Series of exercises 2 (Questions marked * left to the students)

Exercise 01 Study the monotonicity of the following sequences.
$u_{n}=\frac{3 n+4}{2 n-1} *, v_{n}=\frac{\sqrt{n+1}}{2 n}, w_{n}=\propto n+(-1)^{n}(\propto \in \mathbb{R}), k_{n}=\left(1+\frac{1}{n}\right)^{n}, f_{n}=\left(1+\frac{1}{n}\right)^{n+1} *$.
For the two sequences $\left(k_{n}\right) ;\left(f_{n}\right)$ we use Bernoulli's inequality

$$
\forall n \in \mathbb{N} ; \forall a>-1:(1+a)^{n} \geq 1+n a
$$

Exercise 02 Calculate the limit of each following sequences

$$
\begin{aligned}
& a_{n}=\frac{3^{n}+(-1)^{n}}{2^{n}+2(-1)^{n}}, b_{n}=\frac{1+3+\cdots+(2 n-1)}{n^{2}+n}, c_{n}=\frac{1+a+a^{2}+\cdots+a^{n}}{1+b+b^{2}+\cdots+b^{n}} *(|a|<1 ;|b|<1) \\
& \left., d_{n}=\left(1+\frac{1}{n}\right)^{n}, e_{n}=\sqrt[n]{n^{p}}\right)^{*}\left(p \in \mathbb{N}^{*}\right), f_{n}=\left(\frac{n+a}{n+1}\right)^{n} *(a \in \mathbb{R}), g_{n}=\frac{1+2+2^{2}+\cdots+2^{n}}{2^{n}} .
\end{aligned}
$$

Exercise 03

1) Using the restriction calculate the limit of each following sequence.
a)* $\left(u_{n}\right)_{n \in \mathbb{N}^{*}}: u_{n}=\sum_{k=1}^{n} \frac{n}{n^{2}+k}$
b) $\left(v_{n}\right)_{n \in \mathbb{N}^{*}}: v_{n}=\frac{1}{n^{2}} \sum_{k=1}^{n} E(k x)($ where $x \in \mathbb{R})$.
c) $\left(w_{n}\right)_{n \in \mathbb{N}^{*}}: w_{n}=\frac{n!}{n^{n}}$.
2) Using the definition prove that:
a) $\lim (\sqrt{n+1}-\sqrt{n})=0$,
b)* $\lim \frac{n^{2}-1}{2 n^{2}+n}=\frac{1}{2} \quad, \quad$ c) $\lim \frac{\sqrt{n^{2}+1}}{n}=1$,
d) $\lim a^{n}=+\infty($ where $a>1)$ e) $\lim ^{\frac{2 n-1}{n+3}}=2$ f) $\lim \frac{2^{n}+(-1)^{n}}{2^{n}}=1$.
3) Prove that the sequence $\left(u_{n}\right)$ is divergent in each of the following cases:

$$
\text { a) } u_{n}=(-1)^{n} \frac{n+2}{n}, \text { b) } * u_{n}=\sin \left(\frac{n^{2}+1}{4 n} \pi\right)
$$

Exercise 04

Let be $\left(u_{n}\right)$ a real sequence defined by $. \forall n \in \mathbb{N}: u_{n+1}=1+\frac{1}{u_{n}}$ and $u_{0}=1$.

1) Prove that $\forall n \in \mathbb{N}: u_{n} \geq 1$.
2) We symbolize a for the positive solution of the equation $x=1+\frac{1}{x}$.
a) prove that $\forall n \in \mathbb{N}:\left|u_{n+1}-a\right| \leq \frac{1}{a}\left|u_{n}-a\right|$ and $\left|u_{n}-a\right| \leq \frac{1}{a^{n}}\left|u_{0}-a\right|$.
b) what do you conclude?

Exercise 05

1) Prove that if the two subsequence $\left(u_{2 n+1}\right)$ and ($u_{2 n}$) are converges towards ℓ, then the sequence (u_{n}) is converges towards ℓ
2) Application 1: Let $\left(u_{n}\right)$ be a sequence where: $\forall p \in \mathbb{N}^{*} ; \forall n \in \mathbb{N}^{*}: 0 \leq u_{n+p} \leq \frac{1}{n}+\frac{1}{p}$. Prove that (u_{n}) converges towards 0 .
3) Application 2: Let $\left(v_{n}\right)$ be a decreasing and converges sequence towards 0 and let the sequence $\left(S_{n}\right)$ defined by $S_{n}=\sum_{i=0}^{n}(-1)^{i} v_{i}$.
Prove that the two subsequences $\left(S_{2 n}\right)$ and $\left(S_{2 n+1}\right)$ adjacent, what do you conclude ? (Application 2 is a proof of Leibniz's theorem for series.).
Exercise 06 Let a, b be real numbers, where $0<a<b$. we define the two sequences (u_{n}) and $\left(v_{n}\right)$ as follows.

$$
\forall n \in \mathbb{N}: u_{n+1}=\sqrt{u_{n} \cdot v_{n}}, \quad v_{n+1}=\frac{u_{n}+v_{n}}{2}, \quad v_{0}=b ، u_{0}=a .
$$

Prove the following

1) $\forall n \in \mathbb{N}: 0<u_{n}<v_{n}$
2). the two sequences $\left(u_{n}\right)$ and (v_{n}) are monotonic.
2) $\forall n \in \mathbb{N}$: $v_{n+1}-u_{n+1} \leq \frac{1}{2}\left(v_{n}-u_{n}\right)$
3) $\forall n \in \mathbb{N}: v_{n}-u_{n} \leq\left(\frac{1}{2}\right)^{n}(b-a)$
4) $\lim _{n \rightarrow \infty}\left(v_{n}-u_{n}\right)=0$, what do you conclude?

Exercise 07

1) Let (u_{n}) be a real sequence, where $\forall n \in \mathbb{N}:\left|u_{n+1}-u_{n}\right| \leq a^{n}(0<a<1)$.

Prove that $\left(u_{n}\right)$ is a Cauchy sequence.
2)* Let (v_{n}) be a real sequence, where $\forall n \in \mathbb{N}^{*}:\left|v_{n+1}-v_{n}\right| \leq K\left|v_{n}-v_{n-1}\right|(0<K<1)$. Prove that $\left(v_{n}\right)$ is a Cauchy sequence

Exercise 08*Let α be a real number and $\left(u_{n}\right)_{n \geq 1}$ a real sequence defined by

$$
\forall n \in \mathbb{N}^{*}: u_{n+1}=\frac{n}{(n+1)^{2}} u_{n}+\frac{2\left(n^{2}+n+1\right)}{(n+1)^{2}} ; u_{1}=\alpha
$$

1) a) Prove that the sequence $\left(u_{n}\right)$ is monotonic and bounded
b) Calculate $\lim _{n \rightarrow \infty} u_{n}$ (we denote this limit as ℓ).
2) a) Find a simple relation between $u_{n+1}-\ell$ and $u_{n}-\ell$.
b) In terms of n and α deduce the expression for u_{n}.

Exercise 09*

1) Let the two sequences $\left(u_{n}\right)_{n \in \mathbb{N}^{*}}$ and $\left(v_{n}\right)_{n \in \mathbb{N}^{*}}$ where $\forall n \in \mathbb{N}^{*}: v_{n}=\frac{u_{1}+u_{2}+\cdots+u_{n}}{n}$ Prove the following:
a) If $\left(u_{n}\right)$ is monotonic, then $\left(v_{n}\right)$ is monotonic and has the same direction of change with $\left(u_{n}\right)$.
b) If $\left(u_{n}\right)$ converges towards ℓ, then $\left(v_{n}\right)$ is converges towards ℓ.
2) Let $a_{1}, a_{2} \ldots \ldots, a_{m}$ be a positive real numbers, that are not all zero where $m \in \mathbb{N}^{*}$. Prove: that $\lim _{n \rightarrow \infty}\left(a_{1}^{n}+a_{2}^{n}+\cdots+a_{m}\right)^{\frac{1}{n}}=\max _{1 \leq i \leq m} a_{i}$.
