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1 Introduction

The notion of bilinear form is de�ned on vector spaces, which are special cases
of bilinear applications on a Cartesian product of two vector spaces in a vector
space (where all the spaces involved are de�ned on the same body). These forms
are closely linked to linear applications. The knowledge associated with the
latter makes it possible to shed light on the structure of a bilinear form. Some
bilinear forms are also scalar products. Scalar products (on �nite or in�nite
dimensional vector spaces) are widely used, in all branches of mathematics, to
de�ne a distance.
Classical, relativistic or quantum physics uses this formal framework. Geom-

etry uses the scalar product to de�ne distance, orthogonality, angle, ... Number
theory uses quadratic forms to demonstrate or solve certain purely algebraic
problems. Sometimes, linking mathematical branches, such as number theory
and algebraic geometry, such as the search for solutions to a Diophantine equa-
tion. Some of them are written as the search for the roots of a polynomial
equation with several variables and integer coe¢ cients. The solutions sought
are those that are expressed only with integers. A famous and di¢ cult example
is Fermat�s great theorem. The equation is written xn + yn = zn (for n = 2,
the solutions are the Pythagorean triplets, which are called Fermat�s two-square
theorem). The solutions can be seen as points of intersection between Z3 and
a surface of a geometric space of dimension three. To be compatible with the
ministerial program, we limit ourselves to bilinear forms on a �nite-dimensional
vector space (i.e. the Cartesian product of a vector space in itself), in particular,
the quadratic forms taken are those of the symmetric bilinear forms.

2 Bilinear forms

De�nition 1 a bilinear form ' is a map de�ned on the cartesian product E �
E �! K and satis�es the following conditions
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1. 8x, y, x0, y0 2 E,

' (x+ x0; y) = ' (x; y) + ' (x0; y)

and

' (x; y + y0) = ' (x; y) + ' (x; y0) .

2. 8x, y 2 E, 8� 2 K,

' (�x; y) = �' (x; y) = ' (x; �y) .

In addition, if 8x, y 2 E, ' (x; y) = ' (y; x), then, the form is said to be
symmetric. The form is said to be alternate (anti-symmetric), if

8x, y 2 E, ' (x; y) = �' (y; x) ,

Note that if the form is symmetric, then, it is su¢ cient to verify the linearity
only on one side.

Example 2 Determine the bilinear forms and the symmetric ones among the
following maps

1. ' : K�K �! K, ' (x; y) = xy.

2. ' : K�K �! K, ' (x; y) = x+ y.

3. ' : K2 �K2 �! K, 8x = (x1; x2), y = (y1; y2) 2 K2,

' (x; y) = x1y2 + x2y2:

4. ' : K2 �K2 �! K, 8x = (x1; x2), y = (y1; y2) 2 K2,

' (x; y) = x1y2 + x2y1:

5. ' : K2 �K2 �! K, 8x = (x1; x2), y = (y1; y2) 2 K2,

' (x; y) = x1 + y2 + x2y2:

Answer: Applying the previous de�nition, we have the �rst and the fourth
are symmetric bilinear forms while the third is a non-symmetric bilinear form,
on the other hand, the second and the �fth are not bilinear.

From the previous example, we can ask ourselves if there is an easier way to
know bilinear forms from its appearance? The answer is yes. In the following
we will look for an algebraic expression for a bilinear form, so, it is enough to
compare a given form with this expression in the same basis.
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2.1 The algebraic expression of a bilinear form and the
associated matrix

Let ' be a bilinear form on a vector space E with a basis fv1; � � � ; vng. Then, for
i, j = 1; n, we have ' (vi; vj) 2 K. Thus there exists a matrix (' (vi; vj))n�n 2
M (n;K) is called the matrix associated with ' in the indicated basis. On the
other hand, 8x, y 2 E, 9x1,. . . , xn, y1,. . . , yn 2 K, such that

x = x1v1 + � � �+ xnvn, y = y1v1 + � � �+ ynvn

Applying linearity several times to both sides, we obtain the following double
sum

' (x; y) =
nX

i;j=1

' (vi; vj)xiyj (1)

The expression 1 is called the algebraic expression of ', or more often called
the coordinate expression. Thus the terms of the sum for which we de�ne '
contain only mixed products xiyj with coe¢ cients in K. As we can write the
expression 1 in matrix form:

' (x; y) = x>Ay, où A = (' (vi; vj))n�n .

The matrixA = (' (vi; vj))n�n is called Gram matrix.
Let�s put ' (vi; vj) = aij for i, j = 1; n. If we change the base of E to the

basis fu1; � � � ; ung, so for all k, l = 1; n, we obtain

uk = p1kv1 + � � �+ pnkvn, ul = p1lv1 + � � �+ pnlvn

Therefore, in the same previous manner, we obtain

' (uk; ul) =
nX

i;j=1

aijpikpjl =
nX

i;j=1

p0kiaijpjl, où p
0
ki = pik

Thus, the matrix B = (' (uk; ul))n�n the matrix associated with the bilinear
form ' in the new basis is given by

B = PTAP:

Example 3 Give the matrix associated with the bilinear form ' de�ned on R3
by ' (x; y) = x1y2 + x2y3 + x3y3.
Let fv1 = (1; 1;�1) ; v2 = (1;�1; 0) ; v3 = (0; 1; 1)g be basis for R3. Calculate

the matrix associated with ' in this basis by two di¤erent methods.
Answer:

1. Direct method: We put bij = ' (vi; vj) for i, j = 1; 2; 3. Then, we get

b11 = ' (v1; v1) = 1� 1 + 1� (�1) + (�1)�� (�1) = 1
b12 = ' (v1; v2) = 1� (�1) + 1� 0 + (�1)� 0 = �1
b13 = ' (v1; v2) = 1� 1 + 1� 1 + (�1)� 1 = 1

3



In the same way we obtain the rest of the rows of the matrix. which gives

B =

0@ 1 �1 1
2 �1 0
�2 0 2

1A.
2. Indirect method; we use the matrix A associated with ' in the canonical
basis and the matrix P for the transition to the new basis.

P =

0@ 1 1 0
1 �1 1
�1 0 1

1A , A =
0@ 0 1 0
0 0 1
0 0 1

1A
Thus, we obtain,

PTAP =

0@ 1 1 �1
1 �1 0
0 1 1

1A0@ 0 1 0
0 0 1
0 0 1

1A0@ 1 1 0
1 �1 1
�1 0 1

1A
=

0@ 1 �1 1
2 �1 0
�2 0 2

1A = B

If the given bilinear form is symmetric, then the associated matrix is sym-
metric in any basis, because for a basis fv1; � � � ; vng for E, we have

bij = ' (vi; vj) = ' (vj ; vi) = bji

which allows only half of the coe¢ cients to be calculated.

2.2 Congruent matrices

De�nition 4 Matrices that represent the same bilinear form in di¤erent bases
are called congruent. We leave it to students to verify the following proposition:

Proposition 5 The relation "congruent to" in the set of square matrices is an
equivalence relation. The equivalence classes of symmetric matrices are given
by the classi�cation of quadratic forms in the next chapter.

2.3 Bilinear form and duality

Let ' : E � E �! K be a bilinear form. for every y 2 E, the map

' (�; y) : E �! K
x 7! ' (x; y)

is a linear form on K, i.e. an element of the dual E�. Therefore, for all y 2 E,
we can de�ne a right linear map d' as follows:

d' : E �! E�

y 7! d' (y) = ' (�; y)
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The linearity of d' follows directly from the linearity of '. In the same way we
de�ne the linear application on the left. g' (x) = ' (x; �).

De�nition 6 The kernels of the applications d' and g' de�ned above are called
right kernel and left kernel respectively. If the bilinear form ' is symmetric, then
the right and left applications are the same and we denote them by �', so the
right kernel and the left kernel are the same and equal to ker�'.

Remark 7 From the above, for any bilinear form, the left and right kernels are
given by

ker g' = fx 2 E;8y 2 E;' (x; y) = 0g ,
ker d' = fy 2 E;8x 2 E;' (x; y) = 0g .

Let A = (aij)n�n the matrix associated with ' and x1, ...,xn, y1, ..., yn denote
the coordinates of x and y in a given basis. Then, from the algebraic expression
of ', we have 8y 2 E,

' (x; y) = (a11x1 + � � � an1xn) y1 + � � � (a1nx1 + � � � annxn) yn = 0

which is equivalent to8><>:
a11x1 + � � � an1xn = 0

...
a1nx1 + � � � annxn = 0

, ATx = 0, x 2 kerAT

So, looking for the kernel on the left is the same as looking for the kernel of
the transpose of the matrix associated with '. Proceeding in the same way, we
have the kernel on the right is the kernel of the associated matrix.

In what follows we limit ourselves to symmetric bilinear forms.

2.4 The rank of a symmetric bilinear form, non-degenerate
form

De�nition 8 If the kernel of the symmetric bilinear form ' is reduced to f0g,
then, the form is said to be nondegenerate. The rank of the bilinear form ' is
the rank of the application d' (which is also equal to the rank of g'), so, it is
the rank of the matrix associated with ' in a basis of E.

Note: Since E is �nite-dimensional, the nondegenerate bilinear forms are
those corresponding to invertible matrices, which is equivalent to d' is bijective,
i.e. for any linear form f 2 E�, there exists a unique y 2 E, such that d' (y) = f ,
such that 8x 2 E, f (x) = ' (x; y).
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2.5 The orthogonality for a symmetric bilinear form

De�nition 9 Let F be a vector subspace of E and ' a symmetric bilinear form
on E. The orthogonal of F for ' is the set

F? = fx 2 E;8y 2 F;' (x; y) = 0g

We leave it to the students to verify the following properties:

Proposition 10 Let F be a vector subspace of E and ' a bilinear form on E.

i) F? is a vector subspace of E.

ii) E? = ker' � F?.

iii) F �
�
F?
�?
. Equality occurs if ' is non-degenerate.

Theorem 11 Let F be a vector subspace of E and ' a symmetric bilinear form
on E. Then,

dimF? = n� dimF + dim (F \ ker') .

Proof. Let us take the application �' from E to E� de�ned in the paragraph
"Bilinear form and duality". Since F is a vector subspace of E, then G = �' (F )
is a vector subspace of E�. Hence,

8f 2 G, 9y 2 F , f = �' (y)

Now let us take the orthogonal of G for �', we obtain

G? = fx 2 E;8f 2 G; f (x) = 0g
= fx 2 E;8y 2 F; (�' (y)) (x) = 0g
= fx 2 E;8y 2 F;' (x; y) = 0g = F?

So according to dimension theorem for vector spaces, we get

dimE = dimE� = dimG+ dimG? = dim�' (F ) + dimF
? (2)

In the other hand, let �'=F be the restriction of �' to F and apply the
dimension theorem, we have

dimF = dim�'=F (F ) + dimker�'=F (3)

While

�'=F (F ) = �' (F ) = G

ker�'=F =
�
x 2 F;�'=F (x) = 0

	
= fx 2 F;8y 2 E;' (x; y) = 0g = F \ ker'

So equality (3) becomes

dimF = dimG+ dim (F \ ker') (4)
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From Equalities (2), (3), (4), we have

dimE = dimF � dim (F \ ker') + dimF?

Corollary 12 If ' is nondegenerate, then, dimF? = n� dimF .

3 Quadratic forms

De�nition 13 Let E be a vector space of dimension n over K and ' a symmet-
ric bilinear form over E. We call the quadratic form q over E the application
q : E �! K de�ned by

8x 2 E, q (x) = ' (x; x)
The form is called real or complex according to K = R or K = C. The matrix

associated with ' is called the matrix of q. The rank and the kernel of q are the
rank and the kernel of that matrix. The quadratic form is called non-degenerate
if ' is non-degenerate (i.e. the matrix is invertible)

3.1 Another equivalent de�nition of the quadratic form

Let E be a vector space over K, equipped with a basis fv1; � � � ; vng, ' a sym-
metric bilinear form over E and A = (' (vi; vj))n�n the matrix associated with
' in this basis. From the de�nition 13 and the algebraic expression of ' we have
the following expression:

q (x) =
nX

i;j=1

' (vi; vj)xixj

where x = x1v1 + � � �+ xnvn. So we have the following equivalent de�nition:

De�nition 14 We call quadratic form q on E any homogeneous polynomial
over K 1 of degree two in the coordinates of x.

In general, for n = 2, 3, or 4 we denote by (x; y), (x; y; z) or (x; y; z; t) for a
vector X in the canonical basis of E.

3.2 Polar form of quadratic form

Lemma 15 Let q be a quadratic form on the vector space E. The map ' :
E � E �! K, de�ned by

8x, y 2 E, ' (x; y) = 1

2
(q (x+ y)� q (x)� q (y))

is a symmetric bilinear form over E. It is called the polar form of q.
1a homogeneous polynomial, or algebraic form, is a polynomial in many indeterminates

where all its non zero monomials have the same total degree. For example the polynomial
x4 � 2x3y + x2y2 is homogeneous of degree 4.
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Remark 16 The polar form also can be given by

8x, y 2 E, ' (x; y) = 1

4
(q (x+ y)� q (x� y))

3.3 The parallelogram rule

It is easy to verify the following identity:

8x; y 2 E; q (x+ y) + q (x� y) = 2q (x) + 2q (y) :

It is called the parallelogram rule. The identity is very important for normed
spaces and it has its applications in functional analysis and Topology. 2

3.4 Some important remarks

We leave to students to verfy the following properties:

� 8� 2 K, 8X 2 E, q (�X) = �2q (X).

� For any bilinear form ', there exists a quadratic form q associated to the
symmetric bilinear form 'q de�ned by

8x, y 2 E, 'q (x; y) =
' (x; y) + ' (y; x)

2
(5)

� A bilinear form ' is said to be alternate if and only if the quadratic form
q associated to 'q vanishes..

In fact,

' is alternate , 8x; y 2 E;' (x; y) = �' (y; x)
, ' (x; y) + ' (y; x) = 0

, 'q = 0) 8x 2 E; q (x) = 'q (x; x) = 0

Conversely, suppose that 8x 2 E, q (x) = 0, then

8x; y 2 E; 0 = q (x+ y) = 'q (x+ y; x+ y)

= 'q (x; y) + 'q (y; x) = 2'q (x; y)

= ' (x; y) + ' (y; x)) ' (x; y) = �' (y; x) .
2

Theorem 17 (Jordan-von Neumann Theorem) Let (X; k�k) be a generalized normed space.
Then, there exists a scalar product h�; �i : X �X �! C, such that

p
hx; xi = kxk if and only

if kx+ yk2+ kx� yk2 = 2 kxk2 + 2 kyk2, 8x,y 2 X.
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� The set Q (E) of all quadratic forms de�ned on E is a K�vector space.
For every bilinear form ', we associate a quadratic form q of 'q de�ned
in (5), there exists a linear map ' 7! q from the vector space B (E � E)
of bilinear forms to the vector space Q (E), its kernel is constituted by the
alternate bilinear forms. Lemma 15 assure the surjectivity of this map.
Thus, according to the �rst theorem of the isomorphisms, Q (E) may be
identi�ed as a subspace of symmetric bilinear forms, which gives in the
end the following decomposition in direct sum

B (E � E) = B (E � E)sym �B (E � E)alt ,

where B (E � E)sym and B (E � E)alt designate the subspaces of sym-
metric bilinear forms and alternate bilinear forms respectively.

� The representation of q by the algebraic expression is equivalent to the
following matrix representation:

q (x) = xTAx

where A = (' (vi; vj))n�n is the associated matrix of q. If we change the
basis, then, we obtain a new representation

q (x) = xTBx,

but we always have B = PTAP , where P is the passage matrix to the
new basis.

� If f and g are two linear forms on E, then

8x 2 E, q (x) = f (x) g (x)

is a quadratic form on E. In fact, a linear form is a sum of monomials of
degree 1 in the coordinates of x. Thus, f (x) g (x) is a sum of monomials
of degree 2.

Question: Can we always decompose a quadratic form in a product of two
linear forms? lthe answer is negative, it is su¢ cient to take the form q
de�ned on R2 by

q (X) = x2 + y2

In general, on a �eld K, every quadratic form q (x) =
nX
i=1

aix
2
i where at least

a coe¢ cient doesn�t have a square root in K cannot be decomposed in a product
of linear forms on K. So, what are the conditions that should be veri�ed by a
quadratic form to be decomposed on a �eld?
Let ' be a symmetric bilinear form and f and g two linear forms such that

' (x; y) = f (x) g (y)
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Since the form is symmetric, then we have

' (x; y) = g (y) f (x) .

Thus, we notice that ', f and g have the same kernel. If this kernel is the
whole space, then, the form vanishes. Otherwise the kernel is an, hyperplan,
which means that the equations which represent the hyperplan are equivalent.
Thus, the linear forms f and g are proportional. Hence, we have the following
proposition:

Proposition 18 A quadratic form q can be decomposed in a product of two
linear forms, if, and only if, the two forms are proportional. That gives q (x) =
� (l (x))

2 where � 2 K, l 2 E� and ker q = ker l.

3.5 Examples of some quadratic forms

The following examples are real quadratic forms. We give some hints only, and
we leave to students to verify that in practice.

1. q :Mn (K) �! K, de�ned by:

q (A) = trace
�
ATA

�
is a quadratic form on the matrix space Mn (K). In fact, let us �ned the
algebraic expression of Q in the canonical basis of Mn (K).

2. q :M2 (K) �! K, de�ned by:

q (A) = detA

is a quadratic form. In fact, Prove that it is a homogenous polynomial of
degree 2 in the coe¢ cients of A.

3.6 Isotropic vectors for a quadratic form

De�nition 19 A non zero vector is called isotropic for a quadratic form q if it
satis�es q (x) = 0. The set of isotropic vectors is called the isotropic cone.

Remark 20 1. The set of isotropic vectors is not forced to be a vector space,
in general, it is the union of vector subspaces, and also, it contains ker q.
See exercises, 34, 37, 38, in the end of the chapter, where the set some-
times is vector space and sometimes is just the union of vector spaces.

2. Be careful!! the kernel can be a null space, but there exist the isotropic
vectors.
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3.7 The orthogonality for a quadratic form

De�nition 21 The orthogonality for a quadratic form is the orthogonality for
its polar form.

Thus, the results mentioned in the related paragraph for symmetric bilinear
forms are the same for this paragraph. See exercises, 34, 37, 38. Note that, the
mentioned exercises become easier to solve after reading the next chapter, but
students can still solve them using the elementary tools of factoring a polynomial
of degree 2 into factors.

3.8 De�nite positive quadratic form, negative de�nite,
not de�ned, scalar product

De�nition 22 Let q be a quadratic form on E.

i) q is said to be de�ned on E if for any x 2 E, q (x) = 0) x = 0. Otherwise,
the form is said to be not de�ned.

ii) q is said to be positive de�nite (positive) on E if, for any x 2 E, q (x) > 0
(q (x) � 0).

iii) q is said to be negative de�nite (negative) on E if, for any x 2 E, q (x) < 0
(q (x) � 0).

iv) The polar form is said to be positive de�nite, negative, not de�ned etc.
according to its quadratic form. In particular, if the polar form positive
de�nite, then, it is called the scalar product.

Remark 23 1. There exists an isotropic vector for q , q is not de�ned.

2. The standard scalar product on Rn is the symmetric bilinear form ' writ-
ten in the canonical basis of Rn, de�ned by the identity matrix In, which
gives

8x = (x1; :::; xn) , y = (y1; :::; yn) 2 Rn, ' (x; y) =
nX
i=1

xiyi

often denoted by hx; yi.

3.9 The quadratic space

De�nition 24 A quadratic space is a vector space E equipped with a quadratic
form q, often denoted by (E; q). The space takes particular names according to
the additional properties of the quadratic form. The quadratic space is called
Euclidean or Hermitian if the polar form is a scalar product on R or C. It is
often called pre-hilbertian space..

In the next chapter we will see that any scalar product is equivalent (con-
gruent) to the standard scalar product, this is why we note for the space of a
scalar product by (E; h�; �i).
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4 Series of exercises

Exercise 25 Let ' be a symmetric bilinear form on R3 given by the matrix

A =

0@ 1 1 1
1 2 3
1 3 5

1A .
1. What is the kernel and the rank of '?

2. Determine a basis for the orthogonal for ' and compare them with the
results of course on the dimension of the orthogonal of the following sub-
spaces:.

F = vect fv1 = (1; 0; 1) ; v2 = (0; 1;�1)g ,
G = vect fu1 = (1; 0; 1) ; v2 = (1; 0; 0)g ,
W = vect fw1 = (0; 1; 0) ; v2 = (1; 0; 1)g ,

Exercise 26 Let R2 [X] be the polynomial vector space.

1. In the canonical basis of R2 [X], determine the associated matrix of the
symmetric bilinear form ' de�ned by

' (f; g) =

1Z
0

f (t) g (t) dt

2. Determine ker'.

3. The same question for the following form:

' (f; g) = f (0) g (0) + f (1) g (1) .

Exercise 27 Let Mn(R) be the matrix vector space of order n.

1. Prove that the following map is a symmetric bilinear form on Mn(R):

' (A;B) = trace (AB)

2. Let us denote by Sn (R) � Mn(R), the subspace of symmetric matrices.
Prove that the restriction of ' to Sn (R)� Sn (R) is positive de�nite.

3. Determine the orthogonal of Sn (R) for '

Exercise 28 Determine the quadratic forms of the symmetric bilinear forms in
the previous exercises.

Exercise 29 Let q be a de�nite quadratic form on E..
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1. Prove that q is either negative de�nite, or positive de�nite (Indication:
Suppose that there exist two vectors x and y such that q (x) > 0 and
q (y) < 0 and take f (t) = q (x+ yt), then, �nd the roots of the quadratic
equation f (t) = 0, and prove that there is an isotropic vector for q).

2. Now, we suppose that q is non degenerate but not de�nite. Prove that
q hasn�t a constant sign (Indication: Use the CAUCHY-SCHWARZ in-
equality). 3

Exercise 31 Let Tr denoted the trace. Let q1 and q2 be two maps de�ned on
Mn (R) by q1 (A) = (Tr (A))

2 and q2 (A) = Tr
�
ATA

�
. Prove that q1 and q2

are quadratic forms. Are they positive? positive de�nite?

Exercise 32 Let E = `
�
R2
�
, (�; �) 2 R2 and q de�ned on E by

8u 2 E, q (u) = �Tr
�
u2
�
+ �detu

1. Verify that q is a quadratic form on E.

2. Determine the rank of q in function of � and �.

3. Determine the isotropic vectors of q in function of � and �.

Exercise 33 Let f1, f2,..., fn be n continued functions on [0; 1]. For i; j = 1; n,
we put

ai;j =

1Z
0

fi (t) fj (t) dt and 8X = (x1; :::; xn) 2 Rn, q (X) =
nX

i;j=1

aijxixj

1. Prove that q is a positive quadratic form.

2. Prove that q is a de�nite positive quadratic form. if, and only if, the set
(f1; :::; fn) is free.

3. Write the associated matrix of q in the particular case fi (t) = ti�1 for
i = 1; n.

Exercise 34 Lett E = R3 and q the map from E in R de�ned by :

8X = (x; y; z) 2 R3; q (X) = (x+ y)2 + 2 (y � z)2

1. Prove that q is a quadratic form, and determine the associated matrix in
the canonical basis.

3

Lemma 30 Let q be a positive quadratic form on R�vector space E and ' its polar form.
Then,

8x; y 2 E; j' (x; y)j �
p
q (x)

p
q (y).

This �inequality is called CAUCHY-SCHWARZ �inequality.
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2. Determine the orthogonal of E and deduce the rank of q.

3. Find the isotropic cone =. Prove that it is a vector subspace of E.

4. Prove that there exists only one vector subspace F of E totaly isotropic,
i.e. f0g 6= F � F? 4 .

5. Construct two vector spaces of E, isotropic5 , not totaly isotropic and of
distinct dimensions.

Exercise 37 Lett E = R3 and q the map of E in R de�ned by :

8X = (x; y; z) 2 R3; q (X) = xy + yz

1. Prove that q is a quadratic form, and determine the associated matrix in
the canonical basis.

2. Determine the orthogonal of E and deduce the rank of q.

3. Find the isotropic cone =, and prove that it is not a vector subspace of E.

4. For any integer p,0 � p � 3, study the existence of a subspace of dimension
p, totaly isotropic.

5. Construct two vector spaces of E, isotropic, not totaly isotropic and of
distinct dimensions.

Exercise 38 Let q be the quadratic form on R3 de�ned by

q (x; y; z) = x2 + 3y2 � 8z2 � 4xy + 2xz � 10yz

1. Determine ker q.

2. Prove that the set of all isotropic vectors in R3 is the union of two vector
planes and give their equations.

3. Calculate the orthogonal of the vector (1; 1; 1) for q.

4

Theorem 35 a subspace F is said to be totaly isotropic, if, and only if, it is a subset of the
isotropic cone =.

5

De�nition 36 We say that a subspace G is isotropic for a quadratic form q, if, and only if,
G \G? 6= f0g, where G? is the orthogonal of G for q.
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