Exercice 1

A material point moves in a straight line following the following time equation:

$$X(t) = -6t^2 + 16t$$

- 1/ What is the position of this body at t=1s.
- 2/ At what time t, it passes through position O (origin).
- 3/ What is the average speed in the time interval between 0s and 2s.
- 4/ Give the expression for the instantaneous speed, deduce its value at t=0s.
- 5/ What is the average acceleration in the time interval between 0s and 2s.
- 6/ Give the expression for the instantaneous acceleration.

Exercise 2

We know the location of a point M in the reference frame $R(0, \vec{i}, \vec{j})$ at the moment t with the following coordinates:

$$X(t) = t^2 - 1$$
 and $y(t) = 2t$

- 1/ provide the path equation of the point M.
- 2/ provide the velocity (speed) expression of the point M.
- 3/ provide the acceleration expression of the point M.

Exercise 3

Let, in a plane, (P), be an orthonormal reference frame xOy and a mobile M moving in this plane. At the moment t, its coordinates are defined by:

$$x = \sqrt{2}\cos\frac{t}{2}; y = 2\sqrt{2}\sin\frac{t}{2}$$

- a. What is the trajectory?
- b. Calculate the coordinates at time t of the velocity \vec{v} vector and the acceleration vector $\vec{\gamma}$ of this mobile. What is the relationship between \overrightarrow{OM} and $\vec{\gamma}$?
- c. Between the instants $t_1=0$ and $t_2=4\pi$, determine the positions of the mobile and the coordinates of \vec{v} to have an acceleration vector of length $\frac{\sqrt{5}}{4}$

Exercice 4

A vehicle travels $x_0 = 0$ on a straight path. Its speed is characterized by the following diagram.

- 1. Indicate over the 5 time intervals: the algebraic value of the acceleration and the displacement.
- 2. Determine at the end of the movement at t=100 s; the final position x and the path traveled in absolute value.

Exercise 5

A car A is stopped on a straight horizontal road at a distance $d_1=3~m$ from a red light. When the light turns green, the car immediately t=0 starts with constant acceleration $a_1=3~m/_{S^2}$. At the same time a motorcyclist M traveling at a constant speed $v_2=54~Km/h$ is at a distance $d_2=24~m$ from the car. The car and the biker considered as material points are located at the moment t using their respective position vectors $\overrightarrow{OA}=x_1\overrightarrow{\iota}$ and $\overrightarrow{OM}=x_2\overrightarrow{\iota}$. We will choose as the origin O of the abscissa the position of the traffic light.

- 1. Determine the time equations $x_1(t)$ and $x_2(t)$ of the car and the biker respectively.
- 2. Determine the times of overtaking as well as the positions of the car and the biker at these times.
- 3. If the biker was going at speed $v_2 = 36 \, Km/h$ could he catch up with the car?
- 4. A- calculate, in this case, the moment for which the distance which separates the biker from the car is minimum
 - B- deduce this distance.

Exercice 6

Bottles of snow fall vertically with a speed of 8m/s. How quickly do these bottles hit the windshield of a car traveling with a speed of $50 \ Km/h$.

Exercise 7

The unit of length is the centimeter and the unit of time is the second.

A car is moving in a straight line and its acceleration is given by $a = -\frac{\pi^2}{4}x$,

So that at the moment t=1s, the interval x=4cm $v = 2\pi$ and the speed iscm/s.

- 1/ Determine the nature of motion and write its time equation
- 2/Calculate all the constants that characterize movement
- 3/Show that x can be written in the form: $x = X_m \cos(\omega t + \varphi)$.

Exercise 8

The study reference (\Re) is associated to the orthonormal space reference $(0, \overrightarrow{e_x}, \overrightarrow{e_y}, \overrightarrow{e_z})$. Let the right helix be defined in cylindrical coordinates in (\Re) by:

$$\begin{cases} r = R_0 \\ z = h\theta \end{cases}$$
 (h est une constante positive)

We are interested in a material point ${\it M}$ which describes this helix in the direction of the θ -crescents

- 1. Calculate the velocity and acceleration vectors of M in (\Re) by cylindrical coordinates.
- 2. Calculate the speed v of M in (\Re)
- 3. M travels the propeller at constant V_0 speed . Deduce the velocity and acceleration vectors of M as a function of V_0 , R_0 and h.

