3 Real sequences

3.1 Generalities

Definition 3.1

- We call each fonction U of \mathbb{N} in \mathbb{R}; a real sequence.

$$
\begin{aligned}
U & : \\
n & \rightarrow \\
n & u_{n}=u(n)
\end{aligned}
$$

- u_{n} is called the general term of the sequence U.
- We olso sumbolize the sequence by $\left(u_{n}\right)_{n \in \mathbb{N}}$ or $\left(u_{n}\right)$.
- If the sequence is defined for each $n \geq n_{0}$ we denote it by $\left(u_{n}\right)_{n>n_{0}}$.
- A real sequence is defined explicitly or with a recurrent relation. examples

1) $\left(u_{n}\right)_{n \geq 2}$ is a sequence defined by its general term:

$$
\forall n \geq 2: u_{n}=\sqrt{n-2}
$$

So

$$
u_{2}=0 ; u_{3}=1 ; u_{4}=\sqrt{2} ; u_{5}=\sqrt{3} ; \ldots \ldots \ldots \ldots ; u_{10}=\sqrt{8} \ldots \ldots
$$

2) $\left(v_{n}\right)_{n \in \mathbb{N}}$ is a sequence defined by a recurrent relation:

$$
\forall n \in \mathbb{N}: v_{n+1}=\frac{v_{n}}{v_{n}+1} \quad ; \quad v_{0}=1
$$

So

$$
\begin{aligned}
& v_{1}= v_{0} \\
& v_{0}+1 \frac{1}{1+1}=\frac{1}{2} \\
& v_{2}=\frac{v_{1}}{v_{1}+1}=\frac{\frac{1}{2}}{\frac{1}{2}+1}=\frac{1}{3} \\
& v_{3}=\frac{v_{2}}{v_{2}+1}=\frac{\frac{1}{3}}{\frac{1}{3}+1}=\frac{1}{4} \\
& \cdots \ldots \ldots \ldots \ldots . .
\end{aligned}
$$

prove that: $\forall n \in \mathbb{N}: v_{n}=\frac{1}{n+1}$.
Definition 3.2 Let $\left(u_{n}\right)$ be a real sequence.

- $\left(u_{n}\right)$ is bounded from above if and only if :

$$
\exists M \in \mathbb{R} ; \forall n \in \mathbb{N}: u_{n} \leq M
$$

- $\left(u_{n}\right)$ is bounded from below if and only if :

$$
\exists m \in \mathbb{R} ; \forall n \in \mathbb{N}: u_{n} \geq m
$$

- $\left(u_{n}\right)$ is bounded if and only if it is bounded from above and below.

In other words: $\left(\left(u_{n}\right)\right.$ is bounded $) \Leftrightarrow\left(\exists M \in \mathbb{R}_{+}^{*} ; \forall n \in \mathbb{N}:\left|u_{n}\right| \leq M\right)$.
Definition 3.3 Let $\left(u_{n}\right)$ be a real sequence.

- $\left(u_{n}\right)$ is increasing (Strictly increasing, respectively) if and only if :

$$
\forall n \in \mathbb{N}: u_{n} \leq u_{n+1} \quad\left(\forall n \in \mathbb{N}: u_{n}<u_{n+1}, \text { respectively }\right)
$$

- $\left(u_{n}\right)$ is decreasing (Strictly decreasing, respectively) if and only if :

$$
\forall n \in \mathbb{N}: u_{n} \geq u_{n+1} \quad\left(\forall n \in \mathbb{N}: u_{n}>u_{n+1}, \text { respectively }\right)
$$

- $\left(u_{n}\right)$ is canstant if and only if :

$$
\forall n \in \mathbb{N}: u_{n}=u_{n+1}
$$

- A sequence of real numbers $\left(u_{n}\right)$ is called monotone if it is either increasing or decreasing.

3.2 Convergent sequences

Definition 3.4

A sequence $\left(u_{n}\right)$ is convergent and its limit is the real number ℓ, if and only if:

$$
\forall \varepsilon>0 ; \exists N \in \mathbb{N} ; \forall n \in \mathbb{N}\left[n>N \Longrightarrow\left|u_{n}-\ell\right|<\varepsilon\right]
$$

and we write: $\lim _{n \rightarrow \infty} u_{n}=\ell$ or $\lim _{n} u_{n}=\ell$.
If $\left(u_{n}\right)$ does not converge, then we say that it divergent.

Example

Let it be the sequence $\left(u_{n}\right)$ where: $\forall n \in \mathbb{N}: u_{n}=\frac{3 n+1}{n+2}$ and let's prove that $\lim _{n} u_{n}=3$.

Let $\varepsilon \in \mathbb{R}_{+}^{*}$ where $\left|u_{n}-\ell\right|<\varepsilon$, so

$$
\begin{aligned}
\left|u_{n}-\ell\right|<\varepsilon & \Longleftrightarrow\left|\frac{3 n+1}{n+2}-3\right|<\varepsilon \\
& \Longleftrightarrow n>\frac{5}{\varepsilon}-2
\end{aligned}
$$

According to Archimedean Axiom we have: $\exists N_{0} \in \mathbb{N} ; N_{0}>\frac{5}{\varepsilon}-2$, so we take $N=N_{0}$ until the following is achieved:

$$
\forall \varepsilon>0 ; \exists N\left(N=N_{0}\right) \in \mathbb{N} ; \forall n \in \mathbb{N}\left[n>N \Longrightarrow\left|u_{n}-3\right|<\varepsilon\right]
$$

Remark: N can be determined in another way.
We have $\frac{5}{\varepsilon}-2 \leq\left|\frac{5}{\varepsilon}-2\right|$ and $\left|\frac{5}{\varepsilon}-2\right|<E\left(\left|\frac{5}{\varepsilon}-2\right|\right)+1 \in \mathbb{N}$, so it is enough we take $N=E\left(\left|\frac{5}{\varepsilon}-2\right|\right)+1$.

Teorem 3.1 (Uniqueness of limit)
Let $\left(u_{n}\right)$ be a convergent sequence, then the limit is unique.
Proof
Assume that the sequence $\left(u_{n}\right)$ accepts two limits ℓ and ℓ^{\prime} where $\ell^{\prime} \neq \ell$.
For $\varepsilon=\frac{\left|\ell-\ell^{\prime}\right|}{2}$, we have:
$\exists N_{1} \in \mathbb{N} ; \forall n \in \mathbb{N}\left[n>N_{1} \Longrightarrow\left|u_{n}-\ell\right|<\varepsilon\right]$ and $\exists N_{2} \in \mathbb{N} ; \forall n \in \mathbb{N}\left[n>N_{2} \Longrightarrow\left|u_{n}-\ell^{\prime}\right|<\varepsilon\right]$
by putting $N=\max \left\{N_{1}, N_{2}\right\}$; then $\forall n \in \mathbb{N}$;

$$
\begin{aligned}
n>N \Longrightarrow\left|\ell-\ell^{\prime}\right| & =\left|\ell-u_{n}+u_{n}-\ell^{\prime}\right| \\
& \leq \underbrace{\left|u_{n}-\ell\right|}_{<\varepsilon}+\underbrace{\left|u_{n}-\ell\right|}_{<\varepsilon} \\
& <2 \varepsilon=\left|\ell-\ell^{\prime}\right|
\end{aligned}
$$

This is a contradiction, So $\ell^{\prime}=\ell$.

Teorem 3.2

Let $\left(u_{n}\right)$ be a convergent sequence, then $\left(u_{n}\right)$ is bounded.
Proof
We assume that the sequence $\left(u_{n}\right)$ is convergent to towards the number ℓ. For $\varepsilon=1 ; \exists N \in \mathbb{N} ; \forall n \in \mathbb{N}: n>N \Longrightarrow \ell-1<u_{n}<\ell+1$ by putting $A=\left\{u_{0}, u_{1}, \ldots \ldots, u_{N}, \ell-1, \ell+1\right\}$ then:

$$
\forall n \in \mathbb{N}: \min A \leq u_{n} \leq \max A
$$

Teorem 3.3 Let $\left(u_{n}\right)$ be a real sequence.
(i) If (u_{n}) is increasing and bounded from above, then $\left(u_{n}\right)$ converges, where $\lim _{n} u_{n}=\sup _{n \in \mathbb{N}} u_{n}$.
(ii) If $\left(u_{n}\right)$ is decreasing and bounded from below, then $\left(u_{n}\right)$ converges, where $\lim _{n} u_{n}=\inf _{n \in \mathbb{N}} u_{n}$.

Remark So, a bounded monotone sequence converges.
Proof
(i) Let the sequence $\left(u_{n}\right)$ be increasing and bounded from above.

The set $A=\left\{u_{n} ; n \in \mathbb{N}\right\}$ is bounded from above. We put $\sup A=\ell$, we have:

$$
\sup A=\ell \Longleftrightarrow\left\{\begin{array}{l}
\forall n \in \mathbb{N}: u_{n} \leq \ell \\
\forall \varepsilon>0 ; \exists N \in \mathbb{N}: \ell-\varepsilon<u_{N}
\end{array}\right.
$$

so, $\forall n \in \mathbb{N}$:

$$
\begin{aligned}
n>N & \Longrightarrow u_{n} \geq u_{N} \quad\left(\quad\left(u_{n}\right) \text { is increasing }\right) \\
& \Longrightarrow \ell \geq u_{n} \geq u_{N}>\ell-\varepsilon \\
& \Longrightarrow \ell+\varepsilon>u_{n}>\ell-\varepsilon \\
& \Longrightarrow\left|u_{n}-\ell\right|<\varepsilon
\end{aligned}
$$

Hence

$$
\forall \varepsilon>0 ; \exists N \in \mathbb{N} ; \forall n \in \mathbb{N}: n>N \Longrightarrow\left|u_{n}-\ell\right|<\varepsilon
$$

we obtain

$$
\lim _{n} u_{n}=\ell
$$

(ii) In the same way, we prove the second case.

Example
Let it be the sequence $\left(u_{n}\right)$ defined by: $u_{0}=\alpha>1$ and $\forall n \in \mathbb{N}: u_{n+1}=$ $\frac{2 u_{n}+1}{u_{n}+2}$.

Prove that $\left(u_{n}\right)$ is convergent (calculating the limit is not required).
We use proof by induction, to prove that: $\forall n \in \mathbb{N}: u_{n}>1$, and we prove that $\left(u_{n}\right)$ decreasing (strictly decreasing), according the theorem 3.3, the sequence $\left(u_{n}\right)$ is convergent.

Teorem 3.4

If the sequences $\left(u_{n}\right)$ and $\left(v_{n}\right)$ are converges towards ℓ and ℓ^{\prime} respectively then the sequences: $\left(u_{n}+v_{n}\right) ;\left(u_{n} v_{n}\right) ;\left(\lambda u_{n}\right) ;\left(\left|u_{n}\right|\right)$ are converges towards $\ell+\ell^{\prime} ; \ell \ell^{\prime} ; \lambda \ell ;|\ell|$ respectively. If $\ell^{\prime} \neq 0$ and $\forall n \in \mathbb{N}: v_{n} \neq 0$ then $\left(\frac{u_{n}}{v_{n}}\right)$ is converges towards $\frac{\ell}{\ell_{1}}$.

Proof (Let us prove the last case)
We have $\lim _{n} v_{n}=\ell^{\prime} \neq 0$. For $\varepsilon=\frac{\left|\ell^{\prime}\right|}{2}$, then $\exists N_{1} \in \mathbb{N} ; \forall n \in \mathbb{N}$:
$n>N_{1} \Longrightarrow\left|v_{n}-\ell^{\prime}\right|<\frac{\left|\ell^{\prime}\right|}{2}$

$$
\begin{aligned}
& \Longrightarrow\left|\left|v_{n}\right|-\left|\ell^{\prime}\right|\right|<\frac{\left|\ell^{\prime}\right|}{2}\left(\text { Since }| | v_{n}\left|-\left|\ell^{\prime}\right|\right| \leq\left|v_{n}-\ell^{\prime}\right|\right) \\
& \Longrightarrow \frac{1}{2}\left|\ell^{\prime}\right|<\left|v_{n}\right|<\frac{3}{2}\left|\ell^{\prime}\right| \\
& \Longrightarrow \frac{1}{\left|v_{n}\right|}<\frac{2}{\left|\ell^{\prime}\right|}
\end{aligned}
$$

On the other hand for $\varepsilon>0$, then:

$$
\exists N_{2} \in \mathbb{N} ; \forall n \in \mathbb{N}: n>N_{1} \Longrightarrow\left|u_{n}-\ell\right|<\varepsilon
$$

and

$$
\exists N_{3} \in \mathbb{N} ; \forall n \in \mathbb{N}: n>N_{3} \Longrightarrow\left|v_{n}-\ell^{\prime}\right|<\varepsilon
$$

by putting: $N=\max \left\{N_{1}, N_{2}, N_{3}\right\}$, then: $\forall n \in \mathbb{N}$:

$$
\begin{aligned}
n>N \Longrightarrow\left|\frac{u_{n}}{v_{n}}-\frac{\ell}{\ell^{\prime}}\right| & =\left|\frac{u_{n} \ell^{\prime}-\ell v_{n}}{v_{n} \ell^{\prime}}\right|=\left|\frac{u_{n} \ell^{\prime}-\ell \ell^{\prime}+\ell \ell^{\prime}-\ell v_{n}}{v_{n} \ell^{\prime}}\right| \\
& \leq \frac{\left|\left(u_{n}-\ell\right) \ell^{\prime}\right|+\left|\ell\left(v_{n}-\ell^{\prime}\right)\right|}{\left|v_{n} \ell^{\prime}\right|} \\
& <\frac{2\left(|\ell|+\left|\ell^{\prime}\right|\right)}{\left|\ell^{\prime}\right|^{2}} \varepsilon=\varepsilon^{\prime}(\varepsilon>0)
\end{aligned}
$$

so

$$
\forall \varepsilon^{\prime}>0 ; \exists N \in \mathbb{N} ; \forall n \in \mathbb{N}: n>N \Longrightarrow\left|\frac{u_{n}}{v_{n}}-\frac{\ell}{\ell^{\prime}}\right|<\varepsilon^{\prime}
$$

Teorem 3.5

- If $\left(u_{n}\right)$ and $\left(v_{n}\right)$ are sequences that converge towards ℓ and ℓ^{\prime} respectively, where: $\forall n \in \mathbb{N}: u_{n}<v_{n}$ Then $\ell \leq \ell^{\prime}$.
- If $\left(u_{n}\right),\left(v_{n}\right)$ and $\left(w_{n}\right)$ are a convergent sequences verified: $\forall n \in \mathbb{N}$: $w_{n}<u_{n}<v_{n}$ and $\lim _{n} v_{n}=\lim _{n} w_{n}=\ell$, Then $\lim _{n} u_{n}=\ell$

Proof

- Let $\left(u_{n}\right)$ and $\left(v_{n}\right)$ are a convergent sequences, where $\forall n \in \mathbb{N}: u_{n}<v_{n}$ with $\lim _{n} u_{n}=\ell$ and $\lim _{n} v_{n}=\ell^{\prime}$
assume that $\ell>\ell^{\prime}$ for $\varepsilon=\frac{\ell-\ell^{\prime}}{2}$ then $\exists N_{0} \in \mathbb{N} ; \exists N_{1} \in \mathbb{N} ; \forall n \in \mathbb{N}$:

$$
\begin{aligned}
& n>N_{0} \Longrightarrow\left|u_{n}-\ell\right|<\varepsilon \Longrightarrow \ell-\varepsilon<u_{n}<\ell+\varepsilon \Longrightarrow \frac{\ell+\ell^{\prime}}{2}<u_{n}<\frac{3 \ell-\ell^{\prime}}{2} \\
& n>N_{1} \Longrightarrow\left|v_{n}-\ell^{\prime}\right|<\varepsilon \Longrightarrow \ell^{\prime}-\varepsilon<v_{n}<\ell^{\prime}+\varepsilon \Longrightarrow \frac{\ell+3 \ell^{\prime}}{2}<v_{n}<\frac{\ell+\ell^{\prime}}{2}
\end{aligned}
$$

by putting $N=\max \left\{N_{0}, N_{1}\right\}$, then $\forall n \in \mathbb{N}$:

$$
n>N \Longrightarrow v_{n}<\frac{\ell+\ell^{\prime}}{2}<u_{n}
$$

This contradicts the hypothesis, $\forall n \in \mathbb{N}: u_{n}<v_{n}$.
. The second case is a result of first case.

3.3 Subsequences

Definition 3.5

Let $\left(u_{n}\right)$ be a sequence. A subsequence $\left(v_{k}\right)$ of the sequence $\left(u_{n}\right)$ is defined by a function $f: \mathbb{N} \rightarrow \mathbb{N}$ such that f is strictly increasing, and $v_{k}=u_{f(k)}$ for $k \in \mathbb{N}$.

We often write n_{k} instead of $f(k)$.

Example

Let it be the sequence $\left(u_{n}\right)$ defined by $\forall n \in \mathbb{N}: u_{n}=\frac{n}{n+1}$

- For $n_{k}=f(k)=3 k$ (f is strictly increasing) the subsequence $\left(v_{k}\right)$ (or $\left(u_{n_{k}}\right)$) defined by: $\forall k \in \mathbb{N}: v_{k}=u_{3 k}=\frac{3 k}{3 k+1}$.
- For $n_{k}=f(k)=k^{2}+1(f$ is strictly increasing $)$ the subsequence $\left(w_{k}\right)$ defined by: $\forall k \in \mathbb{N}: w_{k}=u_{k^{2}+1}=\frac{k^{2}+1}{k^{2}+2}$.

	0	$\frac{1}{2}$	$\frac{2}{3}$	$\frac{3}{4}$	$\frac{4}{5}$	$\frac{5}{6}$	$\frac{6}{7}$	$\frac{7}{8}$	$\frac{8}{9}$	$\frac{9}{10}$	$\frac{10}{11}$	\ldots
u_{n}	u_{0}	u_{1}	u_{2}	u_{3}	u_{4}	u_{5}	u_{6}	u_{7}	u_{8}	u_{9}	u_{10}	\ldots
v_{k}	v_{0}			v_{1}			v_{2}			v_{3}		\ldots
w_{k}		w_{0}	w_{1}			w_{2}					w_{3}	\ldots

Teorem 3.6

Every subsequence of a convergent sequence is a convergent sequence and has the same limit.

To prove the previous theorem we need the folowing proposition proposition 3.1
If $\left(n_{k}\right)$ is a sequence of strictly increasing natural numbers, then $\forall k \in \mathbb{N}$: $n_{k} \geq k$.

Proof of proposition 3.1

For $k=0$ we have $n_{0} \geq 0$ (is true because $n_{0} \in \mathbb{N}$).
Assume that $\forall k \in \mathbb{N}: n_{k} \geq k$.
We have $n_{k+1}>n_{k}$ (because $\left(n_{k}\right)$ strictly increasing)
so $n_{k+1}>n_{k} \Longrightarrow n_{k+1}>k \Longrightarrow n_{k+1} \geq k+1$.

Proof of theorem 3.6

Let $\left(u_{n}\right)$ are a convergent sequence towards ℓ and $\left(n_{k}\right)$ is a sequence of strictly increasing natural numbers, we have to prove that:lim $u_{n_{k}}=\ell$.

We have $\forall \varepsilon>0 ; \exists N \in \mathbb{N} ; \forall n \in \mathbb{N}: n>N \Longrightarrow\left|u_{n}-\ell\right|<\varepsilon$
so
$\forall k \in \mathbb{N}, k>N \Longrightarrow n_{k}>n_{N} \quad\left(\left(n_{k}\right)\right.$ is strictly increasing $)$

$$
\begin{aligned}
& \Longrightarrow \quad n_{k}>n_{N} \geq N \quad(\text { using proposition } 3.1) \\
& \Longrightarrow \quad\left|u_{n_{k}}-\ell\right|<\varepsilon .
\end{aligned}
$$

From this we conclude that the subsequence $\left(u_{n_{k}}\right)_{k}$ is converges towards ℓ.
Remak Using the contrapositive form of implication in Theorem (3.6), we can prove the divergence of some sequences.

Example Let the sequence $\left(u_{n}\right)$ defined by $\forall n \in \mathbb{N}: u_{n}=\frac{n+1}{n+2} \sin \frac{n \pi}{2}$
Let us construct the two subsequences $\left(u_{2 k}\right)_{k \in \mathbb{N}}$ and $\left(u_{4 k+1}\right)_{k \in \mathbb{N}}$, where $\forall k \in$ $\mathbb{N}: u_{2 k}=0$ and $u_{4 k+1}=\frac{4 k+2}{4 k+3}$.

We have $\lim _{k} u_{2 k}=0$ and $\lim _{k} u_{4 k+1}=1$, since $\lim _{k} u_{2 k} \neq \lim _{k} u_{4 k+1}$, so the sequence (u_{n}) is divergent.

3.4 Infinite limits

Definition 3.6

We say $\left(u_{n}\right)$ diverges to infinity if and only if

$$
\forall A \in \mathbb{R} ; \exists N \in \mathbb{N} ; \forall n \in \mathbb{N}: n>N \Longrightarrow u_{n}>A
$$

In this case we write $\lim _{n} u_{n}=\infty$.
Similarly, we say $\left(u_{n}\right)$ diverges to minus infinity and we write $\lim _{n} u_{n}=-\infty$ if and only if

$$
\forall A \in \mathbb{R} ; \exists N \in \mathbb{N} ; \forall n \in \mathbb{N}: n>N \Longrightarrow u_{n}<A
$$

Proposition 3.2 Suppose $\left(u_{n}\right)$ is a monotone unbounded sequence. Then

$$
\lim _{n} u_{n}=\left\{\begin{array}{c}
\infty \text { if }\left(u_{n}\right) \text { is increasing, } \\
-\infty \text { if }\left(u_{n}\right) \text { is decreasing. }
\end{array}\right.
$$

Proof (Exercise).

3.5 Adjacent sequences

Definition 3.7

We say of two sequences $\left(u_{n}\right)$ and $\left(v_{n}\right)$ that they are adjacent if and only if one of them is decreasing and the other is increasing and $\lim _{n}\left(u_{n}-v_{n}\right)=0$.

Theorem 3.7

Every two adjacent sequences are convergent sequences and have the same limit.

Proof

Let $\left(u_{n}\right)$ and $\left(v_{n}\right)$ be two adjacent sequences, where $\left(u_{n}\right)$ is increasing and $\left(v_{n}\right)$ is decreasing.

The sequence $v_{n}-u_{n}$ is decreasing, so it converges towards its infimum 0 , from which $\forall n \in \mathbb{N}: v_{n}-u_{n} \geq 0$, or $\forall n \in \mathbb{N}: u_{n} \leq v_{n}$, so $\forall n \in \mathbb{N}$: $u_{0} \leq u_{n} \leq v_{n} \leq v_{0}$.

So the sequences $\left(u_{n}\right)$ and $\left(v_{n}\right)$ are monotonic and bounded, so they are convergent.

Assume that $\lim _{n} u_{n}=l$ and $\lim _{n} v_{n}=l^{\prime}$, we have $\lim _{n}\left(u_{n}-v_{n}\right)=0$, so $l-l^{\prime}=0$, from which $l=l^{\prime}$.

Example Let the sequences $\left(u_{n}\right)$ and $\left(v_{n}\right)$ defined by: $\forall n \in \mathbb{N}: u_{n}=\sum_{k=1}^{n} \frac{1}{k^{2}}$ and $v_{n}=u_{n}+\frac{1}{n}$.

Prove that $\left(u_{n}\right)$ and $\left(v_{n}\right)$ be two adjacent sequences.
We have $\forall n \in \mathbb{N}: u_{n+1}-u_{n}=\frac{1}{(n+1)^{2}}>0,\left(u_{n}\right)$ is strictly increasing.
$\forall n \in \mathbb{N}: v_{n+1}-v_{n}=-\frac{1}{n(n+1)^{2}}<0,\left(v_{n}\right)$ is strictly decreasing.
$\lim _{n}\left(u_{n}-v_{n}\right)=\lim \frac{-1}{n}=0$
Thus the sequences $\left(u_{n}\right)$ and $\left(v_{n}\right)$ are adjacent, they are convergent and have the same limit (It can be proven that $\lim _{n} u_{n}=\lim _{n} v_{n}=\frac{\pi^{2}}{6}$).

Theorem 3.8 (BOLZANO-WEIERSTRASS)
From each bounded real sequence, a convergent subsequence can be extracted.

Proof Let $\left(u_{n}\right)$ be a bounded sequence, we put $a_{0}=\inf _{n \in \mathbb{N}} u_{n}$ and $b_{0}=\sup _{n \in \mathbb{N}} u_{n}$.
We have $\forall n \in \mathbb{N}: a_{0} \leq u_{n} \leq b_{0}$, we put $I_{0}=\left[a_{0}, b_{0}\right]$.
Let us divide the interval I_{0} into two intervals of equal length. At least one of these two intervals contains an infinite number of terms of the sequence $\left(u_{n}\right)$, which we denote by $I_{1}=\left[a_{1}, b_{1}\right]$, and let $u_{n_{1}}$ be one of the terms of the sequence $\left(u_{n}\right)$, where $u_{n_{1}} \in I_{1}$.

Let us divide the interval I_{1} into two intervals of equal length. At least one of these two intervals contains an infinite number of terms of the sequence $\left(u_{n}\right)$, which we denote by $I_{2}=\left[a_{2}, b_{2}\right]$, and let $u_{n_{2}}$ be one of the terms of the sequence $\left(u_{n}\right)$, where $u_{n_{2}} \in I_{2}$ and $n_{2}>n_{1}$ (this is possible because I_{2} contains an infinite number of terms of the sequence $\left(u_{n}\right)$).

Thus, we create a sequence of intervals $I_{k}=\left[a_{k}, b_{k}\right]$ where I_{k} is one of the two halves of the interval I_{k-1} which contains an infinite number of terms of the
sequence $\left(u_{n}\right)$ and $u_{n_{k}}$ is one of the terms of the sequence $\left(u_{n}\right)$ where $u_{n_{k}} \in I_{k}$ and $n_{k}>n_{k-1}$, then we get a subsequence ($u_{n_{k}}$) of the sequence $\left(u_{n}\right)$ satisfies $\forall k \in \mathbb{N}: a_{k} \leq u_{n_{k}} \leq b_{k}$.

We have $\lim _{k}\left(b_{k}-a_{k}\right)=\lim _{k}\left(\frac{b_{0}-a_{0}}{2^{k}}\right)=0$ and since $I_{k} \subset I_{k-1}$ the sequence $\left(a_{k}\right)$ is increasing and the sequence $\left(b_{k}\right)$ is decreasing, so the sequences $\left(a_{k}\right)$ and $\left(b_{k}\right)$ are adjacent, and therefore the sequence $\left(u_{n_{k}}\right)$ is convergent and its limit is the common limit of the sequences $\left(a_{k}\right)$ and $\left(b_{k}\right)$.

3.6 Cauchy sequence

Definition 3.8

Let $\left(u_{n}\right)$ be a sequence. We say that $\left(u_{n}\right)$ is a Cauchy sequence if

$$
\forall \varepsilon>0 ; \exists N \in \mathbb{N} ; \forall p, q \in \mathbb{N} ;(p>N \wedge q>N) \Longrightarrow\left|u_{p}-u_{q}\right|<\varepsilon
$$

Second formula

$$
\forall \varepsilon>0 ; \exists N \in \mathbb{N} ; \forall p, n \in \mathbb{N} ; n>N \Longrightarrow\left|u_{n+p}-u_{n}\right|<\varepsilon
$$

Theorem 3.9

A sequence of real numbers is convergent if and only if it is a Cauchy sequence.

Proof
Necessary condition Let $\left(u_{n}\right)$ be a sequence that converges to the real number l.

We have $\forall \varepsilon>0 ; \exists N \in \mathbb{N} ; \forall n \in \mathbb{N}: n>N \Longrightarrow\left|u_{n}-\ell\right|<\frac{\varepsilon}{2}$ so $\forall p, q \in \mathbb{N}$:
$(p>N \wedge q>N) \Longrightarrow\left|u_{p}-u_{q}\right|=\left|u_{p}-l+l-u_{q}\right|$

$$
\begin{aligned}
& \leq\left|u_{p}-l\right|+\left|l-u_{q}\right| \\
& <\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon .
\end{aligned}
$$

so, $\left(u_{n}\right)$ is a Cauchy sequence.
Sufficient condition Assume that $\left(u_{n}\right)$ it is a Cauchy sequence
First: For $\varepsilon=1$, then

$$
\exists N_{0} \in \mathbb{N} ; \forall n, q \in \mathbb{N} ;\left(n>N_{0} \wedge q>N_{0}\right) \Longrightarrow\left|u_{n}-u_{q}\right|<1
$$

And for $q=N_{0}+1$, then:

$$
\begin{aligned}
\forall n \in \mathbb{N} ; n>N_{0} & \Longrightarrow\left|u_{n}-u_{N_{0}+1}\right|<1 \\
& \Longrightarrow\left|\left|u_{n}\right|-\left|u_{N_{0}+1}\right|\right|<1 \\
& \Longrightarrow\left|u_{n}\right|<\left|u_{N_{0}+1}\right|+1
\end{aligned}
$$

So, the set $A=\left\{\left|u_{0}\right|,\left|u_{1}\right|,\left|u_{-} 2\right|, \ldots \ldots,\left|u_{N_{0}}\right|,\left|u_{N_{0}+1}\right|+1\right\}$ is finite as it accepts a maximum, we denote it by M, then

$$
\forall n \in \mathbb{N}:\left|u_{n}\right|<M
$$

So $\left(u_{n}\right)$ is bounded.
Second: Since $\left(u_{n}\right)$ bounded, according to Theorem 3.8, it is possible to extract from the sequence $\left(u_{n}\right)$ a subsequence $\left(u_{n_{k}}\right)$ that converges towards real number l.

Let $\varepsilon>0$ then

$$
\exists k_{0} \in \mathbb{N} ; \forall k \in \mathbb{N}: k>k_{0} \Longrightarrow\left|u_{n_{k}}-l\right|<\frac{\varepsilon}{2}
$$

and

$$
\exists N_{1} \in \mathbb{N} ; \forall p ; q \in \mathbb{N}:\left(p>N_{1} \wedge q>N_{1}\right) \Longrightarrow\left|u_{p}-u_{q}\right|<\frac{\varepsilon}{2}
$$

by putting $N=\max \left\{k_{0}, N_{1}\right\}$, then $\forall p \in \mathbb{N}$:

$$
\begin{aligned}
& p>N \Rightarrow p>k_{0} \Longrightarrow\left|u_{n_{p}}-l\right|<\frac{\varepsilon}{2} \\
& p>N \Longrightarrow p>N_{1} \Longrightarrow n_{p} \geq p>N_{1} \quad(\text { since proposition 3.1) } \\
& \Longrightarrow\left|u_{p}-u_{n_{p}}\right|<\frac{\varepsilon}{2}
\end{aligned}
$$

so, $\forall p \in \mathbb{N}$:

$$
\begin{aligned}
p>N \Longrightarrow\left|u_{p}-l\right| & =\left|u_{p}-u_{n_{p}}+u_{n_{p}}-l\right| \\
& \leq\left|u_{p}-u_{n_{p}}\right|+\left|u_{n_{p}}-l\right| \\
& <\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon
\end{aligned}
$$

So

$$
\forall \varepsilon>0 ; \exists N \in \mathbb{N} ; \forall p \in \mathbb{N}: p>N \Longrightarrow\left|u_{p}-l\right|<\varepsilon
$$

So the sequence $\left(u_{n}\right)$ is convergent towards l.

Remarks

1) One reason this is so useful is that it gives us a way to show that a sequence converges without needing to know in advance what the limit is.
2) A sequence $\left(u_{n}\right)$ is divergent if and only if

$$
\exists \varepsilon>0 ; \forall N \in \mathbb{N} ; \exists p ; q \in \mathbb{N}: p>N \wedge q>N \wedge\left|u_{p}-u_{q}\right| \geq \varepsilon
$$

Example 1 Let the sequence $\left(u_{n}\right)$ be defined by: $\forall n \in \mathbb{N}^{*}: u_{n}=\sum_{k=1}^{n} \frac{1}{k}$. Let us prove that $\left(u_{n}\right)$ is divergent. Indeed

We have $\forall n \in \mathbb{N}^{*}$:

$$
\begin{aligned}
u_{2 n}-u_{n} & =\sum_{k=1}^{2 n} \frac{1}{k}-\sum_{k=1}^{n} \frac{1}{k} \\
& =\sum_{k=n+1}^{2 n} \frac{1}{k} \\
& \geq \sum_{k=n+1}^{2 n} \frac{1}{2 n}\left(\text { because } \forall p \in \mathbb{N}: 1 \leq p \leq n \Longrightarrow \frac{1}{n+p} \geq \frac{1}{2 n}\right) \\
& \geq n \frac{1}{2 n}=\frac{1}{2}
\end{aligned}
$$

By putting $q=n, p=2 n, \varepsilon=\frac{1}{2}$, the following is achieved

$$
\exists \varepsilon>0\left(\varepsilon=\frac{1}{2}\right) ; \forall n \in \mathbb{N} ; \exists p ; q \in \mathbb{N}: p \geq n \wedge q \geq n \wedge\left|u_{p}-u_{q}\right| \geq \varepsilon
$$

So, $\left(u_{n}\right)$ is divergent.

Example 2

Let $\left(u_{n}\right)$ be a real sequence where: $\forall n \in \mathbb{N}:\left|u_{n+1}-u_{n}\right| \leq\left(\frac{1}{2}\right)^{n}$, Prove that $\left(u_{n}\right)$ is a Cauchy sequence.

For $n ; p \in \mathbb{N}$ then:

$$
\begin{aligned}
\left|u_{n+p}-u_{p}\right| & =\left|u_{n+p}-u_{n+p-1}+u_{n+p-1}-u_{n+p-2}+u_{n+p-2}-u_{n+p-3}+\ldots \ldots+u_{n+1}-u_{n}\right| \\
& \leq\left|u_{n+p}-u_{n+p-1}\right|+\left|u_{n+p-1}-u_{n+p-2}\right|+\left|u_{n+p-2}-u_{n+p-3}\right|+\ldots \ldots+\left|u_{n+1}-u_{n}\right| \\
& \leq\left(\frac{1}{2}\right)^{n+p-1}+\left(\frac{1}{2}\right)^{n+p-2}+\left(\frac{1}{2}\right)^{n+p-3}+\ldots \ldots+\left(\frac{1}{2}\right)^{n} \\
& \leq\left(\frac{1}{2}\right)^{n}\left(\left(\frac{1}{2}\right)^{p-1}+\left(\frac{1}{2}\right)^{p-2}+\left(\frac{1}{2}\right)^{p-3}+\ldots \ldots+1\right) \\
& \leq\left(\frac{1}{2}\right)^{n} \frac{1-\left(\frac{1}{2}\right)^{p}}{1-\frac{1}{2}}=2\left(\frac{1}{2}\right)^{n}\left(1-\left(\frac{1}{2}\right)^{p}\right) \\
& \leq 2\left(\frac{1}{2}\right)^{n}\left(\text { because } 1-\left(\frac{1}{2}\right)^{p} \leq 1\right) .
\end{aligned}
$$

Since $\lim _{n} 2\left(\frac{1}{2}\right)^{n}=0$, Then $\forall \varepsilon>0 ; \exists N \in \mathbb{N} ; \forall n \in \mathbb{N}: n>N \Longrightarrow 2\left(\frac{1}{2}\right)^{n}<\varepsilon$.
So

$$
\forall \varepsilon>0 ; \exists N \in \mathbb{N} ; \forall n ; p \in \mathbb{N} ; n>N \Longrightarrow\left|u_{n+p}-u_{n}\right|<\varepsilon
$$

3.7 Recurrence Sequences

Definition 3.9

Let $f: D \longrightarrow \mathbb{R}$ be a function, where $f(D) \subset D$ and $\alpha \in D$. We say that the sequence $\left(u_{n}\right)$ is recurrente if it is defined by $u_{0}=\alpha$ and the recurrente relation: $\forall n \in N: u_{n+1}=f\left(u_{n}\right)$.

Monotonicity The monotonicity of the sequence $\left(u_{n}\right)$ is related to the monotonicity of the function f. Using proof by induction, the following can be proven true:

Proposition 3.3

(i) If f is increasing, the sequence $\left(u_{n}\right)$ is monotonic, increasing if $f\left(u_{0}\right)-$ $u_{0} \geq 0$ and decreasing if $f\left(u_{0}\right)-u_{0} \leq 0$.
(ii) If f is decreasing, the sign of the difference $u_{n+1}-u_{n}$ is alternately negative and positive, which means that $\left(u_{n}\right)$ is non-monotonic in this case.

Proof

(i) Assume that f is increasing
for $f\left(u_{0}\right)-u_{0} \geq 0$, let us prove that: $\forall n \in \mathbb{N}: u_{n+1}-u_{n} \geq 0$.
$u_{1}-u_{0}=f\left(u_{0}\right)-u_{0} \geq 0$ (it is true)
suppose that $u_{n+1}-u_{n} \geq 0$ or $u_{n+1} \geq u_{n}$.
We have $u_{n+1} \geq u_{n} \Longrightarrow f\left(u_{n+1}\right) \geq f\left(u_{n}\right) \Longrightarrow u_{n+2} \geq u_{n+1}$.
In the same way, we prove that: if $f\left(u_{0}\right)-u_{0} \leq 0$ Then: $\forall n \in \mathbb{N}: u_{n+1}-u_{n} \leq$ 0.
(ii) Assume that f is decreasing
if $u_{n+1}-u_{n} \geq 0$ we have
$u_{n+1}-u_{n} \geq 0 \Longrightarrow u_{n+1} \geq u_{n} \Longrightarrow f\left(u_{n+1}\right) \leq f\left(u_{n}\right) \Longrightarrow u_{n+2} \leq u_{n+1} \Longrightarrow$ $u_{n+2}-u_{n+1} \leq 0$

So, $u_{n+1}-u_{n} \geq 0$ and $u_{n+2}-u_{n+1} \leq 0$. That is, the sign of the difference $u_{n+1}-u_{n}$ is alternately negative and positive.

Convergence
Proposition 3.4 We assume that f is continuous on D. If the sequence $\left(u_{n}\right)$ converges towards l in D, then l is a solution to the equation $f(x)=x$.

Proof
If the sequence $\left(u_{n}\right)$ converges towards l of D then: $\lim _{n} u_{n}=l \Longrightarrow \lim _{n} u_{n+1}=$ l.

Since f is continuous at l, then: $\lim _{n} f\left(u_{n}\right)=f(l)$.
On the other hand, we have: $\lim _{n} u_{n+1}=\lim _{n} f\left(u_{n}\right) \Longrightarrow l=f(l)$ so, l is a solution to the equation $x=f(x)$.

Remark

Searching for the limit of the sequence $\left(u_{n}\right)$ leads to the solution of the equation $f(x)=x$ with the unknown x in set D. If the equation does not accept solutions, then the sequence does not accept a limit. However, If the equation accepts one or more solutions, then the problem returns to studying the possibility that one of these solutions is the limit of the sequence $\left(u_{n}\right)$. If the equation $f(x)=x$ accepts solutions, this does not necessarily mean that the sequence $\left(u_{n}\right)$ is convergent.

Examples

1) Let the sequence $\left(u_{n}\right)_{n \in \mathbb{N}}$ defined by $u_{0}=a$ and $\forall n \in \mathbb{N}: u_{n+1}=$ $\sqrt{u_{n}+2}$. We put $f(x)=\sqrt{x+2}$.

Since the function f is defined, continuous and strictly increasing on the domain $D=\left[-2,+\infty\left[\right.\right.$ and $f(D) \subset D$, the sequence $\left(u_{n}\right)$ is defined and monotonic. The direction of its change is determined by the sign of the difference $f\left(u_{0}\right)-u_{0}$.

We have

$$
f\left(u_{0}\right)-u_{0}=f(a)-a=\sqrt{a+2}-a=\frac{-a^{2}+a+2}{\sqrt{a+2}+a}=\frac{(1+a)(2-a)}{\sqrt{a+2}+a} .
$$

So, the sign of $f\left(u_{0}\right)-u_{0}$ from the sign of $(2-a)$ and the equation $\sqrt{x+2}=$ x, accepts a single solution, $x=2$, from which the following results:
(i) If $a<2$, the sequence is strictly increasing, and we can prove that $\forall n \in \mathbb{N}: u_{n}<2$, So the sequence is bounded from above by 2 .
(ii) If $a>2$, the sequence is strictly decreasing and bounded from below by 2.
(iii) If $a=2$, the sequence is constant.

So the sequence is convergent in all cases and its limit is 2 .
2) Let be the sequence $\left(u_{n}\right)_{n \in \mathbb{N}}$ defined by $u_{0}=a>1$ and $\forall n \in \mathbb{N}: u_{n+1}=$ u_{n}^{2}. We put $f(x)=x^{2}$

Since the function f is defined, continuous, and strictly increasing on the domain $D=\left[0,+\infty\left[\right.\right.$ and $f(D) \subset D$, where $f(a)-a=a^{2}-a>0$, the sequence (u_{n}) is defined and strictly increasing. The equation $f(x)=x$ accepts two solutions, $x=0 ; x=1$, but the sequence $\left(u_{n}\right)$ is divergent because:

Using proof by induction, we prove that $\forall n \in \mathbb{N}: u_{n}=a^{2^{n}}$ and hence $\lim _{n} u_{n}=+\infty$.

