3 Real sequences

3.1 Generalities

Definition 3.1

- We call each fonction U of N in R; a real sequence.

U : N—R

n — u,=u(n)

- Uy, is called the general term of the sequence U.

- We olso sumbolize the sequence by (uy),,cxn O (Un) -

- If the sequence is defined for each n > ng we denote it by (un),,>,, -
- A real sequence is defined explicitly or with a recurrent relation.
examples

1) (un),>s is a sequence defined by its general term:

Yn>2:u, =vn—2.

So
UQZO;'I,L?):].;U4:\/§;U5:\/§; ............ ;’U,l():\/g .....
2) (vn),cy is a sequence defined by a recurrent relation:
Vn e N on 1
n DUl = i ow=1 .
SEREE I
So
Vo 1 1
v = = = —
! vo+1 141 2
U1 % 1
’1]2 = = 1 = =3
o+l T4l 3
(%) % 1
V3 = =7 = —
V2 -+ ]. 3 —+ 1 4

prove that: Vn e N: v, = n%_l

Definition 3.2 Let (u,) be a real sequence.
- (up,) is bounded from above if and only if :

dIM e R;VneN:u, <M.
- (uy,) is bounded from below if and only if :

dm e R;Vn € N: u, > m.

- (up) is bounded if and only if it is bounded from above and below.
In other words: ((uy) is bounded) < (3M € R%;Vn € N: |u,| < M) .
Definition 3.3 Let (u,) be a real sequence.



(uy) is increasing (Strictly increasing, respectively ) if and only if :
VYn € N:u, <upt1 (Vn € N:w, < uyyr,respectively ).
(up,) is decreasing (Strictly decreasing, respectively ) if and only if :
Yn € N:u, > upy1 (Vn € N:w, > u,yp1,respectively ).
- (uy,) is canstant if and only if :
Vn e N:u, =upy1.

- A sequence of real numbers (u,,) is called monotone if it is either increasing
or decreasing.

3.2 Convergent sequences

Definition 3.4

A sequence (uy,) is convergent and its limit is the real number ¢, if and only
if:

Ve>0;INeN;VneN [n > N = |u, — ] <¢].
and we write: lim w, = ¢ or limu,, = /.

n—oo n

If (u,) does not converge, then we say that it divergent.

Example

Let it be the sequence (u,) where: Vn € N: u, = 3::'21 and let’s prove that
limu,, = 3.

n
Let € € R where |u,, — | < ¢, so

3n+1
n+2

|%—ﬂ<€¢é‘ —#<5

5
—=n>--2
3

According to Archimedean Axiom we have: ANy € N ; Ny > g — 2, so we
take N = Ny until the following is achieved:

Ve>0;AN (N =Ny) e N;vneN [n> N = |u, — 3| <¢].

Remark: N can be determined in another way.
Wehave%—2§ |g—2‘ and ‘g—2| <E(‘g—2|)+1€N, so it

is enough we take N = F (|g — 2|) + 1.

Teorem 3.1 (Uniqueness of limit)

Let (u,) be a convergent sequence,then the limit is unique.

Proof

Assume that the sequence (u,) accepts two limits ¢ and ¢ where ¢ # £.
-t
) 2

For ¢ = , we have:

ANt eN;VneN [n> Ny = |u, — ¢ <e] and AN, e N;Vn €N [n > Ny =

unf[’ <€]



by putting N = max {Ny, N2} ; then Vn € N ;

/

n>N:>’£—£/’:‘€—un+un—€

S |un_£|+|un_€|
——  —
<e <e

< zszlz—z’

This is a contradiction, So 0 =1

Teorem 3.2

Let (u,) be a convergent sequence, then (u,) is bounded.

Proof

We assume that the sequence (u,,) is convergent to towards the number £.
Fore=1;ANeN;VneN:n>N —=/(—-1<u, </l+1

by putting A = {ug, u1,...... ,un,{—1,£+ 1} then:

Vn € N:min A < u,, < maxA.

Teorem 3.3 Let (u,) be a real sequence.
(i) If (uy,) is increasing and bounded from above, then (u,,) converges, where
limu,, = supu,.
n neN
(ii) If (uy,) is decreasing and bounded from below, then (u,,) converges, where

limu,, = inf u,,.
n neN
Remark So, a bounded monotone sequence converges.

Proof
(i) Let the sequence (u,) be increasing and bounded from above.
The set A = {u,;n € N} is bounded from above. We put sup A = £,we have:

VYneN:u, </

SupA:€<:>{ Ve >0;AN eN:l—ec<upn

so, Vn € N :
n>N = u, >un ( (up) isincreasing )
= (>u,>un>f—c¢
= l+e>u,>l—c¢
= Ju, —{| <e.
Hence

Ve>0;INeN;VneN:in >N = |u, —{| <¢

we obtain
limu,, = 4.
n



(ii) In the same way, we prove the second case.

Example

Let it be the sequence (u,) defined by: ug = a > 1 and Vn € N: u,qq =

Prove that (u,,) is convergent ( calculating the limit is not required ).

We use proof by induction, to prove that: ¥n € N : u,, > 1, and we prove that
(un) decreasing (strictly decreasing),according the theorem 3.3, the sequence
(up,) is convergent.

Teorem 3.4

If the sequences (u,) and (v,) are converges towards ¢ and ¢ respectively

then the sequences: (up + vy) ; (Unvn) ; (Aup) 5 (Jun|) are converges towards
0+ 0 00 N |¢| respectively. If ¢ #0and Vn € N : v, # 0 then (’;—:) is
converges towards %.

Proof ( Let us prove the last case )/

) ¢
We have limv,, = £ # 0. For ¢ = 54, then 3N; € N;Vn € N:

’

¢
2

n> N — vnfél‘<

/

— ]\un|—‘e’H< ( Since ‘|vn|—‘e’Hg|vn—z’\)

2

1 / 3 ’

74’ W< 2 e

= 2) <lonl < 5
-, 1 _2
lon| €]

On the other hand for € > 0,then:
INo eN;VRneN:n> Ny = |u, — | <e

and

IN; € N:Vn e N:n > Ny —> un—f"<s

by putting: N = max {Ny, N, N3}, then:v¥n € N :

N %: B ; _ U"in}m _ unz’—ei’};lw’—e%
(un = O) €|+ |0 (vn — €
, lo-0r] e -0)
< 2(|€|£/+2€)€_6/ (e>0)



SO

Ve >0;INeN;VneN:n> N =

Teorem 3.5

u, £

v, ¥

’

<e.

- If (up,) and (v,) are sequences that converge towards ¢ and ¢ respectively,
where: Vn € N:u,, < v, Then £ < ¢ .

- If (uyn) , (vn) and (wy,) are a convergent sequences verified: Vn € N :
Wy, < Uy < v, and limv,, = limw,, = £ ,Then 1
n n

imu, =/
n
Proof
- Let (uy,) and (v,) are a convergent sequences, where Vn € N : u, < v,
with limu,, = ¢ and limwv,, = ¢
n n

assume that ¢ > ¢ for ¢ = % then INy € N;dN; € N;Vn € N :

(+7¢
no > No:>|un—Z|<€:>€—<€<un<€—|—<€:>L

301
Up
2

, , , 0+30 (40

n > N — vn—€‘<5=>€—5<vn<€+5:> + n +T
by putting N = max { Ny, N1}, then ¥n € N :
040

n>N:>vn<L<un.

This contradicts the hypothesis, Vn € N : u, < v,.

The second case is a result of first case.
3.3 Subsequences

Definition 3.5

Let (un) be a sequence. A subsequence (vg) of the sequence (u,,) is defined
by a function f : N — N such that f is strictly increasing, and vy, = uy,) for
kEeN.

We often write ny, instead of f (k).
Example

Let it be the sequence (u,,) defined by Vn € N: u,, = o
- For ny = f (k) =3k ( f is strictly increasing ) the subsequence (vy)
(or (up,) ) defined by: Vk € N : vy, = ugy, = T-]T-l
- For nj, = f (k) = k? + 1 ( f is strictly increasing ) the subsequence
(wy,) defined by: Vk € N : wy, = ug2yq = ﬁz—ié

0 1 2 3 4 5 6 7 8 9 10
2 3 i1 5 6 7 8 9 10 11
Unp Up U U2 UF U4 Us U U7 U U9 UL
Vk Vo U1 V2 U3
Wi wo Wi w2 w3
Teorem 3.6

Every subsequence of a convergent sequence is a convergent sequence and
has the same limit.



To prove the previous theorem we need the folowing proposition

proposition 3.1

If (ng) is a sequence of strictly increasing natural numbers, then Vk € N :
ng Z k.

Proof of proposition 3.1

For k = 0 we have ng > 0 ( is true because ng € N ).

Assume that Vk € N:ng > k.

We have ny11 > ny (because (ny) strictly increasing )

SO N1 > N = N1 > k= npp1 > k+ 1.

Proof of theorem 3.6

Let (u,) are a convergent sequence towards ¢ and (ng) is a sequence of
strictly increasing natural numbers, we have to prove that:liinunk =/.

We have Ve > 0;IN e N;5Vn e Nin > N = |u, — {| <¢
S0

VEe Nk >N = n;, >ny ( (ng) is strictly increasing )

= np >ny > N (using proposition 3.1)
= |up, — ¥ <e.

From this we conclude that the subsequence (uy, ), is converges towards .

Remak Using the contrapositive form of implication in Theorem (3.6), we
can prove the divergence of some sequences.

Example Let the sequence (u,,) defined by Vn € N: u,, = Z—i% sin 7F

Let us construct the two subsequences (usg)gen and (uqx+1)ren, where Vk €

. _ _ 4k+2
N.uzk70an-d1L4k+1fﬁ.. . . .
We have limusg,, = 0 and limugr1 = 1, since limugg # limuggy1,80 the
k k k k

sequence (u,) is divergent.
3.4 Infinite limits
Definition 3.6
We say (uy,) diverges to infinity if and only if

VAeR;AN e N;vn e N:n > N = u,, > A.

In this case we write limu,, = oco.
n
Similarly, we say (u,,) diverges to minus infinity and we write limu,, = —oco
n

if and only if
VAeR;AN e N;vneN:n > N — u, < A.
Proposition 3.2 Suppose (u,,) is a monotone unbounded sequence. Then

. oo if (uy) is increasing,
limu,, = . . .
n —oo if (uy) is decreasing.

Proof ( Exercise).



3.5 Adjacent sequences

Definition 3.7

We say of two sequences (u,,) and (v,) that they are adjacent if and only if
one of them is decreasing and the other is increasing and lign (up, —vp) = 0.

Theorem 3.7

Every two adjacent sequences are convergent sequences and have the same
limit.

Proof

Let (uy) and (v,) be two adjacent sequences, where (u,) is increasing and
(vy,) is decreasing.

The sequence v,, — u,, is decreasing, so it converges towards its infimum 0,
from which Vvn € N: v, —u, > 0, or Vn € N: u, < v,, so Vn € N :
ug < Up < Uy < Vg

So the sequences (u,) and (v,) are monotonic and bounded, so they are
convergent.

Assume that lirrlnun = [ and hrer)" =1 , we have lim (u, —v,) = 0, so

I —1 =0, from which [ = [ .

Example Let the sequences (u,,) and (v,,) defined by:¥n € N : w,, = Z %
k=1

and v, = u, + %
Prove that (u,) and (v,) be two adjacent sequences.

We have Vn € N : upp1 —uy = = H)Q > 0, (uy) is strictly increasing.

VneN:v,41 — n(n+1)2 <0,

(vn,) is strictly decreasing.
lim (u, — v,) = lim =t =0

n
Thus the sequences (u,, ) and (v,,) are adjacent, they are convergent and have
2
the same limit ( It can be proven that 11mun = hmvn =% )

Theorem 3.8 (BOLZANO- WEIERSTRASS)
From each bounded real sequence, a convergent subsequence can be ex-
tracted.

Proof Let (u,) be a bounded sequence, we put ag = 1nf fun and by = supt,.
neN

We have Vn € N: qp < u,, < by, we put Iy = [a(), b()].

Let us divide the interval I into two intervals of equal length. At least one
of these two intervals contains an infinite number of terms of the sequence (u,,),
which we denote by Iy = [a1, b1], and let u,,, be one of the terms of the sequence
(un,), where u,, € I.

Let us divide the interval I; into two intervals of equal length. At least
one of these two intervals contains an infinite number of terms of the sequence
(uy,), which we denote by Iy = [ag,bs], and let u,, be one of the terms of the
sequence (uy,), where u,, € Iz and ng > ny (this is possible because Iy contains
an infinite number of terms of the sequence (uy,)).

Thus, we create a sequence of intervals I = [ag, br] where I is one of the
two halves of the interval I;,_; which contains an infinite number of terms of the



sequence (u,) and u,, is one of the terms of the sequence (u,,) where u,, € I
and ny > ng_1, then we get a subsequence (uy, ) of the sequence (u,,) satisfies
Vk e N:agp < up, <bg.

We have liin (b —ar) = hin (b(’;kao) = 0 and since I C I;_1 the sequence

(ar) is increasing and the sequence (by) is decreasing, so the sequences (ay) and
(br) are adjacent, and therefore the sequence (uy, ) is convergent and its limit
is the common limit of the sequences (ay) and (by).

3.6 Cauchy sequence

Definition 3.8

Let (uy,) be a sequence. We say that (u,) is a Cauchy sequence if

Ve > 0;dN e N;Vp, g e N;(p> NAg>N) = |up, —uyl <e
Second formula
Ve > 0;IN e N;Vp,n € Nyn > N = |upqp — Up| < €

Theorem 3.9

A sequence of real numbers is convergent if and only if it is a Cauchy se-
quence.

Proof

Necessary condition Let (u,) be a sequence that converges to the real
number [.

We have Ve > 0;IN e N;5Vn e N:in > N = |u, — (| < §
so Vp,g € N :

(P>NAg>N) = |up —ug| = |up — L+ 1 —uy

< ‘upfl|+|l7uq|

< Sii
2 2 7

so, (u,) is a Cauchy sequence.
Sufficient condition Assume that (u,) it is a Cauchy sequence
First: For ¢ = 1, then

INo € N;Vn, g € N;(n > No A g > No) = |u, — ug| < 1.
And for ¢ = Ny + 1, then:

Vn € N;n > No = |uy, —un,+1] < 1

= |Jun| — lung+1]] <1
= |un| < |uNo+1| +1



So, the set A = {|ugl, |u1,|u_2|,...... s Junsly lung+1| + 1} is finite as it
accepts a maximum, we denote it by M, then

Vn e N:ju,| <M

So (uy,) is bounded.

Second: Since (u,) bounded, according to Theorem 3.8, it is possible to
extract from the sequence (u,) a subsequence (u,, ) that converges towards real
number /.

Let € > 0 then
€

o € NiVk € N: k> ko = Jun, 1| < 3

and

EIN1GN;Vp;qGN:(p>N1/\q>N1):>|up—uq|<g

by putting N = max {ko, N1}, then Vp € N :
€
p>N:>p>/7cO:>|unp—l\<5

p>N=p>N; =-n,>p>N; (since proposition 3.1 )

€
:>|up—unp|<§
so, Vp € N :
p>N:>|upfl|:|up7unp+unp*l|
= |ui’7 u"p|+|u"p l|
< £+E*5
2 2
So

Ve>0;AIN e N;VpeN:p>N = |u, — | <e.

So the sequence (uy,) is convergent towards /.

Remarks

1) One reason this is so useful is that it gives us a way to show that a
sequence converges without needing to know in advance what the limit is.

2) A sequence (u,,) is divergent if and only if

Je>0VN eN;3p;geN:ip>NAg>NAJu, —ugl > e.

Example 1 Let the sequence (u,) be defined by:Vn € N* : u,, =

us prove that (u,,) is divergent. Indeed



We have Vn € N* :

1 1
U2p — Up = 7T -
k=1 k k=1 k
B 2n 1
N k
k=n-+1
2n 1
> — (because VpeN: 1<p<n— >—)
2n n+p - 2n
k=n-+1
1 1

> n .
- 2n 2

By puttingg=n,p=2n,e= %, the following is achieved
1
E|€>O(€:§) iVneNydpigeNip>nAg>nAluy, —ug >e.

So, (uy,) is divergent.

Example 2

Let (uy,) be a real sequence where: Vn € N : |uy,11 —uy,| < (%)n , Prove that
(up) is a Cauchy sequence.

For n;p € N then:

[Untp = upl = |Untp = Unip—1 + Untp—1 = Untp—2 + Untp—2 — Unip-3 + -oeoe

IN

[Untp — Untp—1] + [Untp—1 — Untp—2| + [Untp—2 — Untp—3| +

() @) e )
SONORORIONESY
< ) 50 O 6))

2 (1) (oo 1 (1) <1

Since lim2 ()" =0, Then Ve > 0;IN e N;Vn e N:n > N =2 (1)" <e.
So

IN

IN

Ve > 0;aN e N;Vmsp e Njn > N = |upgp — up| <e.

3.7 Recurrence Sequences

Definition 3.9

Let f : D — R be a function, where f (D) C D and o € D.We say that the
sequence (uy) is recurrente if it is defined by ug = « and the recurrente relation:

Yn e N :upr1 = f(un).

10

. +un+1 _un|

+ |Un+1 — Un|



Monotonicity The monotonicity of the sequence (u,) is related to the
monotonicity of the function f. Using proof by induction, the following can be
proven true:

Proposition 3.3

(i) If f is increasing, the sequence (u,,) is monotonic, increasing if f(ug) —
up > 0 and decreasing if f(ug) — ug < 0.

(ii) If f is decreasing, the sign of the difference u,41 — u, is alternately
negative and positive, which means that (u,) is non-monotonic in this case.

Proof

(i) Assume that f is increasing

for f(ug) — up > 0, let us prove that: Vn € N: u,q1 —u, > 0.

up — ug = f(ug) —ug >0 (it is true )

suppose that w,+1 — up > 0 0Or Upp1 > Up.

We have tpi1 > Uy = f (Ung1) > f (Un) = Upyo > Ung1.

In the same way, we prove that: if f(ug)—uo < 0 Then: Vn € N : upp1—u, <

(ii) Assume that f is decreasing
if upy1 — uy > 0 we have
Un+1—Un > 0= Un+1 > Up = f (un-l-l) < f(un) = Un+2 < Up4+1 =

Upy2 — Uptp1 S0

So, Upt+1 — Uy > 0 and w0 —upp1 < 0. That is, the sign of the difference
Up4+1 — Uy is alternately negative and positive.

Convergence

Proposition 3.4 We assume that f is continuous on D. If the sequence
(uy,) converges towards [ in D, then [ is a solution to the equation f(z) = x.

Proof

If the sequence (u,, ) converges towards [ of D then: lirrlnun =]l= li7rlnun+1 =

Since f is continuous at I, then: limf (u,) = f(I).
On the other hand, we have: limu,1; = limf (u,) = 1 = f(I) so, l is a

solution to the equation z = f(z).

Remark

Searching for the limit of the sequence (u,) leads to the solution of the
equation f(x) = z with the unknown z in set D. If the equation does not
accept solutions, then the sequence does not accept a limit. However, If the
equation accepts one or more solutions, then the problem returns to studying
the possibility that one of these solutions is the limit of the sequence (u,). If
the equation f(x) = x accepts solutions, this does not necessarily mean that
the sequence (u,,) is convergent.

Examples

1) Let the sequence (un),cy defined by up = a and Vn € N @ upyy =
Vg, + 2. We put f (z) = Vo + 2.

Since the function f is defined, continuous and strictly increasing on the do-
main D = [-2,4oo[and f (D) C D, the sequence (uy,) is defined and monotonic.
The direction of its change is determined by the sign of the difference f(ug)—wuo.

11



‘We have

—a’+a+2 (14+a)(2-a)
Va+2+a  Va+2+4a

So, the sign of f(ug)—ug from the sign of (2 — a) and the equation vz + 2 =
x, accepts a single solution, x = 2, from which the following results:

(i) If @ < 2, the sequence is strictly increasing, and we can prove that
Vn € N: u, < 2, So the sequence is bounded from above by 2.

(ii) If a > 2,the sequence is strictly decreasing and bounded from below by

flug) —up = fla) —a=vVa+2—a=

2.

(iii) If @ = 2,the sequence is constant.

So the sequence is convergent in all cases and its limit is 2.

2) Let be the sequence (uy,) defined by up =a >1and Vn € N: up4q =
u2. We put f (z) = 22

Since the function f 1is defined, continuous, and strictly increasing on

the domain D = [0,+oo[ and f (D) C D, where f(a) —a = a®> —a > 0, the
sequence (u,) is defined and strictly increasing.The equation f (x) = = accepts
two solutions, z = 0 ; z = 1, but the sequence (u,,) is divergent because:

Using proof by induction, we prove that ¥n € N : u, = a?" and hence
hr{nun = +o00.

neN

12



