Series of exercises 2 (Questions marked * left to the students) Exercise 01 Study the monotonicity of the following sequences. $$u_n = \frac{3n+4}{2n-1} *, \ v_n = \frac{\sqrt{n+1}}{2n} \;, \ w_n = \propto n + (-1)^n \; (\propto \in \mathbb{R}) \;, \ k_n = \left(1 + \frac{1}{n}\right)^n \;, \ f_n = \left(1 + \frac{1}{n}\right)^{n+1} *.$$ For the two sequences (k_n) ; (f_n) we use Bernoulli's inequality $$\forall n \in \mathbb{N}; \forall a > -1; (1+a)^n \ge 1 + na$$ Exercise 02 Calculate the limit of each following sequences $$a_n = \frac{3^n + (-1)^n}{2^n + 2(-1)^n} \text{ , } b_n = \frac{1 + 3 + \dots + (2n - 1)}{n^2 + n} \text{ , } c_n = \frac{1 + a + a^2 + \dots + a^n}{1 + b + b^2 + \dots + b^n} * (|a| < 1 \text{ ; } |b| < 1)$$, $$d_n = \left(1 + \frac{1}{n}\right)^n$$, $e_n = \sqrt[n]{n^p}$)* $(p \in \mathbb{N}^*)$, $f_n = \left(\frac{n+a}{n+1}\right)^n$ * $(a \in \mathbb{R})$, $g_n = \frac{1+2+2^2+\cdots+2^n}{2^n}$. #### Exercise 03 1) Using the restriction calculate the limit of each following sequence. a)* $$(u_n)_{n \in \mathbb{N}^*}$$: $u_n = \sum_{k=1}^n \frac{n}{n^2 + k}$ b) $(v_n)_{n \in \mathbb{N}^*}$: $v_n = \frac{1}{n^2} \sum_{k=1}^n E(kx)$ (where $x \in \mathbb{R}$). c) $(w_n)_{n \in \mathbb{N}^*}$: $w_n = \frac{n!}{n^n}$. 2) Using the definition prove that: a) $$\lim \left(\sqrt{n+1} - \sqrt{n}\right) = 0$$, b)* $\lim \frac{n^2 - 1}{2n^2 + n} = \frac{1}{2}$, c) $\lim \frac{\sqrt{n^2 + 1}}{n} = 1$, d) $$\lim a^n = +\infty$$ (where $a > 1$) e)* $\lim \frac{2n-1}{n+3} = 2$ f) $\lim \frac{2^n + (-1)^n}{2^n} = 1$. *3)* Prove that the sequence (u_n) is divergent in each of the following cases: a) $$u_n = (-1)^n \frac{n+2}{n}$$, b)* $u_n = \sin(\frac{n^2+1}{4n}\pi)$ #### Exercise 04 Let be (u_n) a real sequence defined by $\forall n \in \mathbb{N}: u_{n+1} = 1 + \frac{1}{u_n}$ and $u_0 = 1$. - 1) Prove that $\forall n \in \mathbb{N} : u_n \geq 1$. - 2) We symbolize a for the positive solution of the equation $x = 1 + \frac{1}{x}$ - a) prove that $\forall n \in \mathbb{N} : |u_{n+1} a| \le \frac{1}{a} |u_n a| \text{ and } |u_n a| \le \frac{1}{a^n} |u_0 a|.$ - b) what do you conclude?. #### Exercise 05 1) Prove that if the two subsequence (u_{2n+1}) and (u_{2n}) are converges towards ℓ , then the sequence (u_n) is converges towards ℓ 2) Application 1: Let (u_n) be a sequence where: $\forall p \in \mathbb{N}^*; \forall n \in \mathbb{N}^*: 0 \le u_{n+p} \le \frac{1}{n} + \frac{1}{p}$. *Prove that* (u_n) *converges towards* 0. 3) **Application 2:** Let (v_n) be a decreasing and converges sequence towards 0 and let the sequence (S_n) defined by $S_n = \sum_{i=0}^n (-1)^i v_i$. Prove that the two subsequences (S_{2n}) and (S_{2n+1}) adjacent, what do you conclude? (Application 2 is a proof of Leibniz's theorem for series.). **Exercise 06** Let a, b be real numbers, where 0 < a < b. we define the two sequences (u_n) and (v_n) as follows. $$\forall n \in \mathbb{N} : u_{n+1} = \sqrt{u_n \cdot v_n}$$, $v_{n+1} = \frac{u_n + v_n}{2}$, $v_0 = b \cdot u_0 = a$. Prove the following - 1) $\forall n \in \mathbb{N} : 0 < u_n < v_n$ 2). the two sequences (u_n) and (v_n) are monotonic. - 3) $\forall n \in \mathbb{N}: v_{n+1} u_{n+1} \le \frac{1}{2}(v_n u_n)$ 4) $\forall n \in \mathbb{N}: v_n u_n \le \left(\frac{1}{2}\right)^n (b a)$ - 5) $\lim_{n\to\infty} (v_n u_n) = 0$, what do you conclude? ## Exercise 07 - 1) Let (u_n) be a real sequence, where $\forall n \in \mathbb{N}$: $|u_{n+1} u_n| \le a^n$ (0 < a < 1). *Prove that* (u_n) *is a Cauchy sequence.* - 2)* Let (v_n) be a real sequence, where $\forall n \in \mathbb{N}^*$: $|v_{n+1} v_n| \le K|v_n v_{n-1}| (0 < K < 1)$. Prove that (v_n) is a Cauchy sequence **Exercise 08*** Let α be a real number and $(u_n)_{n\geq 1}$ a real sequence defined by $$\forall n \in \mathbb{N}^*: u_{n+1} = \frac{n}{(n+1)^2} u_n + \frac{2(n^2+n+1)}{(n+1)^2}; u_1 = \alpha$$ - 1) a) Prove that the sequence (u_n) is monotonic and bounded - b) Calculate $\lim_{n\to\infty} u_n$ (we denote this limit as ℓ). - 2) a) Find a simple relation between $u_{n+1} \ell$ and $u_n \ell$. - b) In terms of n and α deduce the expression for u_n . ### Exercise 09* 1) Let the two sequences $(u_n)_{n\in\mathbb{N}^*}$ and $(v_n)_{n\in\mathbb{N}^*}$ where $\forall n\in\mathbb{N}^*$: $v_n=\frac{u_1+u_2+\cdots+u_n}{n}$ Prove the following: - a) If (u_n) is monotonic, then (v_n) is monotonic and has the same direction of change with (u_n) . - b) If (u_n) converges towards ℓ , then (v_n) is converges towards ℓ . 2) Let a_1 , a_2, a_m be a positive real numbers, that are not all zero where $m \in \mathbb{N}^*$. *Prove:* that $\lim_{n\to\infty} (a_1^n + a_2^n + \dots + a_m^n)^{\frac{1}{n}} = \max_{1\le i\le m} a_i$.