Chapter one: The set of real numbers

1 1.Algebraic structure of the set \mathbb{R}

The set of real numbers is a set that we denote by \mathbb{R} equipped with the operation of addition and multiplication and an overall ordering relationship $\leq c h e c k i$ the following Axiom.

A1) $\forall x, y, z \in \mathbb{R}: x+(y+z)=(x+y)+z$.
A2) $\forall x, y \in \mathbb{R}: x+y=y+x$.
A3) $\forall x \in \mathbb{R}: x+0=0+x=x$.
A4) $\forall x \in \mathbb{R}: x+(-x)=(-x)+x=0$.
A5) $\forall x, y, z \in \mathbb{R}: x \cdot(y \cdot z)=(x \cdot y) \cdot z$.
A6) $\forall x, y \in \mathbb{R}: x \cdot y=y \cdot x$.
A7) $\forall x \in \mathbb{R}: x \cdot 1=1 \cdot x=x$.
A8) $\forall x \in \mathbb{R}^{*}: x \cdot x^{-1}=x^{-1} \cdot x=1$.
A9) $\forall x, y, z \in \mathbb{R}: x \cdot(y+z)=x \cdot y+x \cdot z$.
A10) $\forall x \in \mathbb{R}: x \leq x$.
A11) $\forall x, y, z \in \mathbb{R}:(x \leq y, y \leq z) \Rightarrow(x \leq z)$.
A12) $\forall x, y \in \mathbb{R}:(x \leq y, y \leq x) \Rightarrow(x=y)$.
A13) $\forall x, y \in \mathbb{R}: x \leq y$, $y \leq x$.
A14) $\forall x, y, z \in \mathbb{R}:(x \leq y) \Leftrightarrow(x+z \leq y+z)$.
A15) $\left\{\begin{array}{l}\forall x, y \in \mathbb{R} ; \forall z \in \mathbb{R}_{+}^{*}:(x \leq y) \Leftrightarrow(x \cdot z \leq y \cdot z) \\ \forall x, y \in \mathbb{R} ; \forall z \in \mathbb{R}_{-}^{*}:(x \leq y) \Leftrightarrow(x \cdot z \geq y \cdot z)\end{array}\right.$.

Properties

1) $\forall x, y, x^{\prime}, y^{\prime} \in \mathbb{R}:\left(x \leq y g x^{\prime} \leq y^{\prime}\right) \Rightarrow\left(x+x^{\prime} \leq y+y^{\prime}\right)$.
2) $\forall x, y, x^{\prime}, y^{\prime} \in \mathbb{R}_{+}^{*}:\left(x \leq y, x^{\prime} \leq y^{\prime}\right) \Rightarrow\left(x \cdot x^{\prime} \leq y \cdot y^{\prime}\right)$.
3) $\forall x, y, x^{\prime}, y^{\prime} \in \mathbb{R}_{+}^{*}:(0<x<y) \Rightarrow\left(0<\frac{1}{y}<\frac{1}{x}\right)$.

1.2 Absolute value

Definition 1.1 let it be $x \in \mathbb{R}$

The absolute value of the real number x is the positive real number which we denote by $|x|$ and defined as

$$
|x|=\left\{\begin{array}{c}
x, \text { si } x \geq 0 \\
-x, \text { si } x \leq 0
\end{array}\right.
$$

Properties : $x . y r$. is a real number where $r \geq 0$

1) $|x| \geq 0 ;|-x|=|x| ;-|x| \leq x \leq|x|$
2) $|x|=0 \Leftrightarrow x=0$
3) $|x \cdot y|=|x||y|$
4) $\left|\frac{x}{y}\right|=\frac{|x|}{|y|}(y \neq 0)$
5) $|x+y| \leq|x|+|y|$
6) $|x| \leq r \Leftrightarrow-r \leq x \leq r$
7). $|x| \geq r \Leftrightarrow x \leq-r$ or $x \geq r$

1.3. Limited parts from \mathbb{R}

Definition 1.2

Let A be a sub set of \mathbb{R} and non-empty .
We say that A is bounded from above if and only if :

$$
\exists b \in \mathbb{R} ; \forall x \in A: x \leq b
$$

We say that A is bounded from below if and only if
$\exists a \in \mathbb{R} ; \forall x \in A: x \geq a$
A is bounded if and only if it is bounded from above and

Proposition 1.1 The three following conditions are equivalent
1). A is bounded
2) $\exists a \in \mathbb{R} ; \exists b \in \mathbb{R}: \forall x \in A: a \leq x \leq b$.
3) $\exists M \in \mathbb{R}_{+}^{*}$; $\forall x \in A:|x| \leq M$

1.3.1 sup and inf.max and min

The smallest upper limit from A is called sup A
The biggest lower limit from A is called $\inf A$
If $\sup A \in A$ it is called $\max A$
If $\inf A \in A$ it is called $\min A$

Note

If A is infinite from above (from lowest, respectively) in \mathbb{R} we write $\sup A=+\infty$ (inf $A=-\infty$, respectively).
proposition 1.2
1)Let A be bounded from above, then

$$
M=\sup A \Leftrightarrow\left\{\begin{array}{c}
\forall x \in A: x \leq M \\
\text { and } \\
\forall \varepsilon>0 ; \exists a \in A: M-\varepsilon<a
\end{array}\right.
$$

2) Let A be bounded from below, then

$$
m=\inf A \Leftrightarrow\left\{\begin{array}{c}
\forall x \in A: x \geq m \\
\text { and } \\
\forall \varepsilon>0 ; \exists b \in A: m+\varepsilon>b
\end{array}\right.
$$

Proof

1) M is the smallest of the upper bounds if and only if the following proposition is false .

$$
\exists M^{\prime}<M ; \forall x \in A: x \leq M^{\prime}
$$

Is true. So, if the proposition $\forall M^{\prime}<M ; \exists x \in A: x>M^{\prime}$.
By putting $\varepsilon=M-M^{\prime}(\varepsilon>0)$ so, the last proposition is written in the form:

$$
\forall \varepsilon>0 ; \exists x \in A: M-\varepsilon<x
$$

2) In the same way we prove the second case

Examples

1) $A=[1,2[; \max A=$ unvailable $; \sup A=2 ; \inf A=1 \min A=1$
2) $\mathrm{A}=\left\{\frac{1}{n} ; n \in \mathbb{N}^{*}\right\}$
. $\sup A=\max A=1$ ففانthen $1 \in A \forall n \in \mathbb{N}^{*}: n \geq 1 \Rightarrow 0<\frac{1}{n} \leq 1$
Let we proof that $\inf A=0$

$$
0=\inf A \Leftrightarrow\left\{\begin{array}{c}
\forall x \in A: x \geq 0 \\
\text { and } \\
\forall \varepsilon>0 ; \exists b \in A: 0+\varepsilon>b
\end{array}\right.
$$

On the other side we have $\forall \varepsilon>0 ; \exists b \in A: 0+\varepsilon>b \Leftrightarrow \forall \varepsilon>0 ; \exists n \in \mathbb{N}^{*}: \frac{1}{n}<\varepsilon$. and this last proposition is true and its according to archimed's axiom

$$
\forall \varepsilon>0 ; \exists n \in \mathbb{N}^{*}: \mathrm{n} \varepsilon>1
$$

$\min A=$ unvailable, because $0 \notin \mathrm{~A}$.

1.3.2 Axiom of supermum and infimum:

Any non-empty subset A of the real's \mathbb{R} which is bounded above has a supermum in \mathbb{R}. Any non-empty subset A of the real's \mathbb{R} which is bounded below has a infimum in \mathbb{R}.

1.4 Archimedean axiom

Theorem 1.1: $\forall x>0 ; \forall y \in \mathbb{R} ; \exists n \in \mathbb{N}^{*}: y<n x$.
Proof:
We suppose that:
$\exists x>0 ; \exists y \in \mathbb{R} ; \forall n \in \mathbb{N}^{*}: y \geq n x$ or $\exists x>0 ; \exists y \in \mathbb{R} ; \forall n \in \mathbb{N}^{*}: n \leq \frac{y}{x^{\prime}}$
that's mean the set \mathbb{N}^{*} is limited from above it accepts an upper limit in \mathbb{R} called M.
So $\forall \varepsilon>0 ; \exists n_{0} \in \mathbb{N}^{*}: M-\varepsilon<n_{0}$
by putting $\varepsilon=1$, we get the following : $\exists n_{0} \in \mathbb{N}^{*}: M-1<n_{0}$
or $\exists n_{0} \in \mathbb{N}^{*}: M<n_{0}+1$
but $n_{0}+1 \in \mathbb{N}^{*}$
this is a contradiction because $\sup A=M$.

1.5 The integer part of a real number

For every real number x there is only one integer which we denote as $E(x)$ or $[x]$ it achives
$E(x) \leq x<E(x)+1$
$E(x)$ is called the integer part of the real x.
In other words $E(x)$ is The largest integer less than or equal to x.

Examples

1) $E(0,1)=0$ since $0 \leq 0,1<0+1$.
2) $E(-0,1)=-1$ since $-1 \leq-0,1<-1+1$.
3) $\forall n \in \mathbb{N}^{*}: E\left(\frac{1}{n+1}\right)=0$ since $\forall n \in \mathbb{N}^{*}: 0 \leq \frac{1}{n+1}<0+1$.

1.6 dense groups in \mathbb{R}

Theorem 1.2 between every two different real numbers there is at least one rational number.

Proof

Lety and x be two real numbers where $x<y$.
According to Archimedean axiom $\exists n \in \mathbb{N}^{*}: 1<n(y-x)$ or $n x+1<n y$.
On the other hand we have $E(n x) \leq n x<E(n x)+1$ or

$$
n x<E(n x)+1 \leq n x+1<n y .
$$

So $n x<E(n x)+1<n y$ then $x<\frac{E(n x)+1}{n}<y$.
Well the rational number $\frac{(n x)+1}{n}$ is bounded between the two real numbers x, y.
definition 1.3
we denote the set of irrational numbers with I or Q^{c}
Theorem 1.3_between every two different real numbers there is at least one irrational number,

To prove this theory we need the following two propositions
proposition 1.3 the number $\sqrt{2}$ is an irrational number .proposition 1.4 if $x \in \mathrm{I}$ and $\mathrm{r} \in \mathrm{Q} *$ then $\mathrm{r} x \in \mathrm{I}$

Proof of the proposition 1.3

We suppose that $\sqrt{2} \in \mathbb{Q}$ then there is only one duality of natural numbers (p, q) then $\frac{p}{q}=$ $\sqrt{2}$ and $\operatorname{gcd}(p . q)=1$, then::
we conclude that q^{2} divide p^{2} since q^{2} and p^{2} prime $\frac{p}{q}=\sqrt{2} \Leftrightarrow p=q \sqrt{2} \Leftrightarrow p^{2}=2 q^{2}$ among themselves then q^{2} devide 1 thats mean $q=1$ substitung in the previous equality we get $p^{2}=2$ and this is a contradiction because there is no natural number squared equal 2.

Proof of the proposition1.4 We assume $x \in I$ and $r \in \mathbb{Q}^{*}$ and thatrx $\in \mathbb{Q}$ and from him:

$$
\left(\frac{1}{r} \in \mathbb{Q}^{*} \text { or } r x \in \mathbb{Q}\right) \Rightarrow \frac{1}{r} r x \in \mathbb{Q} \Rightarrow x \in \mathbb{Q}
$$

This is a contradiction because $x \in I$.

Proof of the theorem 1.3

Lety, x be a real numbers, where $x<y$, according to the theorem 1.2, there sexist a rational numberr $(r \neq 0)$ such that: $\frac{x}{\sqrt{2}}<r<\frac{y}{\sqrt{2}}$ or $x<r \sqrt{2}<y$ and according to propositions 1.3 and 1.4 we conclude that $r \sqrt{2}$ is a irrational number.

Corollary 1.1 The two sets \mathbb{Q} and I is dense in \mathbb{R}.

1.7 Intervals in \mathbb{R}

Let a, b a real numbers, where $a<b$, we define
$[a, b]=\{x \in \mathbb{R}: a \leq x \leq b\}$ is called closed interval.
$] a, b[=\{x \in \mathbb{R}: a<x<b\}$ is called open interval.
$[a, b[=\{x \in \mathbb{R}: a \leq x<b\}$ is called half open interval.
$] a, b]=\{x \in \mathbb{R}: a<x \leq b\}$
$[a,+\infty[=\{x \in \mathbb{R}: x \geq a\}$ unbounded closed interval.
$]-\infty, b]=\{x \in \mathbb{R}: x \leq b\}$
$] a,+\infty[=\{x \in \mathbb{R}: x>a\}$ unbounded open interval.
$]-\infty, b[=\{x \in \mathbb{R}: x<b\}$
$\mathbb{R}=]-\infty,+\infty[$

Theorem 1.4

The non-empty subset I of \mathbb{R} is an interval if and only if the following property is satisfied:

$$
\forall a, b \in I(a \leq b) ; \forall x \in \mathbb{R}: a \leq x \leq b \Rightarrow x \in I
$$

Proof

(\Leftarrow) Necessary condition: It is a clear that: if the set I is a interval, then the property is true.
(\Rightarrow) Sufficient condition: If the property is true, then the set I is a interval.
We have four possible cases, case 1:I is bounded, case 2: I is bounded from above and not bounded from below, case 3: I is bounded from below and not bounded from above, case 4: I is neither bounded from above nor from below.

Let us prove that in the first case: either $I=[a, b]$ or $I=[a, b[$ or $I=] a, b]$ or $I=] a, b[$ where $a=\inf I$ and $b=\sup I$.

We have:

$$
b=\sup I \Leftrightarrow\left\{\begin{array}{c}
\forall x \in I: x \leq b \tag{1}\\
, \\
\forall \varepsilon>0 ; \exists b^{\prime} \in I: b-\varepsilon<b^{\prime} .
\end{array}\right.
$$

and

$$
a=\inf I \Leftrightarrow\left\{\begin{array}{c}
\forall x \in I: x \geq a \tag{2}\\
g \\
\forall \delta>0 ; \exists a^{\prime} \in I: a+\delta>a^{\prime}
\end{array}\right.
$$

case 1: If $a \in I$ and $b \in I$, then:

$$
\begin{aligned}
& \forall x \in \mathbb{R}: x \in I \Rightarrow a \leq x \leq b \Rightarrow x \in[a, b] \Rightarrow I \subset[a, b] \\
& \forall x \in \mathbb{R}: x \in[a, b] \Rightarrow a \leq x \leq b \Rightarrow x \in I \Rightarrow[a, b] \subset I
\end{aligned}
$$

So

$$
I=[a, b] .
$$

case 2: If $a \in I$ and $b \notin I$, then:

$$
\begin{gathered}
\forall x \in \mathbb{R}: x \in I \Rightarrow a \leq x<b \Rightarrow x \in[a, b[\Rightarrow I \subset[a, b[\\
\forall x \in \mathbb{R}: x \in[a, b[\Rightarrow a \leq x<b \Rightarrow b-x>0
\end{gathered}
$$

putting $\varepsilon=b-x$ in (1) we get $x<b^{\prime}$ and since $a, b^{\prime} \in I$, then:

$$
a \leq x<b^{\prime} \Rightarrow x \in I \Rightarrow[a, b[\subset I
$$

so

$$
I=[a, b[.
$$

case 3: If $a \notin I$ and $b \in I$, then:

$$
\begin{gathered}
\forall x \in \mathbb{R}: x \in I \Rightarrow a<x \leq b \Rightarrow x \in] a, b] \Rightarrow I \subset] a, b] \\
\forall x \in \mathbb{R}: x \in] a, b] \Rightarrow a<x \leq b \Rightarrow x-a>0
\end{gathered}
$$

By putting $\delta=x-a$ in (2)we get $x>a^{\prime}$ and since $a, a^{\prime} \in I$, then:

$$
\left.\left.a^{\prime}<x \leq b \Rightarrow x \in I \Rightarrow\right] a, b\right] \subset I
$$

$$
I=] a, b]
$$

case 4: If $a \notin I$ and $b \notin I$, Then:

$$
\begin{gathered}
\forall x \in \mathbb{R}: x \in I \Rightarrow a<x<b \Rightarrow x \in] a, b[\Rightarrow I \subset] a, b[\\
\forall x \in \mathbb{R}: x \in] a, b[\Rightarrow a<x<b \Rightarrow x-a>0 \text { and } b-x>0 .
\end{gathered}
$$

By putting $\varepsilon=b-x$ in (1) and $\delta=x-a$ in (2) we get $x<b^{\prime}$ and $a^{\prime}<x$, since $a^{\prime}, b^{\prime} \in$ I, then:

$$
\left.a^{\prime}<x \leq b^{\prime} \Rightarrow x \in I \Rightarrow\right] a, b[\subset I .
$$

So

$$
I=] a, b[.
$$

In the same way we prove that I is a interval in the other cases.

Chapter two: Complex numbers

2.1 Definitions and properties

Definition 2.1
We call a complex number and denote it z, for each ordered pair (x, y) of real numbers.

- the x component is called the real part of z and we denote it as $\operatorname{Re}(z)$
- the y component is called the imaginary part of z and we denote it as $\operatorname{Im}(z)$

$$
(x, y)=\left(x^{\prime}, y^{\prime}\right) \Longleftrightarrow\left\{\begin{array}{c}
x=x^{\prime} \\
\text { and } \\
y=y^{\prime}
\end{array}\right.
$$

- the set of complex number we denote \mathbb{C} and provided with two opirations:

1) Addition $(+):(x, y)+\left(x^{\prime}, y^{\prime}\right)=\left(x+x^{\prime}, y+y^{\prime}\right)$ where $0_{\mathbb{C}}=(0,0)$.
2) Multiplication $(\times):(x, y) \times\left(x^{\prime}, y^{\prime}\right)=\left(x x^{\prime}-y y^{\prime}, x y^{\prime}+y x^{\prime}\right)$ where $1_{\mathbb{C}}=(1,0)$.

Remarks

1) the set of complex numbers is a commutative field.
2) the neutral element is $0_{\mathbb{C}}=(0,0)$ we denote it as 0 and the unit element is $1_{\mathbb{C}}=(1,0)$ we denote it as 1 .

Notation

1) the complex number $(0,1)$ is noted i.

Theorem 2.1

1) we have $i^{2}=-1$.
2) if $x \in \mathbb{R}$ and $y \in \mathbb{R}$, then $(x, y)=x+i y$

Proof

1) $i^{2}=(0,1) \times(0,1)=(-1,0)=-(1,0)=-1$
2) we have $(x, y)=(x, 0)+(0,1)(y, 0)=x+i y$.

Definition 2.2

1) the complex number $i y$ with $y \in \mathbb{R}^{*}$ is called pure imaginary.
2) the conjugate of a complex number $z=x+i y(x \in \mathbb{R}$ and $y \in \mathbb{R})$ is the complex number \bar{z} where $\bar{z}=x-i y$

Properties

z and w are complex numbers, so

1) $\overline{\bar{z}}=z$
2) $z+\bar{z}=2 \operatorname{Re}(z)$
3) $z+\bar{z}=2 \operatorname{Im}(z)$
4) $\overline{z+w}=\bar{z}+\bar{w}$
5) $\overline{z \times w}=\bar{z} \times \bar{w}$
6) $\overline{\left(\frac{z}{w}\right)}=\frac{\bar{z}}{\bar{w}}(w \neq 0)$
7) $z=\bar{z} \Longleftrightarrow z \in \mathbb{R}$
8) $z=\bar{z} \Longleftrightarrow z$ pure imaginary

Definition 2.3

we call the module of a coplex number z the positive real number $|z|$ where $|z|=\sqrt{z \cdot \bar{z}}=\sqrt{x^{2}+y^{2}}$.

Properties
z and w are complex numbers, so

1) $|\operatorname{Re}(z)| \leq|z| ;|\operatorname{Im}(z)| \leq|z| \quad 3)|z . w|=|z||w|$
2) $|z|=0 \Longleftrightarrow z=0$
3) $\left|\frac{z}{w}\right|=\frac{|z|}{|w|}(w \neq 0)$
4) $|z+w| \leq|z|+|w|$ (Triangle inequality)

2.2 The trigonometric form

Definition 2.4

Let $z \in \mathbb{C}^{*}$; There exists a class of real $\theta+2 \pi k(k \in \mathbb{Z})$ (or $\left.\theta[2 \pi]\right)$ where

$$
z=|z| e^{i \theta}
$$

we notice $\operatorname{Arg}(z)=\theta[2 \pi] ;|z|=\rho(\rho>0)$, then:

$$
z=\underbrace{x+i y}_{\text {Algebraic form }}=\underbrace{\rho e^{i \theta}}_{\text {exponentiel form }}=\underbrace{\rho(\cos \theta+\sin \theta)}_{\text {Trigonometric form }}
$$

where

$$
\rho=\sqrt{x^{2}+y^{2}} ; \cos \theta=\frac{x}{\rho} ; \sin \theta=\frac{y}{\rho} .
$$

Remark Let $z \in \mathbb{C}^{*}$ where $z=x+i y$, so

$$
\operatorname{Arg}(z)=\theta=\left\{\begin{array}{c}
\frac{\pi}{2} \quad \text { if } x=0 \text { and } y>0 \\
-\frac{\pi}{2} \quad \text { if } x=0 \text { and } y<0 \\
\arctan \frac{y}{x} \quad \text { if } x>0 \\
\arctan \frac{y}{x}+\pi \text { if } x<0
\end{array} .\right.
$$

Properties

Let $z=\rho e^{i \theta}$ and $w=r e^{i \varphi}$

1) $z . w=\rho r e^{i(\theta+\varphi)}$
2) $\frac{z}{w}=\frac{\rho}{r} e^{i(\theta-\varphi)}$
3) $\frac{1}{z}=\frac{1}{\rho} e^{-i \theta}$
4) $\bar{z}=\rho e^{-i \theta}$
5) $z^{n}=\rho^{n} e^{i \theta n}=\rho^{n}(\cos n \theta+\sin n \theta)($ De moivre's formula (Abraham De Moivre(1667-1754)))
6) $\cos \theta=\frac{e^{i \theta}+e^{-i \theta}}{2} ; \sin \theta=\frac{e^{i \theta}-e^{-i \theta}}{2 i}$ (Euler formula)
2.3 Application of complex numbers to trigonometry
2.3.1 Calculates $\cos n x$ and $\sin n x$ based en $\cos x$ and $\sin x$
we have:

$$
\begin{aligned}
\cos n x+i \sin n x= & (\cos x+i \sin x)^{n} \\
= & \sum_{k=0}^{n} C_{n}^{k}(i)^{k} \cos ^{n-k} x \sin ^{k} x \\
= & C_{n}^{0} \cos ^{n} x-C_{n}^{2} \cos ^{n-2} x \sin ^{2} x+C_{n}^{4} \cos ^{n-4} x \sin ^{4} x+\ldots \ldots . \\
& +i\left(C_{n}^{1} \cos ^{n-1} x \sin x-C_{n}^{3} \cos ^{n-3} x \sin ^{3} x+C_{n}^{5} \cos ^{n-5} x \sin ^{5} x+\ldots . .\right) .
\end{aligned}
$$

So

$$
\left\{\begin{array}{l}
\cos n x=C_{n}^{0} \cos ^{n} x-C_{n}^{2} \cos ^{n-2} x \sin ^{2} x+C_{n}^{4} \cos ^{n-4} x \sin ^{4} x-C_{n}^{6} \cos ^{n-6} x \sin ^{6} x+\ldots \ldots \\
\quad \sin n x=C_{n}^{1} \cos ^{n-1} x \sin x-C_{n}^{3} \cos ^{n-3} x \sin ^{3} x+C_{n}^{5} \cos ^{n-5} x \sin ^{5} x+\ldots \ldots \ldots \ldots \ldots .
\end{array}\right.
$$

or

$$
\begin{aligned}
& \cos n x=\sum_{p=0}^{\left[\frac{n}{2}\right]}(-1)^{p} C_{n}^{2 p} \cos ^{n-2 p} x \sin ^{2 p} x \\
& \sin n x=\sum_{p=1}^{\left[\frac{n+1}{2}\right]}(-1)^{p-1} C_{n}^{2 p-1} \cos ^{n-2 p+1} x \sin ^{2 p-1} x
\end{aligned}
$$

where $\left[\frac{n}{2}\right]$ denotes the integer part of the rational number $\frac{n}{2}$.

2.3.2 Linearization of trigonometric polynomials

For obtain linearization of $\cos ^{n} x$ and $\sin ^{n} x$ we use:
$\forall k \in \mathbb{Z} ; \forall x \in \mathbb{R}: \cos k x=\frac{e^{i k x}+e^{-i k x}}{2} ; \sin k x=\frac{e^{i k x}-e^{-i k x}}{2 i}$ (Euler formula)
Example: write in linear form $\cos ^{3} x, \sin ^{4} x$ we have

$$
\begin{aligned}
\cos ^{3} x & =\left(\frac{e^{i x}+e^{-i x}}{2}\right)^{3} \\
& =\frac{1}{8}\left(2\left(e^{3 i x}+e^{-3 i x}\right)+3\left(e^{i x}+e^{-i x}\right)\right) \\
& =\frac{1}{8}(2 \cos 3 x+3(2 \cos x)) \\
& =\frac{1}{4} \cos 3 x+\frac{3}{4} \cos x . \\
& =\frac{1}{16}\left(2\left(e^{4 i x}+e^{-4 i x}\right)+4 \times 2\left(e 2^{i x}+e^{-2 i x}\right)+6\right) \\
& =\frac{1}{16}\left(2\left(e^{4 i x}+e^{-4 i x}\right)-4 \times 2\left(e 2^{i x}+e^{-2 i x}\right)+6\right) \\
\sin ^{4} x & \left.=\frac{e^{i x}-e^{-i x}}{2 i}\right)^{4}(2 \sin 4 x-4(2 \sin 2 x)+6) \\
= & \frac{1}{8} \cos 4 x-\frac{1}{2} \cos 2 x+\frac{3}{8} .
\end{aligned}
$$

2.3.3 $\mathrm{n}^{\text {th }}$ roots of complex number

Definition 2.5 Let $n \in \mathbb{N}^{*}-\{1\}$
An nth root of complex number a is a complex number z such that $z^{n}=a$.

Example

We have $\left(\frac{\sqrt{2}}{2}+\frac{\sqrt{2}}{2} i\right)^{2}=\left(-\frac{\sqrt{2}}{2}-\frac{\sqrt{2}}{2} i\right)^{2}=i$, so $\frac{\sqrt{2}}{2}+\frac{\sqrt{2}}{2} i$ one of the square roots of the complex number i

Theorem Let $n \in \mathbb{N}^{*}-\{1\}$
Any nonzero complex number has exactly n distinct nth roots and if $a=r e^{i \theta}$, then the solutions to $z^{n}=a$ are given by $z_{k}=\sqrt[n]{r} e^{i \frac{\theta+2 \pi k}{n}}$ for $k \in\{0,1, \ldots, n-1\}$.

Proof
Suppose that $z=\rho e^{i \alpha}$, so

$$
\begin{aligned}
z^{n}=a & \Longleftrightarrow \rho^{n} e^{i \alpha n}=r e^{i \theta} \\
& \Longleftrightarrow \rho^{n}=r \quad \text { and } \quad \alpha n=\theta+2 \pi k, k \in \mathbb{Z} \\
& \Longleftrightarrow \rho^{n}=\sqrt[n]{r} \quad \text { and } \alpha=\frac{\theta+2 \pi k}{n}, k \in \mathbb{Z}
\end{aligned}
$$

The expression for z takes on n different values for $k=0,1, \ldots, n-1$, and the values start to repeat for $k=n, n+1$,

Hence the expression for the n nth roots of a :

$$
z_{k}=\sqrt[n]{r} e^{i \frac{\theta+2 \pi k}{n}} \text { for } k \in\{0,1, \ldots, n-1\}
$$

Remark

The roots lie on a circle of radius $\sqrt[n]{r}$ centred at the origin and spaced out evenly by angles of $\frac{2 \pi}{n}$.

Examples

1) The n nth roots of unity are therefore the numbers $z_{k}=e^{i \frac{\theta+2 \pi k}{n}}=$ $\cos \frac{\theta+2 \pi k}{n}+i \sin \frac{\theta+2 \pi k}{n}$ for $k \in\{0,1, \ldots, n-1\}$
2) Solve in \mathbb{C} the equatuon $z^{7}=\bar{z}$.
a) It is clear that 0 is one of the solutions.
b) Suppose that $z \neq 0$ and $z=\rho e^{i \theta}$, so

$$
\begin{aligned}
z^{7}=\bar{z} & \Longleftrightarrow \rho^{7} e^{7 i \theta}=\rho e^{-i \theta} \\
& \Longleftrightarrow\left\{\begin{array}{c}
\rho^{7}=\rho \\
7 \theta=-\theta+2 \pi k \text { where } k \in \mathbb{Z}
\end{array}\right. \\
& \Longleftrightarrow\left\{\begin{array}{c}
\rho\left(\rho^{6}-1\right)=0 \\
8 \theta=2 \pi k \\
\text { where } k \in \mathbb{Z}
\end{array}\right. \\
& \Longleftrightarrow\left\{\begin{array}{cc}
\rho=1 \\
\theta=\frac{\pi k}{4} & \text { where } k \in\{0,1,2,3,4,5,6,7\}
\end{array}\right.
\end{aligned}
$$

So the set of solutions is $S=\left\{0, e^{i \frac{\pi k}{4}} / k \in\{0,1,2,3,4,5,6,7\}\right\}$, so

$$
S=\left\{0,1, \frac{\sqrt{2}}{2}+i \frac{\sqrt{2}}{2}, i,-\frac{\sqrt{2}}{2}+i \frac{\sqrt{2}}{2},-1,-\frac{\sqrt{2}}{2}-i \frac{\sqrt{2}}{2},-i, \frac{\sqrt{2}}{2}-i \frac{\sqrt{2}}{2}\right\}
$$

