
3 Real sequences
3.1 Generalities
De�nition 3.1
� We call each fonction U of N in R; a real sequence.

U : N �! R
n ! un = u (n)

� un is called the general term of the sequence U:
� We olso sumbolize the sequence by (un)n2N or (un) :
� If the sequence is de�ned for each n � n0 we denote it by (un)n�n0 :
� A real sequence is de�ned explicitly or with a recurrent relation.
examples
1) (un)n�2 is a sequence de�ned by its general term:

8n � 2 : un =
p
n� 2:

So
u2 = 0;u3 = 1;u4 =

p
2;u5 =

p
3; ::::::::::::;u10 =

p
8:::::

2) (vn)n2N is a sequence de�ned by a recurrent relation:

8n 2 N : vn+1 =
vn

vn + 1
; v0 = 1 :

So

v1 =
v0

v0 + 1
=

1

1 + 1
=
1

2
;

v2 =
v1

v1 + 1
=

1
2

1
2 + 1

=
1

3
;

v3 =
v2

v2 + 1
=

1
3

1
3 + 1

=
1

4
::::::::::::::::::

prove that: 8n 2 N : vn = 1
n+1 :

De�nition 3.2 Let (un) be a real sequence.
� (un) is bounded from above if and only if :

9M 2 R;8n 2 N : un �M:

� (un) is bounded from below if and only if :

9m 2 R;8n 2 N : un � m:

� (un) is bounded if and only if it is bounded from above and below.
In other words: ((un) is bounded),

�
9M 2 R�+;8n 2 N : junj �M

�
:

De�nition 3.3 Let (un) be a real sequence.
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� (un) is increasing (Strictly increasing, respectively ) if and only if :

8n 2 N : un � un+1 (8n 2 N : un < un+1; respectively ).

� (un) is decreasing (Strictly decreasing, respectively ) if and only if :

8n 2 N : un � un+1 (8n 2 N : un > un+1; respectively ).

� (un) is canstant if and only if :

8n 2 N : un = un+1.

� A sequence of real numbers (un) is calledmonotone if it is either increasing
or decreasing.
3.2 Convergent sequences
De�nition 3.4
A sequence (un) is convergent and its limit is the real number `, if and only

if:
8" > 0;9N 2 N;8n 2 N [n > N =) jun � `j < "] :

and we write: lim
n!1

un = ` or lim
n
un = `:

If (un) does not converge, then we say that it divergent.
Example
Let it be the sequence (un) where: 8n 2 N : un = 3n+1

n+2 and let�s prove that
lim
n
un = 3:

Let " 2 R�+ where jun � `j < "; so

jun � `j < "()
����3n+ 1n+ 2

� 3
���� < "

() n >
5

"
� 2:

According to Archimedean Axiom we have: 9N0 2 N ; N0 > 5
" � 2; so we

take N = N0 until the following is achieved:

8" > 0;9N (N = N0) 2 N;8n 2 N [n > N =) jun � 3j < "] :

Remark: N can be determined in another way.
We have 5

" � 2 �
�� 5
" � 2

�� and �� 5" � 2�� < E ��� 5" � 2���+1 2 N, so it
is enough we take N = E

��� 5
" � 2

���+ 1:
Teorem 3.1 (Uniqueness of limit)
Let (un) be a convergent sequence,then the limit is unique.
Proof
Assume that the sequence (un) accepts two limits ` and `

0
where `

0 6= `:

For " =

���`�`0 ���
2 , we have:

9N1 2 N;8n 2 N [n > N1 =) jun � `j < "] and 9N2 2 N;8n 2 N
h
n > N2 =)

���un � `0 ��� < "i
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by putting N = max fN1; N2g ; then 8n 2 N ;

n > N =)
���`� `0 ��� = ���`� un + un � `0 ���

� jun � `j| {z }
<"

+ jun � `j| {z }
<"

< 2" =
���`� `0 ��� :

This is a contradiction, So `
0
= `:

Teorem 3.2
Let (un) be a convergent sequence, then (un) is bounded.
Proof
We assume that the sequence (un) is convergent to towards the number `:
For " = 1; 9N 2 N;8n 2 N : n > N =) `� 1 < un < `+ 1
by putting A = fu0; u1; ::::::; uN ; `� 1; `+ 1g then:

8n 2 N : minA � un � maxA:

Teorem 3.3 Let (un) be a real sequence.
(i) If (un) is increasing and bounded from above, then (un) converges, where

lim
n
un = sup

n2N
un.

(ii) If (un) is decreasing and bounded from below, then (un) converges, where
lim
n
un = inf

n2N
un.

Remark So, a bounded monotone sequence converges.
Proof
(i) Let the sequence (un) be increasing and bounded from above.
The set A = fun;n 2 Ng is bounded from above. We put supA = `;we have:

supA = `()
�
8n 2 N : un � `
8" > 0;9N 2 N : `� " < uN

so, 8n 2 N :

n > N =) un � uN ( (un) is increasing )

=) ` � un � uN > `� "
=) `+ " > un > `� "
=) jun � `j < ":

Hence
8" > 0;9N 2 N;8n 2 N : n > N =) jun � `j < "

we obtain
lim
n
un = `:
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(ii) In the same way, we prove the second case.
Example
Let it be the sequence (un) de�ned by: u0 = � > 1 and 8n 2 N : un+1 =

2un+1
un+2

:
Prove that (un) is convergent ( calculating the limit is not required ).
We use proof by induction, to prove that: 8n 2 N : un > 1; and we prove that

(un) decreasing (strictly decreasing),according the theorem 3.3, the sequence
(un) is convergent.
Teorem 3.4
If the sequences (un) and (vn) are converges towards ` and `

0
respectively

then the sequences: (un + vn) ; (unvn) ; (�un) ; (junj) are converges towards
` + `

0
; ``

0
; �` ; j`j respectively. If `0 6= 0 and 8n 2 N : vn 6= 0 then

�
un
vn

�
is

converges towards `
`0
:

Proof ( Let us prove the last case )

We have lim
n
vn = `

0 6= 0: For " =
���`0 ���
2 ; then 9N1 2 N ;8n 2 N :

n > N1 =)
���vn � `0 ��� <

���`0 ���
2

=)
���jvnj � ���`0 ������ <

���`0 ���
2
( Since

���jvnj � ���`0 ������ � jvn � `0j)
=) 1

2

���`0 ��� < jvnj < 3

2

���`0 ���
=) 1

jvnj
<

2

j`0 j :

On the other hand for " > 0;then:

9N2 2 N;8n 2 N : n > N1 =) jun � `j < "

and
9N3 2 N;8n 2 N : n > N3 =)

���vn � `0 ��� < "
by putting: N = max fN1; N2; N3g ; then:8n 2 N :

n > N =)
����unvn � `

`0

���� =
�����un`

0 � `vn
vn`

0

����� =

�����un`
0 � ``0 + ``0 � `vn

vn`
0

�����
�

���(un � `) `0 ���+ ���`�vn � `0����
jvn`0 j

<
2
�
j`j+

���`0 ����
j`0 j2

" = "
0
( " > 0 )

4



so

8"
0
> 0;9N 2 N;8n 2 N : n > N =)

����unvn � `

`0

���� < "0 :
Teorem 3.5
� If (un) and (vn) are sequences that converge towards ` and `

0
respectively,

where: 8n 2 N : un < vn Then ` � `
0
:

� If (un) , (vn) and (wn) are a convergent sequences veri�ed: 8n 2 N :
wn < un < vn and lim

n
vn = lim

n
wn = ` ,Then lim

n
un = `

Proof
� Let (un) and (vn) are a convergent sequences, where 8n 2 N : un < vn

with lim
n
un = ` and lim

n
vn = `

0

assume that ` > `
0
for " = `�`

0

2 then 9N0 2 N;9N1 2 N;8n 2 N :

n > N0 =) jun � `j < " =) `� " < un < `+ " =)
`+ `

0

2
< un <

3`� `0

2

n > N1 =)
���vn � `0 ��� < " =) `

0
� " < vn < `

0
+ " =) `+ 3`

0

2
< vn <

`+ `
0

2

by putting N = max fN0; N1g ; then 8n 2 N :

n > N =) vn <
`+ `

0

2
< un:

This contradicts the hypothesis, 8n 2 N : un < vn:
� The second case is a result of �rst case.
3.3 Subsequences
De�nition 3.5
Let (un) be a sequence. A subsequence (vk) of the sequence (un) is de�ned

by a function f : N ! N such that f is strictly increasing, and vk = uf(k) for
k 2 N.

We often write nk instead of f (k) :
Example
Let it be the sequence (un) de�ned by 8n 2 N : un = n

n+1
� For nk = f (k) = 3k ( f is strictly increasing ) the subsequence (vk)

( or (unk) ) de�ned by: 8k 2 N : vk = u3k = 3k
3k+1 :

� For nk = f (k) = k2 + 1 ( f is strictly increasing ) the subsequence
(wk) de�ned by: 8k 2 N : wk = uk2+1 = k2+1

k2+2 :

0 1
2

2
3

3
4

4
5

5
6

6
7

7
8

8
9

9
10

10
11 ::::

un u0 u1 u2 u3 u4 u5 u6 u7 u8 u9 u10 :::
vk v0 v1 v2 v3 :::
wk w0 w1 w2 w3 :::

Teorem 3.6
Every subsequence of a convergent sequence is a convergent sequence and

has the same limit.
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To prove the previous theorem we need the folowing proposition
proposition 3.1
If (nk) is a sequence of strictly increasing natural numbers, then 8k 2 N :

nk � k:
Proof of proposition 3.1
For k = 0 we have n0 � 0 ( is true because n0 2 N ).
Assume that 8k 2 N : nk � k:
We have nk+1 > nk (because (nk) strictly increasing )
so nk+1 > nk =) nk+1 > k =) nk+1 � k + 1:
Proof of theorem 3.6
Let (un) are a convergent sequence towards ` and (nk) is a sequence of

strictly increasing natural numbers, we have to prove that:lim
k
unk = `:

We have 8" > 0;9N 2 N;8n 2 N : n > N =) jun � `j < "
so

8k 2 N; k > N =) nk > nN ( (nk) is strictly increasing )

=) nk > nN � N ( using proposition 3.1 )

=) junk � `j < ":

From this we conclude that the subsequence (unk)k is converges towards `:
Remak Using the contrapositive form of implication in Theorem (3.6), we

can prove the divergence of some sequences.
Example Let the sequence (un) de�ned by 8n 2 N : un = n+1

n+2 sin
n�
2

Let us construct the two subsequences (u2k)k2N and (u4k+1)k2N; where 8k 2
N : u2k = 0 and u4k+1 = 4k+2

4k+3 :
We have lim

k
u2k = 0 and lim

k
u4k+1 = 1, since lim

k
u2k 6= lim

k
u4k+1;so the

sequence (un) is divergent.
3.4 In�nite limits
De�nition 3.6
We say (un) diverges to in�nity if and only if

8A 2 R;9N 2 N;8n 2 N : n > N =) un > A:

In this case we write lim
n
un =1:

Similarly, we say (un) diverges to minus in�nity and we write lim
n
un = �1

if and only if

8A 2 R;9N 2 N;8n 2 N : n > N =) un < A:

Proposition 3.2 Suppose (un) is a monotone unbounded sequence. Then

lim
n
un =

�
1 if (un) is increasing,
�1 if (un) is decreasing.

Proof ( Exercise).
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3.5 Adjacent sequences
De�nition 3.7
We say of two sequences (un) and (vn) that they are adjacent if and only if

one of them is decreasing and the other is increasing and lim
n
(un � vn) = 0:

Theorem 3.7
Every two adjacent sequences are convergent sequences and have the same

limit.
Proof
Let (un) and (vn) be two adjacent sequences, where (un) is increasing and

(vn) is decreasing.
The sequence vn � un is decreasing, so it converges towards its in�mum 0,

from which 8n 2 N : vn � un � 0, or 8n 2 N : un � vn, so 8n 2 N :
u0 � un � vn � v0.
So the sequences (un) and (vn) are monotonic and bounded, so they are

convergent.
Assume that lim

n
un = l and lim

n
vn = l

0
, we have lim

n
(un � vn) = 0, so

l � l0 = 0, from which l = l
0
:

Example Let the sequences (un) and (vn) de�ned by:8n 2 N : un =
nX
k=1

1
k2

and vn = un + 1
n :

Prove that (un) and (vn) be two adjacent sequences.
We have 8n 2 N : un+1 � un = 1

(n+1)2
> 0; (un) is strictly increasing.

8n 2 N : vn+1 � vn = � 1
n(n+1)2

< 0; (vn) is strictly decreasing.

lim
n
(un � vn) = lim �1

n
n

= 0

Thus the sequences (un) and (vn) are adjacent, they are convergent and have
the same limit ( It can be proven that lim

n
un = lim

n
vn =

�2

6 ).

Theorem 3.8 (BOLZANO-WEIERSTRASS)
From each bounded real sequence, a convergent subsequence can be ex-

tracted.
Proof Let (un) be a bounded sequence, we put a0 = inf

n2N
un and b0 = sup

n2N
un.

We have 8n 2 N : a0 � un � b0, we put I0 = [a0; b0].
Let us divide the interval I0 into two intervals of equal length. At least one

of these two intervals contains an in�nite number of terms of the sequence (un),
which we denote by I1 = [a1; b1], and let un1 be one of the terms of the sequence
(un), where un1 2 I1.
Let us divide the interval I1 into two intervals of equal length. At least

one of these two intervals contains an in�nite number of terms of the sequence
(un), which we denote by I2 = [a2; b2], and let un2 be one of the terms of the
sequence (un), where un2 2 I2 and n2 > n1 (this is possible because I2 contains
an in�nite number of terms of the sequence (un)).
Thus, we create a sequence of intervals Ik = [ak; bk] where Ik is one of the

two halves of the interval Ik�1 which contains an in�nite number of terms of the
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sequence (un) and unk is one of the terms of the sequence (un) where unk 2 Ik
and nk > nk�1; then we get a subsequence (unk) of the sequence (un) satis�es
8k 2 N : ak � unk � bk.
We have lim

k
(bk � ak) = lim

k

�
b0�a0
2k

�
= 0 and since Ik � Ik�1 the sequence

(ak) is increasing and the sequence (bk) is decreasing, so the sequences (ak) and
(bk) are adjacent, and therefore the sequence (unk) is convergent and its limit
is the common limit of the sequences (ak) and (bk).
3.6 Cauchy sequence
De�nition 3.8
Let (un) be a sequence. We say that (un) is a Cauchy sequence if

8" > 0;9N 2 N;8p; q 2 N; (p > N ^ q > N) =) jup � uqj < "

Second formula

8" > 0;9N 2 N;8p; n 2 N;n > N =) jun+p � unj < "

Theorem 3.9
A sequence of real numbers is convergent if and only if it is a Cauchy se-

quence.
Proof
Necessary condition Let (un) be a sequence that converges to the real

number l.
We have 8" > 0;9N 2 N;8n 2 N : n > N =) jun � `j < "

2
so 8p; q 2 N :

(p > N ^ q > N) =) jup � uqj = jup � l + l � uqj

� jup � lj+ jl � uqj

<
"

2
+
"

2
= ":

so, (un) is a Cauchy sequence.
Su¢ cient condition Assume that (un) it is a Cauchy sequence
First: For " = 1, then

9N0 2 N;8n; q 2 N; (n > N0 ^ q > N0) =) jun � uqj < 1:

And for q = N0 + 1, then:

8n 2 N;n > N0 =) jun � uN0+1j < 1

=) jjunj � juN0+1jj < 1
=) junj < juN0+1j+ 1
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So, the set A = fju0j; ju1j; ju_2j; : : : : : : ; juN0 j; juN0+1j + 1g is �nite as it
accepts a maximum, we denote it by M , then

8n 2 N : junj < M

So (un) is bounded.
Second: Since (un) bounded, according to Theorem 3.8, it is possible to

extract from the sequence (un) a subsequence (unk) that converges towards real
number l.
Let " > 0 then

9k0 2 N;8k 2 N : k > k0 =) junk � lj <
"

2

and

9N1 2 N;8p; q 2 N : (p > N1 ^ q > N1) =) jup � uqj <
"

2

by putting N = max fk0; N1g ; then 8p 2 N :

p > N ) p > k0 =) junp � lj <
"

2

p > N =) p > N1 =) np � p > N1 ( since proposition 3.1 )

=) jup � unp j <
"

2

so, 8p 2 N :

p > N =) jup � lj =
��up � unp + unp � l��
�

��up � unp��+ ��unp � l��
<

"

2
+
"

2
= ":

So
8" > 0;9N 2 N;8p 2 N : p > N =) jup � lj < ":

So the sequence (un) is convergent towards l.
Remarks
1) One reason this is so useful is that it gives us a way to show that a

sequence converges without needing to know in advance what the limit is.
2) A sequence (un) is divergent if and only if

9" > 0;8N 2 N;9p; q 2 N : p > N ^ q > N ^ jup � uqj � ":

Example 1 Let the sequence (un) be de�ned by:8n 2 N� : un =
nX
k=1

1
k . Let

us prove that (un) is divergent. Indeed
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We have 8n 2 N� :

u2n � un =
2nX
k=1

1

k
�

nX
k=1

1

k

=
2nX

k=n+1

1

k

�
2nX

k=n+1

1

2n
( because 8p 2 N : 1 � p � n =) 1

n+ p
� 1

2n
)

� n
1

2n
=
1

2
:

By putting q = n ; p = 2n ; " = 1
2 , the following is achieved

9" > 0 (" = 1

2
) ;8n 2 N;9p; q 2 N : p � n ^ q � n ^ jup � uqj � ":

So, (un) is divergent.
Example 2
Let (un) be a real sequence where: 8n 2 N : jun+1�unj �

�
1
2

�n
; Prove that

(un) is a Cauchy sequence.
For n; p 2 N then:

jun+p � upj = jun+p � un+p�1 + un+p�1 � un+p�2 + un+p�2 � un+p�3 + ::::::+ un+1 � unj
� jun+p � un+p�1j+ jun+p�1 � un+p�2j+ jun+p�2 � un+p�3j+ ::::::+ jun+1 � unj

�
�
1

2

�n+p�1
+

�
1

2

�n+p�2
+

�
1

2

�n+p�3
+ ::::::+

�
1

2

�n
�

�
1

2

�n �
1

2

�p�1
+

�
1

2

�p�2
+

�
1

2

�p�3
+ ::::::+ 1

!

�
�
1

2

�n 1� � 12�p
1� 1

2

= 2

�
1

2

�n�
1�

�
1

2

�p�
� 2

�
1

2

�n
( because 1�

�
1

2

�p
� 1 ).

Since lim
n
2
�
1
2

�n
= 0; Then 8" > 0;9N 2 N;8n 2 N : n > N =) 2

�
1
2

�n
< ":

So
8" > 0;9N 2 N;8n; p 2 N;n > N =) jun+p � unj < ":

3.7 Recurrence Sequences
De�nition 3.9
Let f : D �! R be a function, where f (D) � D and � 2 D.We say that the

sequence (un) is recurrente if it is de�ned by u0 = � and the recurrente relation:
8n 2 N : un+1 = f (un) :

10



Monotonicity The monotonicity of the sequence (un) is related to the
monotonicity of the function f . Using proof by induction, the following can be
proven true:
Proposition 3.3
(i) If f is increasing, the sequence (un) is monotonic, increasing if f(u0)�

u0 � 0 and decreasing if f(u0)� u0 � 0.
(ii) If f is decreasing, the sign of the di¤erence un+1 � un is alternately

negative and positive, which means that (un) is non-monotonic in this case.
Proof
(i) Assume that f is increasing
for f(u0)� u0 � 0; let us prove that: 8n 2 N : un+1 � un � 0:
u1 � u0 = f(u0)� u0 � 0 ( it is true )
suppose that un+1 � un � 0 or un+1 � un:
We have un+1 � un =) f (un+1) � f (un) =) un+2 � un+1:
In the same way, we prove that: if f(u0)�u0 � 0 Then: 8n 2 N : un+1�un �

0.
(ii) Assume that f is decreasing
if un+1 � un � 0 we have
un+1�un � 0 =) un+1 � un =) f (un+1) � f (un) =) un+2 � un+1 =)

un+2 � un+1 � 0
So, un+1 � un � 0 and un+2 � un+1 � 0. That is, the sign of the di¤erence

un+1 � un is alternately negative and positive.
Convergence
Proposition 3.4 We assume that f is continuous on D. If the sequence

(un) converges towards l in D, then l is a solution to the equation f(x) = x.
Proof
If the sequence (un) converges towards l ofD then: lim

n
un = l =) lim

n
un+1 =

l.
Since f is continuous at l, then: lim

n
f (un) = f(l).

On the other hand, we have: lim
n
un+1 = lim

n
f (un) =) l = f(l) so, l is a

solution to the equation x = f(x):
Remark
Searching for the limit of the sequence (un) leads to the solution of the

equation f(x) = x with the unknown x in set D. If the equation does not
accept solutions, then the sequence does not accept a limit. However, If the
equation accepts one or more solutions, then the problem returns to studying
the possibility that one of these solutions is the limit of the sequence (un). If
the equation f(x) = x accepts solutions, this does not necessarily mean that
the sequence (un) is convergent.
Examples
1) Let the sequence (un)n2N de�ned by u0 = a and 8n 2 N : un+1 =p
un + 2. We put f (x) =

p
x+ 2:

Since the function f is de�ned, continuous and strictly increasing on the do-
mainD = [�2;+1[ and f (D) � D, the sequence (un) is de�ned and monotonic.
The direction of its change is determined by the sign of the di¤erence f(u0)�u0.
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We have

f(u0)� u0 = f(a)� a =
p
a+ 2� a = �a2 + a+ 2p

a+ 2 + a
=
(1 + a) (2� a)p

a+ 2 + a
:

So, the sign of f(u0)�u0 from the sign of (2� a) and the equation
p
x+ 2 =

x, accepts a single solution, x = 2, from which the following results:
(i) If a < 2, the sequence is strictly increasing, and we can prove that

8n 2 N : un < 2, So the sequence is bounded from above by 2.
(ii) If a > 2;the sequence is strictly decreasing and bounded from below by

2.
(iii) If a = 2;the sequence is constant.
So the sequence is convergent in all cases and its limit is 2.
2) Let be the sequence (un)n2N de�ned by u0 = a > 1 and 8n 2 N : un+1 =

u2n. We put f (x) = x
2

Since the function f is de�ned, continuous, and strictly increasing on
the domain D = [0;+1[ and f (D) � D; where f(a) � a = a2 � a > 0, the
sequence (un) is de�ned and strictly increasing.The equation f (x) = x accepts
two solutions, x = 0 ; x = 1, but the sequence (un) is divergent because:
Using proof by induction, we prove that 8n 2 N : un = a2

n

and hence
lim
n
un = +1.
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