝑁0. 

Theorem 3.1 ( Uniqueness of limit ) 

Every convergent sequence has a unique limit. 

Proof 

Assume that the sequence (𝑢𝑛)  has two different limits ℓ and ℓ′ (ℓ′ ≠ ℓ), taking 𝜀 =
|ℓ′−ℓ|

2
. 

which implies {
∃𝑁0 ∈ ℕ;∀𝑛 ∈ ℕ: 𝑛 > 𝑁0 ⟹ |𝑢𝑛 − ℓ| < 𝜀

∃𝑁1 ∈ ℕ; ∀𝑛 ∈ ℕ: 𝑛 > 𝑁1 ⟹ |𝑢𝑛 − ℓ
′| < 𝜀.

 

Putting 𝑁 = max{𝑁0, 𝑁1}, then  

∀𝑛 ∈ ℕ: 𝑛 > 𝑁 ⟹ |ℓ′ − ℓ| = |𝑢𝑛 − ℓ − (𝑢𝑛 − ℓ
′)|          

                                          ≤ |𝑢𝑛 − ℓ| + |𝑢𝑛 − ℓ
′| 

                             < 2𝜀 = |ℓ′ − ℓ|. 
                                  ⟹ |ℓ′ − ℓ| < |ℓ′ − ℓ|, it′s a contradiction. 

Theorem 3.2  
If (𝑢𝑛) is a convergent sequence, then it is a bounded sequence. 
Proof 

We assume that the sequence (𝑢𝑛)  is convergent to the number ℓ, then for 𝜀 = 1 we have: 
∃𝑁 ∈ ℕ;∀𝑛 ∈ ℕ: 𝑛 > 𝑁 ⟹ |𝑢𝑛 − ℓ| < 1 

                                                            ⟹ ℓ − 1 < 𝑢𝑛 < ℓ + 1. 
Putting 𝐴 = {𝑢0, 𝑢1, … . . , 𝑢𝑁, ℓ − 1, ℓ + 1}, then ; ∀𝑛 ∈ ℕ: min𝐴  ≤ 𝑢𝑛 ≤ max𝐴. 

Theorem 3.3 
Let (𝑢𝑛)𝑛∈ℕ  be a real sequence 
1. If (𝑢𝑛) is increasing and bounded from above, then (𝑢𝑛) converges, and we have lim𝑢𝑛 =

sup
𝑛∈ℕ

𝑢𝑛. 

2. If (𝑢𝑛) is decreasing and bounded from below, then (𝑢𝑛) converges, and we have 
lim𝑢𝑛 = inf

𝑛∈ℕ
𝑢𝑛. 

Remark 3.2 Every bounded monotonic sequence is a convergent sequence. 
Proof 
1. Let the sequence (𝑢𝑛) is increasing and bounded from above, then the set 𝐴 =
{𝑢𝑛 , 𝑛 ∈ ℕ} is bounded from above putting sup𝐴 = ℓ.  

We have {
∀𝑛 ∈ ℕ: 𝑢𝑛 ≤ ℓ                       
 ∀𝜀 > 0; ∃𝑁 ∈ ℕ: ℓ − 𝜀 < 𝑢𝑁.

 

On the other hand, since (𝑢𝑛) is increasing we have: 
∀𝑛 ∈ ℕ: 𝑛 > 𝑁 ⟹ 𝑢𝑛 ≥ 𝑢𝑁                

                                       ⟹ ℓ ≥ 𝑢𝑛 ≥ 𝑢𝑁 > ℓ − 𝜀 
                                  ⟹ ℓ + 𝜀 > 𝑢𝑛 > ℓ − 𝜀 

                      ⟹ |𝑢𝑛 − ℓ| < 𝜀. 
Hence  

∀𝜀 > 0; ∃𝑁 ∈ ℕ; ∀𝑛 ∈ ℕ: (𝑛 > 𝑁 ⟹ |𝑢𝑛 − ℓ| < 𝜀). 

2. Let the sequence (𝑢𝑛) is decreasing and bounded from below, then the set 𝐴 =
{𝑢𝑛 , 𝑛 ∈ ℕ} is bounded from below putting inf 𝐴 = ℓ′. 
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We have {
∀𝑛 ∈ ℕ: 𝑢𝑛 ≥ ℓ

′

∀𝜀 > 0; ∃𝑁 ∈ ℕ: ℓ′ + 𝜀 > 𝑢𝑁 .
 

On the other hand, since (𝑢𝑛) is decreasing we have: 
∀𝑛 ∈ ℕ: 𝑛 > 𝑁 ⟹ 𝑢𝑛 ≤ 𝑢𝑁                

                                       ⟹ ℓ′ ≤ 𝑢𝑛 ≤ 𝑢𝑁 < ℓ
′ + 𝜀 

                                  ⟹ ℓ′ − 𝜀 < 𝑢𝑛 < ℓ
′ + 𝜀 

                      ⟹ |𝑢𝑛 − ℓ
′| < 𝜀. 

Hence  

∀𝜀 > 0; ∃𝑁 ∈ ℕ;∀𝑛 ∈ ℕ: (𝑛 > 𝑁 ⟹ |𝑢𝑛 − ℓ
′| < 𝜀). 

Example 3.5 

Consider the sequence (𝑢𝑛)𝑛∈ℕ  defined as follows: 

∀𝑛 ∈ ℕ: 𝑢𝑛+1 =
2𝑢𝑛 + 1

𝑢𝑛 + 2
   and  𝑢0 = 𝛼 > 1 

First we will show that the sequence (𝑢𝑛) is bounded from below by 1. We prove by 
induction that ∀𝑛 ∈ ℕ: 𝑢𝑛 > 1. 

Since 𝑢0 = 𝛼 > 1, it is true. 

Next suppose 𝑢𝑛 > 1, and we have 𝑢𝑛+1 =
2𝑢𝑛+4−4+1

𝑢𝑛+2
= 2 −

3

𝑢𝑛+2
, then  

                𝑢𝑛 > 1⟹ 
3

𝑢𝑛 + 2
< 1 

                                      ⟹ 2 − 
3

𝑢𝑛 + 2
> 1 

                         ⟹ 𝑢𝑛+1 > 1. 

Next we show that the sequence (𝑢𝑛) is decreasing, indeed, 

∀𝑛 ∈ ℕ: 𝑢𝑛+1 − 𝑢𝑛 =
2𝑢𝑛 + 1

𝑢𝑛 + 2
− 𝑢𝑛 

                         =
1 − 𝑢𝑛

2

𝑢𝑛 + 2
 

                                              =
(1 + 𝑢𝑛)(1 − 𝑢𝑛)

𝑢𝑛 + 2
 

                                               < 0  ( Since 𝑢𝑛 > 1 ). 

Thus (𝑢𝑛) is an decreasing sequence that is bounded from below. 

By the monotone convergence theorem (𝑢𝑛), converges. 

Theorem 3.4 
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If the sequences (𝑢𝑛) and (𝑣𝑛) are converges towards ℓ and ℓ′ respectively then the 
sequences (𝑢𝑛 + 𝑣𝑛), (𝑢𝑛𝑣𝑛), (𝜆𝑢𝑛) and (|𝑢𝑛|) are converges towards ℓ + ℓ′ , ℓℓ′, 𝜆ℓ, |ℓ| 

respectively. Also if ℓ′ ≠ 0 and ∀𝑛 ∈ ℕ: 𝑢𝑛 ≠ 0 then the sequence (
𝑢𝑛

𝑣𝑛
) converges towards 

ℓ

ℓ′
. 

Proof ( Let us prove the last case ) 

We have lim𝑣𝑛 = ℓ
′ ≠ 0 taking 𝜀 =

|ℓ′|

2
, which implies ; ∃𝑁0 ∈ ℕ; ∀𝑛 ∈ ℕ: 

𝑛 > 𝑁0 ⟹ |𝑣𝑛 − ℓ
′| < 𝜀             

             ⟹  ||𝑣𝑛| − |ℓ
′|| <

|ℓ′|

2
 

            ⟹ 
|ℓ′|

2
<  |𝑣𝑛| <

3|ℓ′|

2
 

            ⟹  
2

3|ℓ′|
<  

1

|𝑣𝑛|
<

2

|ℓ′|
. 

So 

𝑛 > 𝑁0 ⟹ 
1

|𝑣𝑛|
<

2

|ℓ′|
.                    

On the other hand for 𝜀 >  0, then: {
∃𝑁1 ∈ ℕ;∀𝑛 ∈ ℕ: 𝑛 > 𝑁1 ⟹ |𝑢𝑛 − ℓ| < 𝜀

∃𝑁2 ∈ ℕ;∀𝑛 ∈ ℕ: 𝑛 > 𝑁2 ⟹ |𝑣𝑛 − ℓ
′| < 𝜀.

 

Putting 𝑁 = max{𝑁0, 𝑁1, 𝑁2}, then ∀𝑛 ∈ ℕ: 

𝑛 > 𝑁 ⟹ |
𝑢𝑛
𝑣𝑛
−
ℓ

ℓ′
| = |

ℓ′𝑢𝑛 − ℓ𝑣𝑛
ℓ′𝑣𝑛

| 

                                                                = |
ℓ′(𝑢𝑛 − ℓ) − ℓ(𝑣𝑛 − ℓ

′)

ℓ′𝑣𝑛
| 

                                                                         ≤
|ℓ′||(𝑢𝑛 − ℓ)| + |ℓ||(𝑣𝑛 − ℓ

′)|

|ℓ′||𝑣𝑛|
 

                                                     <
2𝜀(|ℓ′| + |ℓ|)

|ℓ′|2
= 𝜀0. 

So 

∀𝜀0 > 0;∃𝑁 ∈ ℕ; ∀𝑛 ∈ ℕ: (𝑛 > 𝑁 ⟹ |
𝑢𝑛
𝑣𝑛
−
ℓ

ℓ′
| < 𝜀0). 

Theorem 3.5 
1. Let (𝑢𝑛) and (𝑣𝑛) two sequences that converges towards ℓ and ℓ′ respectively, 
where ∀𝑛 ∈ ℕ: 𝑢𝑛 ≤ 𝑣𝑛  ( or 𝑢𝑛 < 𝑣𝑛) then ℓ ≤ ℓ′. 
2.(Squeeze Theorem) Let (𝑢𝑛), (𝑣𝑛) and (𝑤𝑛) three sequences such that  
∀𝑛 ∈ ℕ: 𝑣𝑛 ≤ 𝑢𝑛 ≤ 𝑤𝑛 ( or 𝑣𝑛 < 𝑢𝑛 < 𝑤𝑛 ) then: 

(lim𝑣𝑛 = lim𝑤𝑛 = ℓ) ⟹ lim𝑢𝑛 = ℓ. 

Proof 
1. ( prove by contradiction ) 

Assume that ℓ > ℓ′, take 𝜀 =
ℓ−ℓ′

2
 which implies ; ∃𝑁0, 𝑁1 ∈ ℕ; ∀𝑛 ∈ ℕ:  

{
𝑛 > 𝑁0 ⟹ |𝑢𝑛 − ℓ| < 𝜀 =

ℓ − ℓ′

2
⟹

ℓ + ℓ′

2
 < 𝑢𝑛 <

3ℓ − ℓ′

2

𝑛 > 𝑁1 ⟹ |𝑣𝑛 − ℓ
′| < 𝜀 =

ℓ − ℓ′

2
⟹

3ℓ′ − ℓ

2
 < 𝑣𝑛 <

ℓ + ℓ′

2
.
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For 𝑁 = max{𝑁0, 𝑁1} then ∀𝑛 ∈ ℕ: 𝑛 > 𝑁 ⟹  𝑣𝑛 <
ℓ+ℓ′

2
 < 𝑢𝑛 . and this contradicts the 

hypothesis ∀𝑛 ∈ ℕ: 𝑢𝑛 ≤ 𝑣𝑛 . 
2. We have lim𝑣𝑛 = lim𝑤𝑛 = ℓ ⟺ ∀𝜀 > 0; ∃𝑁0, 𝑁1 ∈ ℕ; ∀𝑛 ∈ ℕ: 

{
𝑛 > 𝑁0 ⟹ |𝑣𝑛 − ℓ| < 𝜀 ⟹ ℓ − 𝜀 < 𝑣𝑛 < 𝑙 + 𝜀

𝑛 > 𝑁1 ⟹ |𝑤𝑛 − ℓ| < 𝜀 ⟹ ℓ − 𝜀 < 𝑤𝑛 < 𝑙 + 𝜀.
 

For 𝑁 = max{𝑁0, 𝑁1} then ∀𝑛 ∈ ℕ: 𝑛 > 𝑁 ⟹   ℓ − 𝜀 < 𝑣𝑛  ≤ 𝑢𝑛 ≤ 𝑤𝑛 < 𝑙 + 𝜀, so 

∀𝜀 > 0; ∃𝑁 ∈ ℕ; ∀𝑛 ∈ ℕ: 𝑛 > 𝑁 ⟹  |𝑣𝑛 − ℓ| < 𝜀 . 
3.3 Subsequences 
Definition 3.5 
Let (𝑢𝑛)  be a sequence. A subsequence (𝑣𝑘) of the sequence (𝑢𝑛) is defined 
by a function 𝑓 ∶  ℕ ⟶  ℕ  such that 𝑓 is strictly increasing, and 𝑣𝑘  =  𝑢𝑓(𝑘) for 

𝑘 ∈  ℕ. 

We often write 𝑛𝑘  instead of 𝑓 (𝑘). 
Example 3.6 

Let (𝑢𝑛) be a sequence defined by ∀𝑛 ∈ ℕ: 𝑢𝑛  =  
𝑛

𝑛+1
. 

For  𝑛𝑘  =  𝑓 (𝑘)  =  3𝑘 ( 𝑓 is strictly increasing ) the subsequence (𝑣𝑘) 

( or (𝑢𝑛𝑘  ) ) is defined by: ∀𝑘 ∈ ℕ: 𝑣𝑘 = 𝑢3𝑘 = 
 3𝑘

 3𝑘+1
. 

For  𝑛𝑘
′  =  𝑔 (𝑘)  =  𝑘2 ( 𝑔 is strictly increasing ) the subsequence (𝑤𝑘) 

( or (𝑢𝑛𝑘
′  ) ) is defined by: ∀𝑘 ∈ ℕ: 𝑤𝑘 = 𝑢𝑘2 =  

 𝑘2

 𝑘2+1
. 

The following table shows the relationship of the subsequences (𝑣𝑘) and (𝑤𝑘) to the 
sequence (𝑢𝑛). 
𝑢𝑛 𝑢0 𝑢1 𝑢2 𝑢3 𝑢4 𝑢5 𝑢6 𝑢7 𝑢8 𝑢9 𝑢10 𝑢11 ....... 
 0 1

2
 

2

3
 

3

4
 

4

5
 

5

6
 

6

7
 

7

8
 

8

9
 

9

10
 

10

11
 
11

12
 

....... 

𝑣𝑘 = 𝑢3𝑘 𝑣0   𝑣1   𝑣2   𝑣3   ....... 
 0   3

4
 

  6

7
 

  9

10
 

  ....... 

𝑤𝑘 = 𝑢𝑘2  𝑤0 𝑤1   𝑤2     𝑤3   ....... 
 0 1

2
 

  4

5
 

    9

10
 

  ....... 

Proposition 3.1 
If (𝑛𝑘) is a sequence of strictly increasing natural numbers, then ∀𝑘 ∈ ℕ: 𝑛𝑘 ≥ 𝑘. 
Proof ( By induction ) 
For 𝑘 =  0 we have 𝑛0 ≥ 0 ( It is true because 𝑛0 ∈ ℕ ). 
Assume that ∀𝑘 ∈ ℕ: 𝑛𝑘 ≥ 𝑘. Since (𝑛𝑘) is strictly increasing, then  

𝑛𝑘+1 > 𝑛𝑘 ⟹ 𝑛𝑘+1  > 𝑘 
                              ⟹ 𝑛𝑘+1  ≥ 𝑘 + 1. 

Theorem 3.6 
If a sequence is convergent, then any sub-sequence of it converges to the same limit 
Proof 
Let (𝑢𝑛) be a convergent sequence towards ℓ and let 𝑛𝑘 be a sequence of strictly increasing 
natural numbers, we constructing the subsequence (𝑣𝑘) that is defined by ∀𝑘 ∈ ℕ: 𝑣𝑘 =
𝑢𝑛𝑘 and let's prove that: lim

𝑘→∞
𝑣𝑘 = ℓ. 

We have ∀𝜀 > 0; ∃𝑁 ∈ ℕ; ∀𝑛 ∈ ℕ: 𝑛 > 𝑁 ⟹  |𝑢𝑛 − ℓ| < 𝜀. 
On other hand, since (𝑛𝑘) is strictly increasing then: 



7 
 

∀𝑘 ∈ ℕ: 𝑘 >  𝑁 ⟹ 𝑛𝑘  >  𝑛𝑁                                           
                                                             ⟹  𝑛𝑘  >  𝑛𝑁 ≥ 𝑁 ( According to proposition 3.1 ) 

                            ⟹  𝑛𝑘  >  𝑁                                         

⟹  |𝑢𝑛𝑘 − ℓ| < 𝜀  

⟹  |𝑣𝑘 − ℓ| < 𝜀. 
So 

∀𝜀 > 0; ∃𝑁 ∈ ℕ; ∀𝑘 ∈ ℕ: 𝑘 > 𝑁 ⟹  |𝑣𝑘 − ℓ| < 𝜀 
We conclude that the subsequence (𝑣𝑘) is converges towards ℓ. 
Remark 3.3 
To prove the divergence of certain sequences, we can use the contrapositive implication in 
theorem (3.6). 
Example.3.7 

Let the sequence (𝑢𝑛) be defined by ∀𝑛 ∈ ℕ: 𝑢𝑛  =  
𝑛(−1)𝑛

𝑛+1
, we will show that the sequence 

(𝑢𝑛) is divergent. 
We constructing the two subsequences (𝑢2𝑘) and(𝑢2𝑘+1), where ∀𝑘 ∈ ℕ: 

{
 

 𝑢2𝑘 =
2𝑘(−1)2𝑘

2𝑘 + 1
=

2𝑘

2𝑘 + 1
                           

𝑢2𝑘+1 =
(2𝑘 + 1)(−1)2𝑘+1

2𝑘 + 2
= −

(2𝑘 + 1)

2𝑘 + 2
.

 

We have 

lim
𝑘→∞

𝑢2𝑘 = lim
𝑘→∞

2𝑘

2𝑘 + 1
= 1, 

lim
𝑘→∞

𝑢2𝑘+1 = lim
𝑘→∞

−
2𝑘 + 1

2𝑘 + 2
= −1. 

Since lim
𝑘→∞

𝑢2𝑘 ≠ lim
𝑘→∞

𝑢2𝑘+1 then the sequence (𝑢𝑛) is divergent. 

Definition 3.6 
A sequence (𝑢𝑛) diverges to infinity if and only if 

∀𝐴 ∈ ℝ;∃𝑁 ∈ ℕ; ∀𝑛 ∈ ℕ: 𝑛 > 𝑁 ⟹ 𝑢𝑛  >  𝐴. 
In this case we write lim

𝑛→∞
𝑢𝑛 = +∞. 

Similarly, a sequence (𝑢𝑛)  diverges to minus infinity and we write lim
𝑛→∞

𝑢𝑛 = −∞, if and only 

if: 
∀𝐴 ∈ ℝ; ∃𝑁 ∈ ℕ; ∀𝑛 ∈ ℕ: 𝑛 > 𝑁 ⟹ 𝑢𝑛 <  −𝐴. 

Proposition 3.2 
If (𝑢𝑛) is an increasing and unbounded sequence from above. Then  

lim
𝑛→∞

𝑢𝑛 = +∞ 

If (𝑢𝑛) is an decreasing and unbounded sequence from below. Then  
lim
𝑛→∞

𝑢𝑛 = −∞ 

Proof 
Assume that (𝑢𝑛) is an increasing and unbounded sequence from above. 
Since (𝑢𝑛) is unbounded from above then ∀𝐴 ∈ ℝ;∃𝑁 ∈ ℕ:  𝑢𝑁 >  𝐴. 
And Since (𝑢𝑛) is increasing we have ∀𝑛 ∈ ℕ: 𝑛 > 𝑁 ⟹ 𝑢𝑛 ≥  𝑢𝑁 

                                                ⟹  𝑢𝑛 >  𝐴 
So 

∀𝐴 ∈ ℝ; ∃𝑁 ∈ ℕ; ∀𝑛 ∈ ℕ: 𝑛 > 𝑁 ⟹ 𝑢𝑛 >  𝐴. 
In the same way, we prove the second case. 
3.5 Adjacent sequences 
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Definition 3.7 
Two sequences (𝑢𝑛) and (𝑣𝑛), are said to be adjacent if and only if one of the two 
sequences is increasing and the other decreasing and lim

𝑛→∞
(𝑢𝑛 − 𝑣𝑛) = 0. 

Theorem 3.7 
Every two adjacent sequences are convergent sequences and have the same limit. 
Proof 
Let (𝑢𝑛) and (𝑣𝑛) be two adjacent sequences, where (𝑢𝑛) is increasing and 
(𝑣𝑛) is decreasing, so the sequence (𝑣𝑛 − 𝑢𝑛) is decreasing and converges to 0, this means 
that inf

𝑛∈ℕ
(𝑣𝑛 − 𝑢𝑛) = 0, thus implies 

∀𝑛 ∈ ℕ: 𝑣𝑛 − 𝑢𝑛 ≥ 0 ⟹ 𝑣𝑛 ≥ 𝑢𝑛 
                                                             ⟹ 𝑣0 ≥ 𝑣𝑛 ≥ 𝑢𝑛 ≥ 𝑢0. 

So, the sequences (𝑢𝑛) and (𝑣𝑛) are monotonic and bounded sequences, and therefore they 
are convergent. 
Next assume that lim

𝑛→∞
𝑢𝑛 = ℓ and lim

𝑛→∞
𝑣𝑛 = ℓ′ according to theorem 3.4 we have  

lim
𝑛→∞

(𝑢𝑛 − 𝑣𝑛) = ℓ − ℓ′ and in other hand we have lim
𝑛→∞

(𝑢𝑛 − 𝑣𝑛) = 0.So 

 ℓ − ℓ′ = 0⟹ ℓ = ℓ′. 
Example 3.8 
Let (𝑢𝑛) and (𝑣𝑛) be two sequences defined by  

∀𝑛 ∈ ℕ: 𝑢𝑛 =∑
1

𝑛2

𝑛

𝑘=1

 and 𝑣𝑛 =∑
1

𝑛2

𝑛

𝑘=1

+
1

𝑛
. 

Let's to show that the sequences (𝑢𝑛) and (𝑣𝑛) are adjacent. Indeed, we have  

∀𝑛 ∈ ℕ: 𝑢𝑛+1 − 𝑢𝑛 = ∑
1

𝑛2

𝑛+1

𝑘=1

−∑
1

𝑛2

𝑛

𝑘=1

=
1

(𝑛 + 1)2
> 0.                                      

𝑣𝑛+1 − 𝑣𝑛 = ∑
1

𝑛2

𝑛+1

𝑘=1

+
1

𝑛 + 1
− (∑

1

𝑛2

𝑛

𝑘=1

+
1

𝑛
) 

  =
1

(𝑛 + 1)2
+

1

𝑛 + 1
−
1

𝑛
 

  = −
1

𝑛(𝑛 + 1)2
< 0.       

So (𝑢𝑛) is increasing and (𝑣𝑛) is decreasing. 

On the other hand we have lim
𝑛→∞

(𝑢𝑛 − 𝑣𝑛) = lim
𝑛→∞

(
1

𝑛
) = 0. 

Thus the sequences (𝑢𝑛) and (𝑣𝑛) are adjacent. 

(It can be proven that lim
𝑛→∞

𝑣𝑛 = lim
𝑛→∞

𝑢𝑛 =
𝜋2

6
.) 

Exercise 3.1 
1) Let (𝑢𝑛) be a sequence. Prove that if the two subsequences (𝑢2𝑛) and (𝑢2𝑛+1) converges 
towards ℓ then the sequence (𝑢𝑛) converges towards ℓ. 

2) Let the sequence (𝑆𝑛) defined by 𝑆𝑛 = ∑
(−1)𝑘+1

𝑘

𝑛
𝑘=1 . Prove that the two subsequences 

(𝑆2𝑛) and (𝑆2𝑛+1) are adjacent, what do you conclude ? 

Solution 

1) Assume that (𝑢2𝑛) and (𝑢2𝑛+1) converge to ℓ then: 
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∀𝜀 > 0; ∃𝑁0, 𝑁1 ∈ ℕ; ∀𝑘 ∈ ℕ: {
𝑘 > 𝑁0 ⟹  |𝑣2𝑘 − ℓ| < 𝜀    

𝑘 > 𝑁1 ⟹  |𝑣2𝑘+1 − ℓ| < 𝜀.
 

Putting 𝑁 = max{2𝑁0, 2𝑁1 + 1} so ∀𝑛 ∈ ℕ: 

If 𝑛 is pair, then 𝑛 = 2𝑘, so 
𝑛 > 𝑁 ⟹  2𝑘 > 2𝑁0 ⟹  𝑘 > 𝑁0 ⟹  |𝑢2𝑘 − ℓ| < 𝜀 ⟹  |𝑢𝑛 − ℓ| < 𝜀.              

If 𝑛 is odd, then 𝑛 = 2𝑘 + 1, so 
       𝑛 > 𝑁 ⟹  2𝑘 + 1 > 2𝑁1 + 1 ⟹  𝑘 > 𝑁1 ⟹  |𝑢2𝑘+1 − ℓ| < 𝜀 ⟹  |𝑢𝑛 − ℓ| < 𝜀. 

So 
∀𝜀 > 0; ∃𝑁 ∈ ℕ; ∀𝑛 ∈ ℕ: 𝑛 > 𝑁 ⟹  |𝑢𝑛 − ℓ| < 𝜀. 

2) We have  

𝑆2𝑛+2 − 𝑆2𝑛 = ∑
(−1)𝑘+1

𝑘

2𝑛+2

𝑘=1

−∑
(−1)𝑘+1

𝑘

2𝑛

𝑘=1

=
(−1)2𝑛+2

2𝑛 + 1
+
(−1)2𝑛+3

2𝑛 + 2
=

1

(2𝑛 + 1)(2𝑛 + 2)
> 0.        

𝑆2𝑛+3 − 𝑆2𝑛+1 = ∑
(−1)𝑘+1

𝑘

2𝑛+3

𝑘=1

− ∑
(−1)𝑘

𝑘

2𝑛+1

𝑘=1

=
(−1)2𝑛+3

2𝑛 + 2
+
(−1)2𝑛+4

2𝑛 + 3
=

−
−1

(2𝑛 + 2)(2𝑛 + 3)
< 0. 

So (𝑆2𝑛) is increasing and (𝑆2𝑛+1) is decreasing and  

lim
𝑛→∞

(𝑆2𝑛+1 − 𝑆2𝑛) = lim
𝑛→∞

(−
1

2𝑛 + 1
) = 0. 

So (𝑆2𝑛) and (𝑆2𝑛+1) are adjacent. 
Thus the subsequences (𝑆2𝑛) and (𝑆2𝑛+1) are convergent sequences and have the same 
limit, according to the first question the sequence (𝑆𝑛) is convergent. 
Theorem 3.8 (BOLZANO-WEIERSTRASS) 
From every bounded real sequence, at least one convergent subsequence can be extracted. 
Proof 
Let (𝑢𝑛) be a bounded sequence, we put 𝑎0  =  inf

𝑛∈ℕ
𝑢𝑛   and  𝑏0  =  sup

𝑛∈ℕ
𝑢𝑛 . 

We have ∀𝑛 ∈ ℕ: 𝑎0  ≤ 𝑢𝑛 ≤ 𝑏0, we put 𝐼0  =  [𝑎0, 𝑏0]. 
Let us divide the interval 𝐼0 into two intervals of equal length. At least one of these two 
intervals contains an infinite number of terms of the sequence (𝑢𝑛), which we denote by 
𝐼1 = [𝑎1, 𝑏1], and let 𝑢𝑛1  be one of the terms of the sequence (𝑢𝑛), where 𝑢𝑛1 ∈ 𝐼1. 

Let us divide the interval 𝐼1 into two intervals of equal length. At least one of these two 
intervals contains an infinite number of terms of the sequence (𝑢𝑛), which we denote by 
𝐼2 = [𝑎2, 𝑏2], and let 𝑢𝑛2  be one of the terms of the sequence (𝑢𝑛), where 𝑢𝑛2 ∈ 𝐼2 and 

𝑛2  >  𝑛1 (this is possible because 𝐼2 contains an infinite number of terms of the sequence 
(𝑢𝑛)). 
Thus, we create a sequence of intervals 𝐼𝑘  = [𝑎𝑘, 𝑏𝑘] where 𝐼𝑘  is one of the two halves of 
the interval 𝐼−1𝑘  which contains an infinite number of terms of the sequence (𝑢𝑛) and 𝑢𝑛𝑘 is 

one of the terms of the sequence (𝑢𝑛) where 𝑢𝑛𝑘 ∈ 𝐼𝑘 and 𝑛𝑘  >  𝑛𝑘−1, Thus we get a 

subsequence (𝑢𝑛𝑘)𝑘∈ℕ
, satisfies ∀𝑘 ∈ ℕ ∶  𝑎𝑘 ≤ 𝑢𝑛𝑘 ≤ 𝑏𝑘 . 

We have lim
𝑘→∞

𝑢𝑛𝑘 = lim
𝑘→∞

𝑏0−𝑎0

2𝑘
= 0. 

Since 𝐼𝑘 ⊆ 𝐼𝑘−1, then the sequence (𝑎𝑘)𝑘∈ℕ is increasing and the sequence (𝑏𝑘)𝑘∈ℕ is 

decreasing, thus the sequences (𝑎𝑘) and (𝑏𝑘) are adjacent, therefore the sequence (𝑢𝑛𝑘) is 

convergent and its limit is the common limit of the sequences (𝑎𝑘) and (𝑏𝑘). 
3.6 Cauchy sequence 
Definition 3.8 
Let (𝑢𝑛) be a sequence, we say that (𝑢𝑛) is a Cauchy sequence if it has the following 
property: 
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∀𝜀 > 0; ∃𝑁 ∈ ℕ; ∀𝑝, 𝑞 ∈ ℕ: (𝑝 > 𝑁 ∧ 𝑞 > 𝑁) ⟹  |𝑢𝑝 − 𝑢𝑞| < 𝜀. 

Second formula 

∀𝜀 > 0; ∃𝑁 ∈ ℕ; ∀𝑛, 𝑝 ∈ ℕ: 𝑛 > 𝑁 ⟹  |𝑢𝑛+𝑝 − 𝑢𝑛| < 𝜀. 

Theorem 3.9 
A sequence of real numbers is convergent if and only if it is a Cauchy sequence. 
Proof 
Necessary condition 
Let (𝑢𝑛) be a sequence converging towards the real number ℓ, then 

∀𝜀 > 0; ∃𝑁 ∈ ℕ; ∀𝑛 ∈ ℕ: 𝑛 > 𝑁 ⟹  |𝑢𝑛 − ℓ| <
𝜀

2
. 

So 

∀𝑝, 𝑞 ∈ ℕ: (𝑝 > 𝑁 ∧ 𝑞 > 𝑁) ⟹  |𝑢𝑝 − 𝑢𝑞| = |𝑢𝑝 − ℓ − (𝑢𝑞 − ℓ)| 

                                                                                 ≤ |𝑢𝑝 − ℓ| + |𝑢𝑞 − ℓ| 

                                                                                 ≤
𝜀

2
+
𝜀

2
= 𝜀.                  

So, (𝑢𝑛) is a Cauchy sequence. 
Sufficient condition 
Since (𝑢𝑛) is Cauchy sequence, then for 𝜀 = 1  

∃𝑁0 ∈ ℕ; ∀𝑛, 𝑝 ∈ ℕ: (𝑛 > 𝑁0 ∧ 𝑝 > 𝑁0) ⟹  |𝑢𝑛 − 𝑢𝑝| < 1. 

For 𝑝 = 𝑁0 + 1, and for every 𝑛 > 𝑁 we have |𝑢𝑛| = |𝑢𝑛 − 𝑢𝑁0+1 + 𝑢𝑁0+1| 

                                                                  ≤ |𝑢𝑛 − 𝑢𝑁0+1| + |𝑢𝑁0+1| 

                                                                  ≤ 1 + |𝑢𝑁0+1|.                     

Taking 𝑀 = max{|𝑢0|, |𝑢1|, |𝑢2| …… , |𝑢𝑁0|, 1 + |𝑢𝑁0+1|} we get ∀𝑛 ∈ ℕ: |𝑢𝑛| ≤ 𝑀. So the 

sequence (𝑢𝑛) is bounded. 

Hence it has a convergent subsequence, let (𝑢𝑛𝑘)𝑘∈ℕ
 be that convergent subsequence, 

which converges to ℓ. Now, for any 𝜀 >  0 there exists 𝑘0 ∈ ℕ such that: 

∀𝑘 ∈ ℕ: 𝑘 > 𝑘0 ⟹  |𝑢𝑛𝑘 − ℓ| <
𝜀

2
. 

And the sequence being Cauchy, there exists an 𝑁1 ∈ ℕ such that  

∀𝑛, 𝑝 ∈ ℕ: 𝑛, 𝑝 > 𝑁1 ⟹  |𝑢𝑛 − 𝑢𝑝| <
𝜀

2
. 

Putting 𝑁 = max{𝑘0, 𝑁1} we get ∀𝑝 ∈ ℕ: 

𝑝 > 𝑁 ⟹ {
  𝑝 > 𝑘0 ⟹  |𝑢𝑛𝑝 − ℓ| <

𝜀

2
                                                             

   𝑝 > 𝑁1 ⟹ 𝑛𝑝 > 𝑁1 ⟹  |𝑢𝑛 − 𝑢𝑛𝑝| <
𝜀

2
   ( Since 𝑛𝑝 ≥ 𝑝 ).

   

So ∀𝜀 >  0; ∃𝑁 ∈ ℕ; ∀𝑛 ∈ ℕ: 

𝑛 > 𝑁 ⟹  |𝑢𝑛 − ℓ| = |𝑢𝑛 − 𝑢𝑛𝑝 + 𝑢𝑛𝑝 − ℓ| 

                                          ≤ |𝑢𝑛 − 𝑢𝑛𝑝| + |𝑢𝑛𝑝 − ℓ| 

                                          <
𝜀

2
+
𝜀

2
= 𝜀.                         

So the sequence (𝑢𝑛) is convergent towards ℓ. 
Remarks 3.4 
1) Sometimes it is easier to prove that a sequence is Cauchy sequence than to prove that it is 
convergent (i.e. without knowing the limit). 
2) A sequence (𝑢𝑛) is divergent if and only if: 
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∃𝜀 > 0;∀𝑁 ∈ ℕ; ∃𝑝, 𝑞 ∈ ℕ: (𝑝 > 𝑁 ∧ 𝑞 > 𝑁) ∧  |𝑢𝑝 − 𝑢𝑞| ≥ 𝜀. 

Exercise 3.2 
1) Let 𝑛0 be a fixed natural number where 𝑛0 ≥ 1 and (𝑢𝑛) a sequence satisfying: ∀𝑛 ≥
𝑛0: |𝑢𝑛+1 − 𝑢𝑛| ≤ 𝑘|𝑢𝑛 − 𝑢𝑛−1|, where 𝑘 is a fixed real number verified 0 < 𝑘 < 1. 
Prove that the sequence (𝑢𝑛) is convergent. 

2) Let (𝑎𝑛) be a sequence defined by 𝑎0 > 0 ; 𝑎𝑛+1 = 1 +
1

𝑎𝑛
. Using the first question, study 

the nature of the sequence (𝑎𝑛). 
Solution 
1) We will show that (𝑢𝑛) is a Cauchy sequence. 
First observe that ∀𝑛 ∈ ℕ: 

|𝑢𝑛+1 − 𝑢𝑛| ≤ 𝑘|𝑢𝑛 − 𝑢𝑛−1| 
                               ≤ 𝑘2|𝑢𝑛−1 − 𝑢𝑛−2| 
                               ≤ 𝑘3|𝑢𝑛−2 − 𝑢𝑛−3| 
                               ………………………. 
                               ………………………. 

                                    ≤ 𝑘𝑛−𝑛0|𝑢𝑛0+1 − 𝑢𝑛0|. 

So ∀𝑛 ≥ 𝑛0: |𝑢𝑛+1 − 𝑢𝑛| ≤ 𝑘𝑛−𝑛0|𝑢𝑛0+1 − 𝑢𝑛0|. 

Next, let 𝑝 > 𝑛 ≥ 𝑛0 

|𝑢𝑝 − 𝑢𝑛| = |𝑢𝑝 − 𝑢𝑝−1 + 𝑢𝑝−1 − 𝑢𝑝−2 + ………− 𝑢𝑛+1 + 𝑢𝑛+1 − 𝑢𝑛|                                       

              ≤ |𝑢𝑝 − 𝑢𝑝−1| + |𝑢𝑝−1 − 𝑢𝑝−2| + + ………+ |𝑢𝑛+1 − 𝑢𝑛|                                       

                   ≤ 𝑘𝑝−1−𝑛0|𝑢𝑛0+1 − 𝑢𝑛0| + 𝑘
𝑝−2−𝑛0|𝑢𝑛0+1 − 𝑢𝑛0| +  ………+ 𝑘

𝑛−𝑛0|𝑢𝑛0+1 − 𝑢𝑛0| 

 ≤ (𝑘𝑛−𝑛0 + ………+𝑘𝑝−2−𝑛0 + 𝑘𝑝−1−𝑛0)|𝑢𝑛0+1 − 𝑢𝑛0|.                              

         ≤ 𝑘𝑛−𝑛0
1 − 𝑘𝑝−𝑛

1 − 𝑘
|𝑢𝑛0+1 − 𝑢𝑛0|                                                                                  

  ≤
|𝑢𝑛0+1 − 𝑢𝑛0|

1 − 𝑘
𝑘𝑛−𝑛0  ,                 ( Since    1 − 𝑘𝑝−𝑛 < 1 ).                             

We know that lim
𝑛→∞

|𝑢𝑛0+1−𝑢𝑛0 |

1−𝑘
𝑘𝑛−𝑛0 = 0 ( Since 0 < 𝑘 < 1 ), therefore, 

 ∀𝜀 > 0; ∃𝑁0 ∈ ℕ; ∀𝑛 ∈ ℕ: 𝑛 > 𝑁0 ⟹  
|𝑢𝑛0+1−𝑢𝑛0|

1−𝑘
𝑘𝑛−𝑛0 < 𝜀. 

Putting 𝑁 = max{𝑁0, 𝑛0}. We get: 

∀𝜀 > 0; ∃𝑁 ∈ ℕ; ∀𝑝, 𝑛 ∈ ℕ: 𝑝 > 𝑛 > 𝑁 ⟹ |𝑢𝑝 − 𝑢𝑛|  ≤  
|𝑢𝑛0+1 −𝑢𝑛0|

1 − 𝑘
𝑘𝑛−𝑛0 < 𝜀. 

So (𝑢𝑛) is a Cauchy sequence. 
2) We first prove by induction that ∀𝑛 ≥ 2: 𝑎𝑛−1 ≥ 1. 

Next, we have ∀𝑛 ∈ ℕ∗: |𝑎𝑛+1 − 𝑎𝑛| = |(1 +
1

𝑎𝑛
) − (1 +

1

𝑎𝑛−1
)| 

= |
𝑎𝑛−𝑎𝑛−1
𝑎𝑛𝑎𝑛−1

|.         

On the other hand we have, 

∀𝑛 ≥ 2: 𝑎𝑛𝑎𝑛−1 = 1+ 𝑎𝑛−1 ≥ 1 + 1 = 2, and ∀𝑛 ≥ 2: 
1

𝑎𝑛𝑎𝑛−1
≤

1

2
. 

So 

∀𝑛 ≥ 2: |𝑎𝑛+1 − 𝑎𝑛| ≤
1

2
|𝑎𝑛−𝑎𝑛−1|. 

Therefore, the sequence (𝑎𝑛) satisfies the condition given in the first question. Then the 
sequence (𝑎𝑛) is convergent. 
Exercise 3.3 
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Let the sequence (𝑢𝑛) be defined by: ∀𝑛 ∈ ℕ∗: 𝑢𝑛 = ∑
1

𝑘

𝑛
𝑘=1 . 

Prove that the sequence (𝑢𝑛) is divergent. 
Solution 
We will show that (𝑢𝑛) is not a Couchy sequence. 
We have ∀𝑛 ∈ ℕ∗: 

𝑢2𝑛+1 − 𝑢𝑛+1 = ∑
1

𝑘

2𝑛+1

𝑘=1

−∑
1

𝑘

𝑛+1

𝑘=1

                                                                                                  

        = ∑
1

𝑘

2𝑛+1

𝑘=𝑛+2

                                                                                       

 

            = ∑
1

𝑛 + 𝑝

𝑛+1

𝑝=2

                                                                                       

 

                                      ≥ ∑
1

2𝑛 + 1

2𝑛+1

𝑘=𝑛+2

   ( Since ∀𝑛 ∈ ℕ∗: 2 ≤ 𝑝 ≤ 𝑛 + 1⟹
1

𝑛 + 𝑝
≥

1

2𝑛 + 1
) 

 

≥ 𝑛
1

2𝑛 + 1
≥ 𝑛

1

2𝑛 + 𝑛
=
1

3
,                                          

so 

∀𝑛 ∈ ℕ∗: 𝑢2𝑛+1 − 𝑢𝑛+1 ≥
1

3
 .                                                                                                

Putting 𝑞 = 𝑛 + 1, 𝑝 = 2𝑛 + 1 and 𝜀 =
1

3
, we get, 

∃𝜀 =
1

3
> 0;∀𝑛 ∈ ℕ∗;  ∃𝑝, 𝑞 ∈ ℕ: (𝑝 = 2𝑛 + 1 > 𝑛 ∧ 𝑞 = 𝑛 + 1 > 𝑛) ∧  |𝑢𝑝 − 𝑢𝑞| ≥ 𝜀. 

3.7 Recurrence Sequences 
Definition 3.9 
Let 𝑓 ∶  𝐷 →  ℝ  be a function, where 𝑓 (𝐷)  ⊆  𝐷 and 𝛼 ∈  𝐷.We say that the sequence 
(𝑢𝑛) is recurrent if it is defined by 𝑢𝑛  = 𝛼  and the recurrent relation: 
∀𝑛 ∈ ℕ ∶  𝑢𝑛+1  =  𝑓 (𝑢𝑛) . 

Monotonicity 
The monotonicity of the sequence (𝑢𝑛) is related to the monotonicity of the function 𝑓. 
Using proof by induction, the following can be proven true. 
Proposition 3.3 
1) If 𝑓 is increasing, the sequence (𝑢𝑛) is monotonic, increasing if 𝑓(𝑢0) − 𝑢0 ≥ 0 and 
decreasing if 𝑓(𝑢0) − 𝑢0 ≤ 0. 
2) If 𝑓 is decreasing, the sign of the difference 𝑢𝑛+1 − 𝑢𝑛 is alternately negative and positive, 
which means that (𝑢𝑛) is non-monotonic in this case. 
Proof 
1) Assume that 𝑓 is increasing. 
For 𝑓(𝑢0) − 𝑢0 ≥ 0, let's to prove that ∀𝑛 ∈ ℕ ∶  𝑢𝑛+1 − 𝑢𝑛 ≥ 0. Inded 

𝑢1 − 𝑢0 = 𝑓(𝑢0) − 𝑢0 ≥ 0. 
Suppose that 𝑢𝑛+1 − 𝑢𝑛 ≥ 0, then 

𝑢𝑛+1 − 𝑢𝑛 ≥ 0⟹ 𝑢𝑛+1 ≥ 𝑢𝑛             
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                              ⟹⏞
𝑓 is increasing

 𝑓(𝑢𝑛+1) ≥ 𝑓(𝑢𝑛) 
                      ⟹ 𝑢𝑛+2 ≥ 𝑢𝑛+1 

                              ⟹ 𝑢𝑛+2 − 𝑢𝑛+1 ≥ 0. 
In the same way, we prove that: if 𝑓(𝑢0) − 𝑢0 ≤ 0, then ∀𝑛 ∈ ℕ ∶  𝑢𝑛+1 − 𝑢𝑛 ≤ 0. 
2) Assume that 𝑓 is increasing. 
If 𝑢𝑛+1 − 𝑢𝑛 ≥ 0, then  

𝑢𝑛+1 − 𝑢𝑛 ≥ 0⟹ 𝑢𝑛+1 ≥ 𝑢𝑛             

                              ⟹⏞
𝑓 is decreasing

 𝑓(𝑢𝑛+1) ≤ 𝑓(𝑢𝑛) 
                      ⟹ 𝑢𝑛+2 ≤ 𝑢𝑛+1 

                              ⟹ 𝑢𝑛+2 − 𝑢𝑛+1 ≤ 0. 
That is, the sign of the difference 𝑢𝑛+1 − 𝑢𝑛 is alternately negative and positive. 
Convergence 

Proposition 3.4 
We assume that 𝑓 is continuous on 𝐷. 
If the sequence (𝑢𝑛) converges towards ℓ in 𝐷, then ℓ is a solution to the equation 𝑓(𝑥)  =
 𝑥. 
Proof 
If the sequence (𝑢𝑛) converges towards ℓ of 𝐷 then lim

𝑛→∞
𝑢𝑛 = lim

𝑛→∞
𝑢𝑛+1 = ℓ. 

Since 𝑓 is continuous at ℓ, then: lim
𝑛→∞

𝑓(𝑢𝑛) = 𝑓(ℓ). On the other hand, we have 

∀𝑛 ∈ ℕ ∶  𝑢𝑛+1 = 𝑢𝑛 ⟹ lim
𝑛→∞

𝑢𝑛+1 = lim
𝑛→∞

𝑢𝑛  

                                           ⟹ lim
𝑛→∞

𝑓(𝑢𝑛) = lim
𝑛→∞

𝑢𝑛 

                     ⟹ 𝑓(ℓ) = ℓ. 
So, ℓ is a solution of the equation 𝑓(𝑥) =  𝑥. 
Remark 3.4 
The search for the limit of the sequence (𝑢𝑛) leads to solving the equation 𝑓(𝑥)  =  𝑥, with 
the unknown 𝑥 in set 𝐷. If the equation has no solution, then the sequence has no limit. 
However, If the equation has one or more solutions, then the problem returns to studying 
the possibility that one of these solutions is the limit of the sequence (𝑢𝑛). 
If the equation 𝑓(𝑥)  =  𝑥 has solutions, this does not necessarily mean that the sequence 
(𝑢𝑛) is convergent. 
Example 3.9 

Let (𝑢𝑛) be a sequence defined by 𝑢0 = 𝑎; ∀𝑛 ∈ ℕ ∶  𝑢𝑛+1  =  √2 + 𝑢𝑛. 

Putting 𝑓(𝑥) = √2 + 𝑥. So the function 𝑓 is defined continuous and strictly increasing on the 
domain 𝐷 = [−2,+∞[, and 𝑓(𝐷) ⊆ 𝐷. Then the sequence (𝑢𝑛) is defined and monotonic 
and we have 

𝑓(𝑢0) − 𝑢0 = 𝑓(𝑎) − 𝑎 = √2 + 𝑎 − 𝑎 =
2 + 𝑎 − 𝑎2

√2 + 𝑎 + 𝑎
=
(2 − 𝑎)(1 + 𝑎)

√2 + 𝑎 + 𝑎
. 

So the sign of 𝑓(𝑢0) − 𝑢0, is the same sign of (2 − 𝑎), also the equation √2 + 𝑥 = 𝑥 has a 
single solution which is 2, hence the following results. 
1) If 𝑎 < 2, we can prove that ∀𝑛 ∈ ℕ ∶  𝑢𝑛 < 2. So the sequence (𝑢𝑛) is increasing and 
bounded from above by 2. 
2) If 𝑎 > 2, we can prove that ∀𝑛 ∈ ℕ ∶  𝑢𝑛 > 2. So the sequence (𝑢𝑛) is decreasing and 
bounded from below by 2. 
3) If 𝑎 = 2, the sequence (𝑢𝑛) is constant. 
So the sequence (𝑢𝑛) is convergent in all cases and its limit is 2. 
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Example 3.10 
Let (𝑣𝑛) be a sequence defined by 𝑣0 = 𝑎 > 1; ∀𝑛 ∈ ℕ ∶  𝑣𝑛+1  =  𝑣𝑛

2 
Putting 𝑓(𝑥) = 𝑥2. Since the function 𝑓 is defined continuous and strictly increasing on the 
domain 𝐷 = [0,+∞[, and 𝑓(𝐷) ∈ 𝐷, and we have 𝑓(𝑣0) − 𝑣0 = 𝑓(𝑎) − 𝑎 = 𝑎2 − 𝑎 > 0 
Then the sequence (𝑣𝑛) is defined and monotonic increasing. And the equation 𝑥2 = 𝑥 has 
tow solutions which are 0; 1, but the sequence (𝑣𝑛) is divergent. Indeed, by induction we 

can prove that ∀𝑛 ∈ ℕ ∶  𝑣𝑛 = 𝑎2
𝑛

, therefore lim
𝑛→∞

𝑣𝑛 = +∞. 

Newton’s Method 
Newton’s method is a technique for generating numerical approximate solutions to 
equations of the form 𝑓(𝑥) = 0. If 𝑥𝑛 is an approximation of this solution and if 𝑓′(𝑥𝑛) ≠ 0 the 
next approximation is given by, 

𝑥𝑛+1  =  𝑥𝑛  −  
𝑓(𝑥𝑛)

𝑓′(𝑥𝑛)
, 

so (𝑥𝑛) is a recurrent sequence. 
Example 3.11 
We can easily get a good approximation to square root of 𝑎 (𝑎 > 0), by applying Newton’s 
method to the equation 𝑓(𝑥) =  𝑥2 −  𝑎 =  0. 
Since 𝑓′(𝑥)  =  2𝑥, so 

𝑥𝑛+1  =  𝑥𝑛  −  
𝑥𝑛
2 −  𝑎

2𝑥𝑛
=
1

2
(𝑥𝑛 +

 𝑎

𝑥𝑛
). 

For 𝑎 =  2, by setting 𝑥0 = 1, the following table gives us the first values of 𝑥𝑛 and 

compares them to: √2 =1,41421356..... 

𝑥0 𝑥1 𝑥2 𝑥3 𝑥4 
1 3

2
 

17

12
 

577

408
 

665857

470832
 

1.0 1.5 1.41666666.. 1.41421568.. 1.41421356.. 

Example 3.12 
To approximate the cube root of 𝑎 (𝑎 > 0), applying Newton's method to the equation 
𝑓(𝑥) =  𝑥3 −  𝑎 =  0. Since 𝑓′(𝑥)  =  3𝑥2, so  

𝑥𝑛+1 = 𝑥𝑛  −  
𝑓(𝑥𝑛)

𝑓′(𝑥𝑛)
=  𝑥𝑛  −  

𝑥𝑛
3 −  𝑎

3𝑥𝑛2
=
1

3
(2𝑥𝑛 +

 𝑎

𝑥𝑛2
). 

For 𝑎 =  2, by setting 𝑥0 = 1, the following table gives us the first values of 𝑥𝑛 and 

compares them to: √2
3

=1,25992104.... 

𝑥0 𝑥1 𝑥2 𝑥3 𝑥4 
1 4

3
 

91

72
 

1126819

894348
 

2146097524 939083451

1703358734 191174242
 

1.0 1.33333333.. 1,34722222.. 1,25993349... 1,25992105... 

 


