Chapter one: The set of real numbers

1 1.Algebraic structure of the set ${\mathbb R}$

The set of real numbers is a set that we denote by \mathbb{R} equipped with the operation of addition and multiplication and an overall ordering relationship \leq checki the following Axiom.

A1)
$$\forall x, y, z \in \mathbb{R}: x + (y + z) = (x + y) + z$$
.

A2)
$$\forall x, y \in \mathbb{R}: x + y = y + x$$
.

A3)
$$\forall x \in \mathbb{R}: x + 0 = 0 + x = x$$
.

A4)
$$\forall x \in \mathbb{R}: x + (-x) = (-x) + x = 0.$$

A5)
$$\forall x, y, z \in \mathbb{R}$$
: $x \cdot (y \cdot z) = (x \cdot y) \cdot z$.

A6)
$$\forall x, y \in \mathbb{R}: x \cdot y = y \cdot x$$
.

A7)
$$\forall x \in \mathbb{R}: x \cdot 1 = 1 \cdot x = x$$
.

A8)
$$\forall x \in \mathbb{R}^* : x \cdot x^{-1} = x^{-1} \cdot x = 1$$
.

A9)
$$\forall x, y, z \in \mathbb{R}$$
: $x \cdot (y + z) = x \cdot y + x \cdot z$.

A10)
$$\forall x \in \mathbb{R}: x \leq x$$
.

A11)
$$\forall x, y, z \in \mathbb{R}: (x \le y \ y \le z) \Rightarrow (x \le z)$$
.

A12)
$$\forall x, y \in \mathbb{R}$$
: $(x \le y \ni y \le x) \Rightarrow (x = y)$.

A13)
$$\forall x, y \in \mathbb{R}: x \leq y$$
 j $y \leq x$.

A14)
$$\forall x, y, z \in \mathbb{R}$$
: $(x \le y) \Leftrightarrow (x + z \le y + z)$.

A15)
$$\begin{cases} \forall x, y \in \mathbb{R}; \forall z \in \mathbb{R}_{+}^{*}: (x \leq y) \Leftrightarrow (x \cdot z \leq y \cdot z) \\ \forall x, y \in \mathbb{R}; \forall z \in \mathbb{R}_{-}^{*}: (x \leq y) \Leftrightarrow (x \cdot z \geq y \cdot z) \end{cases}$$

Properties

1)
$$\forall x, y, x', y' \in \mathbb{R}$$
: $(x \le y \ni x' \le y') \Rightarrow (x + x' \le y + y')$.

2)
$$\forall x, y, x', y' \in \mathbb{R}_+^* : (x \le y \ \mathfrak{z} x' \le y') \Rightarrow (x \cdot x' \le y \cdot y').$$

4)
$$\forall x, y, x', y' \in \mathbb{R}_{+}^{*}: (0 < x < y) \Rightarrow (0 < \frac{1}{y} < \frac{1}{x}).$$

1.2 Absolute value

Definition 1.1 let it be $x \in \mathbb{R}$

The absolute value of the real number x is the positive real number which we denote by |x| and defined as

$$|x| = \begin{cases} x, si \ x \ge 0 \\ -x, si \ x \le 0 \end{cases}$$

1

Properties: x. y r. is a real number where $r \ge 0$

1)
$$|x| \ge 0$$
; $|-x| = |x|$; $-|x| \le x \le |x|$

$$2)|x|=0 \iff x=0$$

3)
$$|x.y| = |x||y|$$

4)
$$\left|\frac{x}{y}\right| = \frac{|x|}{|y|}(y\neq 0)$$

5)
$$|x + y| \le |x| + |y|$$

6)
$$|x| \le r \Leftrightarrow -r \le x \le r$$

7)
$$|x| \ge r \Leftrightarrow x \le -r \text{ or } x \ge r$$

1.3.Limited parts from $\mathbb R$

Definition 1.2

Let A be a sub set of \mathbb{R} and non-empty.

We say that A is bounded from above if and only if:

$$\exists b \in \mathbb{R} \; ; \; \forall x \in A : x \leq b$$

We say that A is bounded from below if and only if

$$\exists a \in \mathbb{R} : \forall x \in A : x \geq a$$

A is bounded if and only if it is bounded from above and

Proposition 1.1 The three following conditions are equivalent

1).A is bounded

2)
$$\exists a \in \mathbb{R}$$
; $\exists b \in \mathbb{R} : \forall x \in A : a \leq x \leq b$.

3)
$$\exists M \in \mathbb{R}_+^*$$
; $\forall x \in A : |x| \leq M$

1.3.1 sup and inf.max and min

The smallest upper limit from A is called sup A •

The biggest lower limit from A is called inf A

If $sup A \in A$ it is called max A

If $inf A \in A$ it is called min A

Note

If A is infinite from above (from lowest, respectively) in \mathbb{R} we write $sup A = +\infty$ (inf $A = -\infty$, respectively).

proposition 1.2

1)Let A be bounded from above, then

$$M = \sup A \Longleftrightarrow \begin{cases} \forall x \in A : x \le M \\ \text{and} \\ \forall \varepsilon > 0 ; \exists \alpha \in A : M - \varepsilon < \alpha \end{cases}$$

2) Let A be bounded from below, then

$$m = \inf A \iff \begin{cases} \forall x \in A : x \ge m \\ \text{and} \\ \forall \varepsilon > 0 ; \exists b \in A : m + \varepsilon > b \end{cases}$$

Proof

1) M is the smallest of the upper bounds if and only if the following proposition is false.

$$\exists M' < M; \forall x \in A : x \leq M'$$

Is true. So, if the proposition $\forall M' < M$; $\exists x \in A : x > M'$.

By putting $\varepsilon = M - M'(\varepsilon > 0)$ so, the last proposition is written in the form:

$$\forall \varepsilon > 0$$
; $\exists x \in A : M - \varepsilon < x$.

2) In the same way we prove the second case

Examples

1) A = [1,2[; maxA = unvailable ; sup A = 2 ; inf A=1 min A = 1

2) A =
$$\{\frac{1}{n} ; n \in \mathbb{N}^* \}$$

 $sup\ A = max\ A = 1$ فإن then $1 \in A \forall n \in \mathbb{N}^*: n \geq 1 \Rightarrow 0 < \frac{1}{n} \leq 1$

Let we proof that infA = 0

$$0 = \inf A \Longleftrightarrow \begin{cases} \forall x \in A : x \ge 0 \\ \text{and} \\ \forall \varepsilon > 0 ; \exists b \in A : 0 + \varepsilon > b \end{cases}$$

On the other side we have $\forall \varepsilon > 0$; $\exists b \in A : 0 + \varepsilon > b \iff \forall \varepsilon > 0$; $\exists n \in \mathbb{N}^* : \frac{1}{n} < \varepsilon$.

and this last proposition is true and its according to archimed's axiom

$$\forall \varepsilon > 0$$
; $\exists n \in \mathbb{N}^* : n\varepsilon > 1$

 $\min A = unvailable$, because $0 \notin A$.

1.3.2 Axiom of supermum and infimum:

Any non-empty subset A of the real's $\mathbb R$ which is bounded above has a **supermum** in $\mathbb R$. Any non-empty subset A of the real's $\mathbb R$ which is bounded below has a **infimum** in $\mathbb R$.

1.4 Archimedean axiom

Theorem 1.1: $\forall x > 0$; $\forall y \in \mathbb{R}$; $\exists n \in \mathbb{N}^*$: y < nx.

Proof:

We suppose that:

$$\exists x > 0$$
; $\exists y \in \mathbb{R}$; $\forall n \in \mathbb{N}^*$: $y \ge nx$ or $\exists x > 0$; $\exists y \in \mathbb{R}$; $\forall n \in \mathbb{N}^*$: $n \le \frac{y}{x}$,

that's mean the set \mathbb{N}^* is limited from above it accepts an upper limit in \mathbb{R} called M.

So
$$\forall \varepsilon > 0$$
; $\exists n_0 \in \mathbb{N}^* : M - \varepsilon < n_0$

by putting $\varepsilon=1$, we get the following : $\exists n_0 \in \mathbb{N}^*: M-1 < n_0$

or
$$\exists n_0 \in \mathbb{N}^* : M < n_0 + 1$$

$$but \, n_0 + 1 \in \mathbb{N}^*$$

this is a contradiction because sup A = M.

1.5 The integer part of a real number

For every real number x there is only one integer which we denote as E(x) or [x] it achives

$$E(x) \le x < E(x) + 1$$

E(x) is called the integer part of the real x.

In other words E(x) is The largest integer less than or equal to x.

Examples

- 1) E(0,1) = 0 since $0 \le 0,1 < 0 + 1$.
- 2) E(-0,1) = -1 since $-1 \le -0.1 < -1 + 1$.
- 3) $\forall n \in \mathbb{N}^* : E\left(\frac{1}{n+1}\right) = 0 \text{ since } \forall n \in \mathbb{N}^* : 0 \le \frac{1}{n+1} < 0 + 1.$

1.6 dense groups in \mathbb{R}

Theorem 1.2 between every two different real numbers there is at least one rational number.

Proof

Let y and x be two real numbers where x < y.

According to Archimedean axiom $\exists n \in \mathbb{N}^*: 1 < n(y - x) \text{ or } nx + 1 < ny$.

On the other hand we have $E(nx) \le nx < E(nx) + 1$ or

$$nx < E(nx) + 1 \le nx + 1 < ny.$$

$$Sonx < E(nx) + 1 < ny \ then \ x < \frac{E(nx) + 1}{n} < y.$$

Well the rational number $\frac{(nx)+1}{n}$ is bounded between the two real numbers x, y.

definition 1.3

we denote the set of irrational numbers with I or Q^c

Theorem 1.3_between every two different real numbers there is at least one irrational number.

To prove this theory we need the following two propositions

proposition *1.3* the number $\sqrt{2}$ *is an irrational number*

.**proposition** *1.4* if $x \in I$ and $r \in Q * then <math>rx \in I$

Proof of the proposition 1.3

We suppose that $\sqrt{2} \in \mathbb{Q}$ then there is only one duality of natural numbers (p,q) then $\frac{p}{q} = \sqrt{2}$ and gcd(p,q) = 1, then::

we conclude that q^2 divide p^2 since q^2 and p^2 prime $\frac{p}{q} = \sqrt{2} \Leftrightarrow p = q\sqrt{2} \Leftrightarrow p^2 = 2q^2$ among themselves then q^2 devide 1 thats mean q = 1 substituting in the previous equality we get $p^2 = 2$ and this is a contradiction because there is no natural number squared equal 2.

Proof of the proposition 1.4 We assume $x \in I$ and $r \in \mathbb{Q}^*$ and that $rx \in \mathbb{Q}$ and from him:

$$\left(\frac{1}{r} \in \mathbb{Q}^* or \ rx \in \mathbb{Q}\right) \Rightarrow \frac{1}{r} rx \in \mathbb{Q} \Rightarrow x \in \mathbb{Q}$$

This is a contradiction because $x \in I$.

Proof of the theorem 1.3

Let y, x be a real numbers, where x < y, according to the theorem 1.2, there sexist a rational number r ($r \ne 0$) such that: $\frac{x}{\sqrt{2}} < r < \frac{y}{\sqrt{2}}$ or $x < r\sqrt{2} < y$ and according to propositions 1.3 and 1.4 we conclude that $r\sqrt{2}$ is a irrational number.

Corollary 1.1 The two sets \mathbb{Q} and I is dense in \mathbb{R} .

1.7 Intervals in \mathbb{R}

Let α , b a real numbers, where $\alpha < b$, we define

$$[a,b] = \{x \in \mathbb{R}: a \le x \le b\}$$
 is called closed interval.

$$]a,b[=\{x \in \mathbb{R}: a < x < b\} \text{ is called open interval.}$$

$$[a, b[= \{x \in \mathbb{R}: a \le x < b\} \text{ is called half open interval.}$$

$$[a, +\infty[=\{x\in\mathbb{R}:x\geq a\}\ unbounded\ closed\ interval.$$

$$]a, +\infty[= \{x \in \mathbb{R}: x > a\} \text{ unbounded open interval.}$$

$$\mathbb{R} =]-\infty, +\infty[$$

Theorem 1.4

The non-empty subset I of \mathbb{R} is an interval if and only if the following property is satisfied:

$$\forall a, b \in I \ (a \le b); \ \forall x \in \mathbb{R}: a \le x \le b \Rightarrow x \in I$$

Proof

- (\Leftarrow) Necessary condition: It is a clear that: if the set I is a interval, then the property is true.
- (\Rightarrow) Sufficient condition: If the property is true, then the set I is a interval.

We have four possible cases, case 1: *I* is bounded, case 2: *I* is bounded from above and not bounded from below, case 3: *I* is bounded from below and not bounded from above, case 4: *I* is neither bounded from above nor from below.

Let us prove that in the first case: either I = [a, b] or I = [a, b[or I =]a, b[or I =]a, b[where a = inf I and b = sup I.

We have:

$$b = \sup I \iff \begin{cases} \forall x \in I : x \le b \\ \\ \\ \forall \varepsilon > 0 ; \exists b' \in I : b - \varepsilon < b' \dots \dots (1) \end{cases}$$

and

$$a = \inf I \iff \begin{cases} \forall x \in I : x \ge a \\ \\ \\ \forall \delta > 0 ; \exists a' \in I : a + \delta > a' \dots \dots (2) \end{cases}.$$

case 1: *If* $a \in I$ *and* $b \in I$, *then*:

$$\forall x \in \mathbb{R} : x \in I \Rightarrow a \le x \le b \Rightarrow x \in [a, b] \Rightarrow I \subset [a, b]$$

$$\forall x \in \mathbb{R} : x \in [a, b] \Rightarrow a \le x \le b \Rightarrow x \in I \Rightarrow [a, b] \subset I$$

So

$$I = [a, b]$$
.

case 2: *If* $a \in I$ *and* $b \notin I$, *then*:

$$\forall x \in \mathbb{R}: x \in I \Rightarrow a \le x < b \Rightarrow x \in [a, b[\Rightarrow I \subset [a, b[$$

$$\forall x \in \mathbb{R}: x \in [a, b[\Rightarrow a \le x < b \Rightarrow b - x > 0]$$

putting $\varepsilon = b - x$ in (1) we get x < b' and since $a, b' \in I$, then:

$$a \le x < b' \Rightarrow x \in I \Rightarrow [a, b] \subset I$$

SO

$$I = [a, b[.$$

case 3: *If* $\alpha \notin I$ *and* $b \in I$, *then*:

$$\forall x \in \mathbb{R} : x \in I \Rightarrow a < x \leq b \Rightarrow x \in]a,b] \Rightarrow I \subset]a,b]$$

$$\forall x \in \mathbb{R}: x \in [a, b] \Rightarrow a < x \le b \Rightarrow x - a > 0$$

By putting $\delta = x - a$ in (2) we get x > a' and since $a, a' \in I$, then:

$$a' < x \le b \Rightarrow x \in I \Rightarrow [a, b] \subset I$$

So

$$I =]a, b]$$

case 4: If $\alpha \notin I$ and $b \notin I$, Then:

$$\forall x \in \mathbb{R}: x \in I \Rightarrow a < x < b \Rightarrow x \in]a, b[\Rightarrow I \subset]a, b[$$

$$\forall x \in \mathbb{R}: x \in]a, b[\Rightarrow a < x < b \Rightarrow x - a > 0 \ and \ b - x > 0.$$

By putting $\varepsilon = b - x$ in (1) and $\delta = x - a$ in (2) we get x < b' and a' < x, since $a', b' \in I$, then:

$$a' < x \le b' \Rightarrow x \in I \Rightarrow]a, b[\subset I.$$

So

$$I =]a, b[.$$

In the same way we prove that I is a interval in the other cases.

Chapter two: Complex numbers

2.1 Definitions and properties

Definition 2.1

We call a complex number and denote it z, for each ordered pair (x,y) of real numbers.

 \cdot the x component is called the real part of z and we denote it as $\operatorname{Re}(z)$

 \cdot the y component is called the imaginary part of z and we denote it as Im(z)

$$\cdot (x, y) = (x', y') \Longleftrightarrow \begin{cases} x = x' \\ \text{and} \\ y = y' \end{cases}$$

 \cdot the set of complex number we denote $\mathbb C$ and provided with two opirations:

1) Addition (+) :
$$(x,y) + (x^{'},y^{'}) = (x + x^{'}, y + y^{'})$$
 where

 $0_{\mathbb{C}} = (0,0)$.

2) Multiplication (×):
$$(x,y) \times (x',y') = (xx'-yy',xy'+yx')$$
 where $1_{\mathbb{C}} = (1,0)$.

Remarks

- 1) the set of complex numbers is a commutative field.
- 2) the neutral element is $0_{\mathbb{C}} = (0,0)$ we denote it as 0 and the unit element is $1_{\mathbb{C}} = (1,0)$ we denote it as 1.

Notation

1) the complex number (0,1) is noted i.

Theorem 2.1

- 1) we have $i^2 = -1$.
- 2) if $x \in \mathbb{R}$ and $y \in \mathbb{R}$, then (x, y) = x + iy

Proof

- 1) $i^2 = (0,1) \times (0,1) = (-1,0) = -(1,0) = -1$ 2) we have (x,y) = (x,0) + (0,1)(y,0) = x + iy.

Definition 2.2

- 1) the complex number iy with $y \in \mathbb{R}^*$ is called pure imaginary.
- 2) the conjugate of a complex number z = x + iy ($x \in \mathbb{R}$ and $y \in \mathbb{R}$) is the complex number \overline{z} where $\overline{z} = x - iy$

Properties

z and w are complex numbers, so

1)
$$\overline{\overline{z}} = z$$

$$5) \ \overline{z \times w} = \overline{z} \times \overline{w}$$

$$2) z + \overline{z} = 2 \operatorname{Re}(z)$$

6)
$$(\frac{z}{}) = \frac{\bar{z}}{} (w \neq 0)$$

3)
$$z + \overline{z} = 2 \operatorname{Im}(z)$$

$$z = \overline{z} \iff z \in \mathbb{R}$$

4)
$$\overline{z+w} = \overline{z} + \overline{w}$$

6)
$$\frac{\overline{z}}{\left(\frac{\overline{z}}{w}\right)} = \frac{\overline{z}}{\overline{w}} (w \neq 0)$$

7) $z = \overline{z} \iff z \in \mathbb{R}$
8) $z = \overline{z} \iff z$ pure imaginary

Definition 2.3

we call the module of a coplex number z the positive real number |z|where $|z| = \sqrt{z \cdot \overline{z}} = \sqrt{x^2 + y^2}$.

Properties

z and w are complex numbers, so

1)
$$|\operatorname{Re}(z)| \le |z|$$
; $|\operatorname{Im}(z)| \le |z|$ 3) $|z.w| = |z| |w|$
2) $|z| = 0 \iff z = 0$ 4) $\left|\frac{z}{w}\right| = \frac{|z|}{|w|} (w \neq 0)$

5)
$$|z+w| \le |z| + |w|$$
 (Triangle inequality)

2.2 The trigonometric form

Definition 2.4

Let $z \in \mathbb{C}^*$; There exists a class of real $\theta + 2\pi k \, (k \in \mathbb{Z})$ (or $\theta \, [2\pi]$) where

$$z = |z| e^{i\theta}$$

we notice $Arg(z) = \theta[2\pi]$; $|z| = \rho (\rho > 0)$, then:

$$z = \underbrace{x + iy}_{\text{Algebraic form}} = \underbrace{\rho e^{i\theta}}_{\text{exponential form}} = \underbrace{\rho \left(\cos \theta + \sin \theta\right)}_{\text{Trigonometric form}}$$

where

$$\rho = \sqrt{x^2 + y^2} \; ; \; \cos \theta = \frac{x}{\rho} \; ; \; \sin \theta = \frac{y}{\rho}.$$

Remark Let $z \in \mathbb{C}^*$ where z = x + iy, so

$$Arg(z) = \theta = \begin{cases} \frac{\pi}{2} & if \quad x = 0 \text{ and } y > 0\\ -\frac{\pi}{2} & if \quad x = 0 \text{ and } y < 0\\ \arctan\frac{y}{x} & if \quad x > 0\\ \arctan\frac{y}{x} + \pi & if \quad x < 0 \end{cases}.$$

Properties

1)
$$z w = ore^{i(\theta + \varphi)}$$

3)
$$\frac{1}{\tilde{c}} = \frac{1}{2}e^{-i\theta}$$

2)
$$\frac{z}{z} = \rho e^{i(\theta - \varphi)}$$

4)
$$\overline{z} = oe^{-i\theta}$$

Let $z = \rho e^{i\theta}$ and $w = re^{i\varphi}$ 1) $z.w = \rho re^{i(\theta+\varphi)}$ 3) $\frac{1}{z} = \frac{1}{\rho}e^{-i\theta}$ 2) $\frac{z}{w} = \frac{\rho}{r}e^{i(\theta-\varphi)}$ 4) $\overline{z} = \rho e^{-i\theta}$ 5) $z^n = \rho^n e^{i\theta n} = \rho^n (\cos n\theta + \sin n\theta)$ (De moivre's formula (Abraham De Moivre(1667 – 1754))) 6) $\cos \theta = \frac{e^{i\theta} + e^{-i\theta}}{2i}$; $\sin \theta = \frac{e^{i\theta} - e^{-i\theta}}{2i}$ (Euler formula)

6)
$$\cos \theta = \frac{e^{i\theta} + e^{-i\theta}}{2}$$
; $\sin \theta = \frac{e^{i\theta} - e^{-i\theta}}{2i}$ (Euler formula)

2.3 Application of complex numbers to trigonometry

2.3.1 Calculates $\cos nx$ and $\sin nx$ based en $\cos x$ and $\sin x$ we have:

$$\cos nx + i \sin nx = (\cos x + i \sin x)^{n}
= \sum_{k=0}^{n} C_{n}^{k} (i)^{k} \cos^{n-k} x \sin^{k} x
= C_{n}^{0} \cos^{n} x - C_{n}^{2} \cos^{n-2} x \sin^{2} x + C_{n}^{4} \cos^{n-4} x \sin^{4} x + \dots
+ i (C_{n}^{1} \cos^{n-1} x \sin x - C_{n}^{3} \cos^{n-3} x \sin^{3} x + C_{n}^{5} \cos^{n-5} x \sin^{5} x + \dots).$$

So

$$\left\{ \begin{array}{l} \cos nx = C_n^0 \cos^n x - C_n^2 \cos^{n-2} x \sin^2 x + C_n^4 \cos^{n-4} x \sin^4 x - C_n^6 \cos^{n-6} x \sin^6 x + \\ \sin nx = C_n^1 \cos^{n-1} x \sin x - C_n^3 \cos^{n-3} x \sin^3 x + C_n^5 \cos^{n-5} x \sin^5 x + \end{array} \right.$$

or

$$\cos nx = \sum_{p=0}^{\left[\frac{n}{2}\right]} (-1)^p C_n^{2p} \cos^{n-2p} x \sin^{2p} x$$

$$\sin nx = \sum_{p=1}^{\left[\frac{n+1}{2}\right]} (-1)^{p-1} C_n^{2p-1} \cos^{n-2p+1} x \sin^{2p-1} x$$

where $\left[\frac{n}{2}\right]$ denotes the integer part of the rational number $\frac{n}{2}$.

2.3.2 Linearization of trigonometric polynomials

For obtain linearization of $\cos^n x$ and $\sin^n x$ we use:

$$\forall k \in \mathbb{Z}; \forall x \in \mathbb{R} : \cos kx = \frac{e^{ikx} + e^{-ikx}}{2}; \sin kx = \frac{e^{ikx} - e^{-ikx}}{2i}$$
 (Euler formula)

Example: write in linear form $\cos^3 x, \sin^4 x$ we have

$$\cos^{3} x = \left(\frac{e^{ix} + e^{-ix}}{2}\right)^{3}$$

$$= \frac{1}{8} \left(2\left(e^{3ix} + e^{-3ix}\right) + 3\left(e^{ix} + e^{-ix}\right)\right)$$

$$= \frac{1}{8} \left(2\cos 3x + 3\left(2\cos x\right)\right)$$

$$= \frac{1}{4}\cos 3x + \frac{3}{4}\cos x.$$

$$\sin^4 x = \left(\frac{e^{ix} - e^{-ix}}{2i}\right)^4$$

$$= \frac{1}{16} \left(2\left(e^{4ix} + e^{-4ix}\right) + 4 \times 2\left(e^{2ix} + e^{-2ix}\right) + 6\right)$$

$$= \frac{1}{16} \left(2\left(e^{4ix} + e^{-4ix}\right) - 4 \times 2\left(e^{2ix} + e^{-2ix}\right) + 6\right)$$

$$= \frac{1}{16} \left(2\sin 4x - 4\left(2\sin 2x\right) + 6\right)$$

$$= \frac{1}{8}\cos 4x - \frac{1}{2}\cos 2x + \frac{3}{8}.$$

$2.3.3 n^{th}$ roots of complex number

Definition 2.5 Let $n \in \mathbb{N}^* - \{1\}$

An nth root of complex number a is a complex number z such that $z^n=a$.

Example

We have $\left(\frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2}i\right)^2 = \left(-\frac{\sqrt{2}}{2} - \frac{\sqrt{2}}{2}i\right)^2 = i$, so $\frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2}i$ one of the square roots of the complex number i

Theorem Let $n \in \mathbb{N}^* - \{1\}$

Any nonzero complex number has exactly n distinct nth roots and if $a = re^{i\theta}$, then the solutions to $z^n = a$ are given by $z_k = \sqrt[n]{r}e^{i\frac{\theta+2\pi k}{n}}$ for $k \in \{0,1,...,n-1\}.$

Proof

Suppose that $z = \rho e^{i\alpha}$, so

$$\begin{split} z^n &= a \Longleftrightarrow \rho^n e^{i\alpha n} = r e^{i\theta} \\ &\iff \rho^n = r \quad \text{and} \ \alpha n = \theta + 2\pi k, k \in \mathbb{Z}. \\ &\iff \rho^n = \sqrt[n]{r} \quad \text{and} \ \alpha = \frac{\theta + 2\pi k}{n}, k \in \mathbb{Z}. \end{split}$$

The expression for z takes on n different values for k = 0, 1, ..., n - 1, and the values start to repeat for $k = n, n + 1, \dots$

Hence the expression for the n nth roots of a:

$$z_k = \sqrt[n]{r}e^{i\frac{\theta + 2\pi k}{n}}$$
 for $k \in \{0, 1, ..., n - 1\}$

Remark

The roots lie on a circle of radius $\sqrt[n]{r}$ centred at the origin and spaced out evenly by angles of $\frac{2\pi}{n}$.

Examples

- 1) The n nth roots of unity are therefore the numbers $z_k = e^{i\frac{\theta+2\pi k}{n}} = \cos\frac{\theta+2\pi k}{n} + i\sin\frac{\theta+2\pi k}{n}$ for $k \in \{0,1,...,n-1\}$ 2) Solve in $\mathbb C$ the equation $z^7 = \overline{z}$.

 - a) It is clear that 0 is one of the solutions.
 - b) Suppose that $z \neq 0$ and $z = \rho e^{i\theta}$, so

$$z^7 = \overline{z} \Longleftrightarrow \rho^7 e^{7i\theta} = \rho e^{-i\theta}$$

$$\iff \begin{cases} \rho^7 = \rho \\ 7\theta = -\theta + 2\pi k \text{ where } k \in \mathbb{Z} \end{cases}$$

$$\iff \begin{cases} \rho \left(\rho^6 - 1\right) = 0 \\ 8\theta = 2\pi k \text{ where } k \in \mathbb{Z} \end{cases}$$

$$\iff \begin{cases} \rho = 1 \\ \theta = \frac{\pi k}{4} \text{ where } k \in \{0, 1, 2, 3, 4, 5, 6, 7\} \end{cases}$$

So the set of solutions is $S = \left\{0, e^{i\frac{\pi k}{4}}/k \in \{0, 1, 2, 3, 4, 5, 6, 7\}\right\}$, so

$$S = \left\{0, 1, \frac{\sqrt{2}}{2} + i\frac{\sqrt{2}}{2}, i, -\frac{\sqrt{2}}{2} + i\frac{\sqrt{2}}{2}, -1, -\frac{\sqrt{2}}{2} - i\frac{\sqrt{2}}{2}, -i, \frac{\sqrt{2}}{2} - i\frac{\sqrt{2}}{2}\right\}.$$