Chapter one: The set of real numbers
1 1.Algebraic structure of the set R

The set of real numbers is a set that we denote by R equipped with the operation of
addition and multiplication and an overall ordering relationship<checki the following Axiom.

A Vx,y,zER:x+(y+2z)=(x+y)+z
A2)Vx,yERx+y=y+x.
A)VxeR:ix+0=0+x =x.

Ad)Vx E Rix + (—x) = (—x) + x = 0.
A5)Vx,y,zER:x-(y-z)=(x"y)-z.
A6)Vx,yER:ixy=y"x.

A7) VxER:x-1=1-x =x.

A8)Vx ER*:x-x1=x"1-x=1.
A)Vx,y,zER:x-(y+z)=x"y+x-z
Al0)Vx € R:x < x.

Al Vx,y,zER: (x<ysy<z)= (x <2).
ALR)Vx,yER: (x <ysy <x)= (x=y).
A13)Vx,yER:x <y s y <x.
Ald)Vx,y,zER: (x<y)o (x+z<y+2).

Vx,yERVZERL:(x<y)e(x-z<y-2)
Vx,yER;VZER:(x<y)o(x'z=y-z)

A15){

Properties
YVx,y,x,y €R:(x Sy’ <y') = (x+x' <y +y).
2)vx,y,x',y" € Ri: (x <ysx' < y’) = (x-x' <y-y).
4 Vx,y,x,y ERL:(0<x<y)= (0 < % < %)

1.2 Absolute value

Definition 1.1 let it be x € R

The absolute value of the real number x is the positive real number which we denote by
|x|and defined as
Ix| :{x,sixz 0
—x,5ix<0

Properties : x. y r.is a real number wherer > 0




D x| = 0; [—x| = [x|;—]x] < x < |x]
2Q)x|=0 x=0

3) Ix.yl = |x||yl

x

4)y

5)1x +yl < x| + |yl

_ =

= E(WO)

6)|x|<re-r<x<r

7).x|>rex< —rorx=>r

1.3.Limited parts from R

Definition 1.2

Let A be a sub set of R and non-empty .

We say that A is bounded from above if and only if :

AbeR; Vxe€A:x<bh
We say that A is bounded from below if and only if

JaeR;VxeA:x=>a
A is bounded if and only if it is bounded from above and

Proposition 1.1 The three following conditions are equivalent
1).Ais bounded
2)da€ER; IbER:VxEA:a<x<h.
3)AIMER, ; VxEA: |x| <M
1.3.1 sup and inf.max and min
The smallest upper limit from A is called sup A e
The biggest lower limit from A is called inf A
If supA € Aitis called max A
IfinfA € Aitis called min A
Note
If Ais infinite from above (from lowest, respectively) in R we write supA = 400
(infA = —oo, respectively).

proposition 1.2

1)Let A be bounded from above, then




VxEA:x <M
M=supA<:){ and
Ve>0;da€eA - M—¢c<a

2) Let A be bounded from below, then
VxXEA:x=>m
m=ian<=>{ and
Ve>0;3dbedA:m+e>b

Proof
1) M is the smallest of the upper bounds if and only if the following proposition is false .
IM' < M;Vx€EA:x <M

Is true. So, if the proposition VM' < M;Ax € A:x > M'.

By puttinge = M — M' (e > 0) so, the last proposition is written in the form:
Ve>0;3d3x €A :M—¢e<x.

2) In the same way we prove the second case

Examples

1) A = [1,2[; maxA = unvailable ;supA =2 ; inf A=1 minA = 1

2)A= {;neN}

Ssup A =max A =1 Jthenl e AVvneEN":n>1= 0<%S 1

Let we proof that infA =0

VxeA:x=0
0=infAe and
Ve>0;3ab€eA:04+e>b

On the othersidewehaveVe > 0;3b€A:04+e>b =S Ve>0; EInEN*:%<e.

and this last proposition is true and its according to archimed's axiom
Ve>0;3I3neN*:ne>1

min A = unvailable, because 0 & A.

1.3.2 Axiom of supermum and infimum:

Any non-empty subset A of the real's R which is bounded above has a supermum in R.
Any non-empty subset A of the real's R which is bounded below has a infimum in R.
1.4 Archimedean axiom

Theorem 1.1:¥x > 0; Vy € R;3In € N*: y < nx.
Proof:

We suppose that:




Ax > 0; 3y eR;VvneEN:y >nxordx >0; Iy e R;Vn € N:n < X,

X

that's mean the set N*is limited from above it accepts an upper limit in R called M.
SoVe>0;3dny EN": M —e < ny

by putting € = 1, we get the following : 3nyg € N* : M — 1 < n,

or IngEN": M <ny+1

butny+1 € N*

this is a contradiction because supA = M.

1.5 The integer part of a real number

For every real number x there is only one integer which we denote as E(x) or [x] it achives
E(x) <x<E(Xx)+1

E(x) is called the integer part of the real x.

In other words E(x) is The largest integer less than or equal to x.

Examples

1)E(0,1)=0since 0<0,1<0+1.
2)E(—0,1) = —1since—1<-0,1< —-1+1.

3)VnEN*:E(L) = 0 since VnEN*:OSL< 0+1.
n+1 n+1
1.6 densegroups in R

Theorem 1.2 between every two different real numbers there is at least one rational
number.

Proof

Lety and x be two real numbers wherex <y .

According to Archimedean axiom3an € N*:1 < n(y — x) ornx + 1 < ny.
On the other hand we have E(nx) < nx < E(nx) + 1 or

nx<Enx)+1<nx+1<ny.

Sonx < E(nx) +1 <ny tbenx<%<y

Well the rational number% is bounded between the two real numbersx,y.

definition 1.3
we denote the set of irrational numbers with I or Q¢

Theorem 1.3_between every two different real numbers there is at least one irrational
number,

To prove this theory we need the following two propositions




proposition 1.3 the number 2 is an irrational number
.JpropositionZ.4ifx e landr € Q * thenrx € I

Proof of the proposition 1.3

We suppose that\2 € Q then there is only one duality of natural numbers (p,q) thens =
V2 and gcd(p. q) = 1, then::

we conclude that q* divide p* Sinceqzandpzprimeg =V2 o p=qV2 © p?=2q¢?

among themselves then q* devide 1 thats mean q = 1 substitung in the previous
equality we get p?> = 2 and this is a contradiction because there is no natural number
squared equal 2 .

Proof of the proposition1.4 We assumex € | and r € Q*and thatrx € Q and from him:

1 1
(;EQ*OTTXEQ>=>;TXEQ=>XEQ

This is a contradiction becausex € I.
Proof of the theorem 1.3
Lety, x be a real numbers, where x < y, according to the theorem 1.2, there sexist a

rational numberr (r # 0) such that: \7_? <r< j—i or x < V2 < y and according to

propositions 1.3 and 1.4 we conclude that /2 is a irrational number.
Corollary 1.1 The two sets Q and [ is dense in R.
1.7 Intervals in R
Leta, b a real numbers, where a < b, we define

[a,b] = {x € R:a < x < b} is called closed interval.
la,b[ = {x € R: a < x < b} is called open interval.
[a,b] = {x € R: a < x < b} is called half open interval.
la,pl ={x e Rea<x < p} """"rrrrrrrrmmmmmn
[a,+o[ = {x € R: x = a} unbounded closed interval.
] ={xeRix b} oy
la, +oo[ = {x € R: x > a} unbounded open interval.

Irorrorrorrorrorrorrorr oy orrorronrororrorrororrourn
]—o0,b[ = {x € R: x < b}
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Theorem 1.4

The non-empty subset | of R is an interval if and only if the following property is
satistied:

Vabel(a<bh);VxeRa<x<b=>x€l




Proof

(&)Necessary condition: It is a clear that: if the set I is a interval, then the property is true.
(=)Sufficient condition: If the property is true, then the set [ is a interval.

We have four possible cases, case 1: I is bounded, case 2: I is bounded from above and not
bounded from below, case 3: I is bounded from below and not bounded from above, case 4: I
is neither bounded from above nor from below.

Let us prove that in the first case: either I = [a,b] or I = [a,b[ or I =]a,b] or I = ]a, b[

where a =inf I and b = sup I.
Vx€e€l:x<b
We have: b=supl & g .
Ve>0;3Ib €l:b—e<b.... (D
and

VxEl:x=a
a=infl & 5) .
V6 >0;3a" €l:a+6>a ... (2)

case 1: Ifa € I andb € I, then:
VxERix€El=>a<x<b=>x€lab]l=>1c]ab]
Vx ER:x €Ela,bl]>a<x<b>=>x€l=][ablcl
So
I = [a,b].
case 2: Ifa € I andb & 1, then:
VxERix€El>a<x<b=>x€lab[=>Ic]ab|
VxER:x€[a,b[2a<x<b=>b—-x>0
puttinge = b — x in(1) wegetx < b' and sincea, b’ € I, then:
a<x<b =>x€l=ablcl
S0
I =a,bl.
case 3: Ifa &€ I andb € I, then:
VxERix€El=>a<x<b>x€lab]l=1c]a,b]
Vx ER:x €Ela,b]2a<x<b=>x—a>0

By putting$ = x — a in (2)we getx > a'and sincea,a’ € I, then:

ad<x<b=>x€el=>]ablcl




I =]a, b]
case 4: If a ¢l andb & I, Then:
VxeERixEl>a<x<b>=>x€labl=>1c]ab|
VxER:xEla,bp[2a<x<b=>x—a>0andb—x>0.

By puttinge = b —x in (1) andé = x —a in (2) wegetx < b" anda’' < x, sincea',b’ €
I, then:

a <x<b'>x€l>]ab[cl
So
I =]a, b|.

In the same way we prove thatlis a interval in the other cases.




Chapter two: Complex numbers
2.1 Definitions and properties
Definition 2.1
We call a complex number and denote it z, for each ordered pair
(z,y) of real numbers.
- the = component is called the real part of z and we denote it as

Re (z)
- the y component is called the imaginary part of z and we denote
it as Im (2)
=z
‘(m,y):(:z:,y><:> and
y=y
- the set of complex number we denote C and provided with two
opirations:
1) Addition (4) : (z,y) + (az/,y,) = (x—!—x,,y—ky/) where
0c = (0,0).

2) Multiplication (x) : (z,y) X (xl,y'> = (xml —yy 2y + y:r')
where 1¢c = (1,0).
Remarks
1) the set of complex numbers is a commutative field.
2) the neutral element is Oc = (0,0) we denote it as 0 and the unit
element is 1¢ = (1,0) we denote it as 1.

Notation

1) the complex number (0, 1) is noted i.
Theorem 2.1

1) we have i = —1.

2)if x € R and y € R, then (x,y) =z + iy
Proof

1) i =(0,1) x (0,1) = (~1,0) = — (1,0) = —1

2) we have (z,) = (z,0) + (0, 1) (3, 0) = = + iy.

Definition 2.2
1) the complex number iy with y € R* is called pure imaginary.
2) the conjugate of a complex number z = 2 + iy ( z € R and
y € R ) is the complex number Z where Z = = — iy

Properties
z and w are complex numbers, so
)z==z 5)z2Xw=ZXW
2) 247 =2Re(2) 6) ()= 2 (w#0)
3) z+z=2Im(2) Nz=Z<=z€R
)z+tw=z+w 8) z = Z <= z pure imaginary

Definition 2.3
we call the module of a coplex number z the positive real number |z|

where |z| = V2.2 = /22 + y2.

Properties



z and w are complex numbers, so
1) [Re ()] < [2]; Mm(z)] < [z]  3) |zw] = |z]|w]
2 |2l =0 < 2=0 ) |2 =LE (w#0)
5) |z + w| < |z| + |w| ( Triangle inequality )
2.2 The trigonometric form
Definition 2.4
Let z € C*; There exists a class of real 6 + 27k (k € Z) (or 6 [27]) where

z=|z| e

we notice Arg(z) =0[2x] ; |2| =p (p > 0),then:

z= x4y = pe? = p(cosf + sin0)
N—— ~—~ | S
Algebraic form exponentiel form Trigonometric form

where

p=+/12+y%; cosf == ; sinf = 2.
p P

Remark Let z € C* where z = x + iy, so

3 if t=0andy >0
Arg(z) =0 = _g if t=0andy<0

arctan £ if x>0
arctan £ + 7 if <0

Properties
Let z = pe’ and w = re'¥
1) zw = preiwﬂp) 3) 1= %e’ie
2) Z = Leil0=¢) 4) z = pe= "
5) 2" = p"ei™ = p" (cosnb + sin nf) (De moivre’s formula (Abraham De Moivre(1667 — 1754)))
6) cosf = 9+26716 ;sinf = £ 9_2" v (Euler formula)

2.3 Application of complex numbers to trigonometry
2.3.1 Calculates cosnx and sinnz based en cosx and sinx

we have:
.. .. n
cosnz +isinnr = (cos x +isinx)
= g CF (i)* cos™* zsin* x
= 02 cos" x — C2cos" 2 wsin®x + Ch cos" *wsintz + ...
+14 (C’}, cos" P asine — C3 cos" P xsin®x + C5 cos" P xsin® x + ... ).
So
n—d 4 "6y sin®a 4 ...

cosnz = CV cos” x — C2 cos™ 2 xsin? x + C2 cos” * xsin® x — CF cos
smnw—C}lcos" 13:811137—02005" 3 g sin? x + C3 cos™™ 5 g sin® T A e



or

w3

cosnr = (—1)P C?P cos™ 2P g sin??

[=)

=
(5]
sinnw = (=P~ C2P L cos" P+ psin?P L

p

3
H

Il
_

where [§] denotes the integer part of the rational number F.

2
2.3.2 Linearization of trigonometric polynomials
For obtain linearization of cos™ x and sin” x we use:

eikw + e—ikw eik:av _ e—ik:av
Vk € Z;Vx € R: coskx = 3 jsinkz = 57 (Euler formula)
7
Example: write in linear form cos® z, sin® z

we have

3 ell}_i_e 1T
cos"r = Ee—
2

_ % (2 (e:m: + 673ix) +3 (e” 4 efir))
— é (2cos3x + 3 (2cosx))
a 1 3 3
= ZCOS x + Zcosa:.
iz iz 4
sintfx = <612ie”>
_ % (2 (641136 + 6—42'2:) +4x2 (621.16 + 6—21'27) + 6)
= % (2 (e" + 7M7) =4 x2(e2 + e ") +6)
1

= (2sin4x — 4 (2sin2z) + 6)

1 1 3
= gcosélx — 5cos2x + 3
2.3.3 n'” roots of complex number
Definition 2.5 Let n € N* — {1}

An nth root of complex number a is a complex number z such that
n

2" =a.
Example
2 2
We have (@ + %z) = (—72 - %z) =1, 50 @ + %z one of the square

roots of the complex number 4



Theorem Let n € N* — {1}

Any nonzero complex number has exactly n distinct nth roots and
6+27k

if a = re’®, then the solutions to z” = a are given by z, = fe n
ke {0,1,...,n—1}.
Proof
Suppose that z = pe'®, so
2N = g = pnewcnzrew

— p'=r and an=0+2nk k€ Z.

0+ 27k
— p"=3Yr and a= +7T,kEZ.
n

The expression for z takes on n different values for £ =0,1,...,n — 1, and
the values start to repeat for k =n,n+1,.......
Hence the expression for the n nth roots of a:

2y = {‘ﬁeiﬂzm for k € {0,1,...,n — 1}

Remark
The roots lie on a circle of radius {/r centred at the origin and spaced out
evenly by angles of 27”
Examples
1) The n nth roots of unity are therefore the numbers z; = € i
cos 27k 4 jgin 278 for | € {0,1,...,n — 1}
2) Solve in C the equatuon 27 = Z.
a) It is clear that 0 is one of the solutions.
b) Suppose that z # 0 and z = pe'®, so

27 S p7e719 pe—ié)

pr=p
70 = —0 + 27k where k € Z

{ p(p®—1)=0

80 = 27k where k € Z

1 11

p=1
{ 0 ==k where k € {0,1,2,3,4,5,6,7}

So the set of solutions is S = {O,ei%k/k € {0, 172,3,4,5,6,7}}, SO
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