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1 Itroduction

Recall that the set of linear maps of a vector space E into a vector space F on
the same �eld K is a vector space over K denoted ` (E;F ). It is of dimension
dimE � dimF and isomorphic to the space of matrices MdimF�dimE (K)).
Linear forms are special types of linear maps. They are sometimes also called
covectors, as they are of great importance in the decomposition of quadratic
forms into sums of squares, in other words the presentation by the diagonal
form.

De�nition 1 A linear form is a linear map of the vector space E into the
body K (seen as a vector space on itself), its kernel is called a hyperplane.

From the dimension theorem and the previous de�nition, we result that
a linear form is either zero or surjective. In the second case, its kernel is
supplementary to a vector line.

Example 2 The trace is a linear form on the space of square matrices of
order n. We deduce that the subspace of zero trace matrices is a hyperplane,
hence the dimension is equal to n2� 1. Thus its supplementary is a subspace
of scalar matrices.

De�nition 3 The space of linear forms ` (E;K) is called the dual space of
E, denoted by E�.
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2 Matrix representation

Let fv1; � � � ; vng be basis for the vector space E, and ' 2 E�. Then, the
matrix representing ' in this basis is a row matrix 1 � n with coe¢ cients
' (vi) 2 K. In fact, let

x = x1v1 + � � �+ xnvn ) ' (x) = x1' (v1) + � � �+ xn' (vn) ,

which gives in matrix form:

' (x) = ' (v1) � � � ' (vn)

0B@ x1
...
xn

1CA ,
Thus we can conclude that every matrix of rank 1 can be identi�ed to a

linear form.

3 Dual basis and antedual basis

From De�nition 3 and the matrix representation, one can easy see that the
vector spaces E and E� have the same dimension. Therefore, they are iso-
morphic.

Theorem 4 For every basis fv1; � � � ; vng for the vector space E, there exists
unique basis f'1; � � � ; 'ng for E� satis�es the following condition: For every
i = 1; :::; n, we have

'i (vj) = �ij.

The basis f'1; � � � ; 'ng is called the dual basis of the basis fv1; � � � ; vng, some-
times is denoted by fv�1; � � � ; v�ng.

Proof. From the matrix representation, it is clear that a linear form is
entirely determined by the image of each vector from the basis fv1; � � � ; vng.
Thus for each �xed i, the n equations 'i (vj) = �ij, j = 1; n uniquely de�ne
the form 'i.
Now, let us prove that f'1; � � � ; 'ng isa basis for E�. Since E� has the

same dimension as E, it is su¢ cient to prove that the n forms are free:
Let �1,..., �n 2 K, such that

�1'1 + � � �+ �n'n = 0,
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then, for j = 1; :::; n, we have

0 = (�1'1 + � � �+ �n'n) (vj)
= �1'1 (vj) + � � �+ �j'j (vj) + � � �+ �n'n (vj)
= �1 � 0 + � � �+ �j � 1 + � � �+ �n � 0 = �j

(In the other words, for each vi from the basis of E; we correspond the
unique form 'i from the basis of E�). Therefore, for

x = x1v1 + � � �+ xnvn 2 E

we have v�i (x) = xi, which gives

x = v�1 (x) v1 + � � �+ v�n (x) vn (1)

i.e. the coordinates of a vector x in E in the given basis are the images of x
by the dual basis. For ' 2 E�, such that

' = �1v
�
1 + :::+ �nv

�
n;

we have,
' (x) = �1v

�
1 (x) + � � �+ �nv�n (x) . (2)

In the other hand, from equation (1), we have

' (x) = v�1 (x)' (v1) + � � �+ v�n (x)' (vn) (3)

Since ' (x) is uniquely represented, then Equations (2) and (3) give

�i = ' (vi) , for i = 1; :::; n.

Thus, we have the following corollary:

Corollary 5 Let fv1; � � � ; vng be a basis for the vector space E and fv�1; � � � ; v�ng
be the dual basis for the dual vector space E�. Then, the form- coordinates
of a vector x 2 E and its dual x� = ' 2 E� in the related bases are

x =

0B@ v�1 (x)
...

v�n (x)

1CA , ' = ' (v1) � � � ' (vn)
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Example 6 The canonical basis of the space of null trace matrices of order
2 is the following�

e1 =

�
1 0
0 �1

�
; e2 =

�
0 1
0 0

�
; e3 =

�
0 0
1 0

��
:

Thus, the dual basis is fe�1; e�2; e�3g such that

e�i

�
a11 a12
a13 �a11

�
= a1i, for i = 1; 2; 3:

Therefore, we can represent such matrix by form- coordinates in the canonical
basis by the following column:

A =

0@ e�1 (A)
e�2 (A)
e�3 (A)

1A
Also, we represent a linear form ' on the space of null trace matrices in the
dual basis by the row vector:

' =
�
' (e1) ' (e2) ' (e3)

�
For example, if ' = trace, then, ' =

�
0 0 0

�
is the null form. It is the

restriction of the trace on the space of square matrices to its kernal.

Example 7 Let A 2 GLn (K), then the columns of A constitutes a basis for
Kn. The dual basis is given by the rows of its inverse.

In fact, let A =
�
C1 � � � Ci � � � Cn

�
and A�1 =

0BBBBB@
R1
...
Ri
...
Rn

1CCCCCA.
From equality A�1A = In, it deduced that Li (Cj) = �ij. i.e. Li = C�i ,

i = 1; :::; n. Therefore the Ri constitute the dual basis. Hence, to �nd the
antedual basis of the dual basis, we construct the row matrix of the given
dual basis, then, we calculate its inverse. The columns of the inverse matrix
constitute the antedual basis..
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4 The orthogonality respected to the duality

Let F and F � be two subvector spaces of E and E� respectively. We let to
students to verify that the following sets are subvector spaces of E and E�

respectively:

F? = f' 2 E�;8v 2 F; ' (v) = 0g
(F �)? = fv 2 E; 8' 2 F �; ' (v) = 0g

De�nition 8 Let F and F � be two subvector spaces of E and E� respectively.
The space F? (resp. (F �)?) is called the orthogonal of F (resp. F �) respected
to the duality.

The subspace of Kn of the solutions of an homogenous linear system is
the orthogonal of the linear forms de�ning this system. For example, giving
the following system: 8<:

x1 + 2x2 � x3 = 0
2x1 � x2 + x4 = 0
x3 + x4 = 0

Then (F �)? = f(3x; x; 5x;�5x) ; x 2 Rg is the orthogonal of F � = f'1; '2; '3g,
where the 'i are the rows of the system matrix:0@ 1 2 �1 0

2 �1 0 1
0 0 1 1

1A
Note that dimF � + dim (F �)? = dimE = 4. Thus, we can mention the
following theorem:

Theorem 9 Let F be a subvector space of the vector space E. Then, the
following relation holds:

dimF + dimF? = dimE:

(The same property holds if we exchange E by E�).

Indeed, the theorem is an immediate result of the solutions of a linear
system of p equations with n unknown coe¢ cients. The space of solutions is
of dimension equal to n� p.
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5 Exercise series

Exercise 10 (Lagrange Interpolation) Let Rn[X] be vector space of real poly-
nomials of degree � n and a0,. . . , an+1 distinct real numbers.

1. Prove that the set of polynomials fL0; :::; Lng is a basis for Rn [X],
where

Li =
Y
j 6=i

X � aj
ai � aj

, i = 0; : : : ; n

2. Prove that the linear forms P 7! P (ai) for i = 0,. . . , n constitute a
basis for (Rn[X])�, the dual of the basis fL0; :::; Lng.

Exercise 11 Let a0, . . . ,an 2 R be distinct real numbers and '0, . . .
,'n be linear forms on E = Rn [X] given by the relations:

'i (P ) = P (ai) for all i = 0; :::; n.

1. Prove that the set
�
'
0
; :::; 'n

	
is a dual basis for E and determine its

antedual basis.

2. Deduce the same result for 'i (P ) = P (i) for i = 0; :::; n.

3. Same question as in 1) for n = 2, where 'i are de�ned by

'i (P ) =

1Z
0

xiP (x) dx for all i = 0; :::; n.

4. Same question for n = 2 and the 'i are de�ned by

'0 (P ) = P (1) , '1 (P ) = P
0 (1) , '2 (P ) =

1Z
0

P (x) dx.
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6 Solutions of the series

Solution of exercise 1
First of all, we notice that since the a0, . . . ,an 2 R are all distinct, then

the polynomials Li are well de�ned and all distinct.

1. Since jAj = n+1 = dimE, then to prove that the set of the polynomials

A = fL0 ; :::; Lng

is a basis for E = Rn[X], it is su¢ cient to prove that A is free. Let
�0; ::::; �n 2 R such that

�0L0 + :::+ �nLn = 0.

That means the polynomial �0L0 + ::: + �nLn is the zero polynomial.
Therefore, for every aj 2 fa0; :::; ang, the polynomial evaluated in aj
vanishes. It follows that

�0L0 (aj) + :::+ �nLn (aj) = 0.

By using the de�nition of Li, that gives

Li (aj) =

�
1 for j = i
0 for all j 6= i .

Hence, for j = 0, we have

�0L0 (a0) + :::+ �nLn (a0) = 0 = �0 � 1 + �1 � 0 + :::+ �n � 0 = �0.

By the same manner we get

�1L1 (a1) = 0 = �1,..., �nLn (an) = 0 = �n.

Consequently, the set A is free.

2. For all i = 0,. . . , n, let 'i be the linear forms de�ned by

'i : E ! E�
P 7!P (ai)

.
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Since dimE� = dimE = n+ 1, then to prove that the set

A� = f'0; :::; 'ng

is a basis for E�, it is su¢ cient to prove that it is free.

Let �0; ::::; �n 2 R such that

�0'0 + :::+ �n'n = 0.

That means the linear form

' = �0'0 + :::+ �n'n

is the zero linear form. Therefore, for every P 2 Rn [X], we get ' (P ) =
0. It follows that

�0'0 (P ) + :::+ �n'n (P ) = 0 = �0P (a0) + :::+ �nP (an) .

Since Lj 2 Rn [X], then, for P = Lj, the previous equality gives

0 = �0Lj (a0) + :::+ �nLj (an) .

Since

Lj (ai) =

�
1 for i = j
0 for all i 6= j ;

then, for all j = 0; :::; n, we get

0 = �0Lj (a0) + :::+ �nLj (an) = �jLj (aj) = �j,

which means that the the set A� = f'0; :::; 'ng is free.

Solution of exercise 2

1. Let �0; ::::; �n 2 R such that

�0'0 + :::+ �n'n = 0.

Then, for every P 2 Rn [X], we get ' (P ) = 0. It follows that

�0'0 (P ) + :::+ �n'n (P ) = 0 = �0P (a0) + :::+ �nP (an) .
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Therefore, for P is one of the elements of the canonical basis f1; X; :::; Xng,
we get

'i (P ) = 'i
�
Xj
�
= aji for j = 1; :::; n.

Thus we have the following system:8>>><>>>:
�0 + �1 + :::+ �n = 0
�0a0 + �1a1 + :::+ �nan = 0
...

...
�0a

n
0 + �1a

n
1 + :::+ �na

n
n = 0

(4)

By putting the system in matrix form, we have0BBB@
1 1 � � � 1
a0 a1 � � � an
...

...
...

...
an0 an1 � � � ann

1CCCA
0BBB@
�0
�1
...
�n

1CCCA =

0BBB@
0
0
...
0

1CCCA .
The matrix

A =

0BBB@
1 1 � � � 1
a0 a1 � � � an
...

...
...

...
an0 an1 � � � ann

1CCCA
is a Vendermand matrix, its determinant is

detA =
Y
j 6=i

(ai � aj) .

Since all the ai are distinct, then detA 6= 0. Therefore System (4) has
only zero as solution, i.e. �i = 0 for all i = 1; :::; n. Which means that
the 'i are linearly independent. Therefore the set f'0; :::; 'ng is a basis
for (Rn [X])�.
The antedual basis is constituted of the polynomials P0,..., Pn such that

'i (Pj) =

�
1 for i = j
0 for all i 6= j
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That gives

Pj (ai) =

�
1 for i = j
0 for all i 6= j ,

First method:

For all j = 0; :::; n, let Pj be as follows

Pj (X) = p0j + :::+ pjjX
j + :::+ pnjX

n

Then for a �xed j and i = 0; :::; n, we have

Pj (a0) = 0 = p0j + a0p1j + a
2
0p2j + :::+ a

n
0pnj

Pj (a1) = 0 = p0j + a1p1j + a
2
1p2j + :::+ a

n
1pnj

...

Pj (aj) = 1 = p0j + ajp1j + a
2
jp2j + :::+ a

n
j pnj

...

Pj (an) = 0 = p0j + anp1j + a
2
np2j + :::+ a

n
npnj

That means we have every �xed j, we have a linear system of the form8>>>>><>>>>>:

p0j + a0p1j + a
2
0p2j + :::+ a

n
0pnj = 0

...
...

p0j + ajp1j + a
2
jp2j + :::+ a

n
j pnj = 1

...
...

p0j + anp1j + a
2
np2j + :::+ a

n
npnj = 0

By putting the previous system in matrix form we have

0BBB@
1 a0 � � � an0
1 a1 � � � an1
...

...
...

...
1 an � � � ann

1CCCA
0BBBBB@
p0j
...
pjj
...
pnj

1CCCCCA =

0BBBBB@
0
...
1
...
0

1CCCCCA .
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The system matrix A is a vendermand matrix, which means that it is
invertible, Then the system has the unique solution0BBBBB@

p0j
...
pjj
...
pnj

1CCCCCA =

0BBB@
1 a0 � � � an0
1 a1 � � � an1
...

...
...

...
1 an � � � ann

1CCCA
�1
0BBBBB@
0
...
1
...
0

1CCCCCA . (5)

That implies that the entries of each column of the inverse matrix
represents the coe¢ cients pij of corresponding polynomial Pj for all
j = 0; :::; n. (for students: by using the matrix form in (5) determine
the antedual basis for n = 2).

Second method:

Since

Pj (ai) =

�
1 for i = j
0 for all i 6= j ,

Then, for a �xed j and all i = 0; :::; n, with i 6= j, the ai are roots of
the polynomial Pj while aj is not. That yields to

Pj (X) =

 Y
i6=j

(X � ai)
!
Qj (X) (6)

and

Pj (aj) =

 Y
i6=j

(aj � ai)
!
Qj (aj) = 1.

Therefore
Qj (aj) =

1Y
i6=j

(aj � ai)
.

That means thatQj (X) is a constant. Otherwise it would be a fraction,
while Qj (X) is a polynomial.

By replacing the value of Qj (X) in relation (6), we get

Pj (X) =

Y
i6=j

(X � ai)Y
i6=j

(aj � ai)
=
Y
i6=j

X � ai
aj � ai

.
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Therefore, the antedual basis is constituted of Lagrange interpolations.

2. It is su¢ cient to take ai = i for all i = 0; :::; n, then

Pj (X) =
Y
i6=j

X � i
j � i .

3. For

'i (P ) =

1Z
0

xiP (x) dx.

Let �0; ::::; �n 2 R such that

�0'0 + :::+ �n'n = 0.

Then, for every P 2 Rn [X], we get ' (P ) = 0. It follows that

�0'0 (P )+ :::+�n'n (P ) = 0 = �0

1Z
0

x0P (x) dx+ :::+�n

1Z
0

xnP (x) dx.

Therefore, for P is one of the elements of the canonical basis f1; X; :::; Xng,
we get the following system:8>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>:

�0

1Z
0

X0dx+ :::+ �n

1Z
0

Xndx = 0

�0

1Z
0

Xdx+ :::+ �n

1Z
0

Xn+1dx = 0

...
...

�0

1Z
0

Xndx+ :::+ �n

1Z
0

X2ndx = 0

,

which gives 8>>><>>>:
�0 +

1
2
�1 + :::+

1
n+1
�n = 0

1
2
�0 +

1
3
�1 + :::+

1
n+2
�n = 0

...
...

1
n+1
�0 +

1
n+2
�1:::+

1
2n+1

�n = 0

(7)
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System (7) in matrix form becomes0BBB@
1 1

2
� � � 1

n+1
1
2

1
3

� � � 1
n+2

...
...

...
...

1
n+1

1
n+2

� � � 1
2n+1

1CCCA
0BBB@
�0
�1
...
�n

1CCCA =

0BBB@
0
0
...
0

1CCCA .
The matrix of the system is a Hilbert matrix H = (hij) of order n+ 1,
such that the entries hij = 1

i+j�1 . The determinant of the Hilbert
matrix is given by the following relation:

detH =
c4n
c2n
,

where

cn =
n�1Y
i=1

in�i =
n�1Y
i=1

i!.

That means detH 6= 0. Therefore, System (7) has only zero as solution,
i.e. �i = 0 for all i = 1; :::; n. Which means that the 'i are linearly
independent. Therefore the set f'0; :::; 'ng is a basis for (Rn [X])

�.

Let us now �nd the antedual basis of f'0; :::; 'ng. Let

Pj (X) = p0j + p1jX + :::+ pnjX
n, for all j = 1; :::; n (8)

such that

'i (Pj) =

1Z
0

X iPj (X) dx =

�
1 for i = j
0 for all i 6= j (9)

Relations (8) and (9) yield to the following system in matrix form:0BBBBBB@
1 1

2
� � � � � � 1

n+1
...

... � � � � � � ...
1
j

1
j+1

� � � � � � 1
n+j

...
... � � � � � � ...

1
n+1

1
n+2

� � � � � � 1
2n+1

1CCCCCCA

0BBBBB@
p0j
...
pjj
...
pnj

1CCCCCA =

0BBBBB@
0
...
1
...
0

1CCCCCA .
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Since the matrix of the system is the Hilbert matrix, then it is invertible,
which allows us to �nd all the polynomial Pj of the antedual basis by
the relation:0BBBBB@

p0j
...
pjj
...
pnj

1CCCCCA =

0BBBBBB@
1 1

2
� � � � � � 1

n+1
...

... � � � � � � ...
1
j

1
j+1

� � � � � � 1
n+j

...
... � � � � � � ...

1
n+1

1
n+2

� � � � � � 1
2n+1

1CCCCCCA

�10BBBBB@
0
...
1
...
0

1CCCCCA :

Let the inverse matrix be H�1 =
�
h0ij
�

H�1 =

0BBBBBB@
h011 h012 � � � � � � h01(n+1)
...

... � � � � � � ...
h0j1 h0j2 � � � � � � h0j(n+1)
...

... � � � � � � ...
h0(n+1)1 h0(n+1)2 � � � � � � h0(n+1)(n+1)

1CCCCCCA .

Then,0BBBBB@
h01j
...
h0jj
...
h0nj

1CCCCCA =

0BBBBBB@
h011 h012 � � � � � � h01(n+1)
...

... � � � � � � ...
h0j1 h0j2 � � � � � � h0j(n+1)
...

... � � � � � � ...
h0(n+1)1 h0(n+1)2 � � � � � � h0(n+1)(n+1)

1CCCCCCA

0BBBBB@
0
...
1
...
0

1CCCCCA for all j = 1; :::; n,

i.e. the elements of the antedual basis are the columns of the inverse
of the system matrix.

For example, for n = 2, we have

H =

0@ 1 1
2

1
3

1
2

1
3

1
4

1
3

1
4

1
5

1A , H�1 =

0@ 9 �36 30
�36 192 �180
30 �180 180

1A .
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The elements of the antedual basis are:

P0 :

0@ p00
p10
p20

1A =

0@ 1 1
2

1
3

1
2

1
3

1
4

1
3

1
4

1
5

1A�10@ 1
0
0

1A =

0@ 9
�36
30

1A
P1 :

0@ p01
p11
p21

1A =

0@ 1 1
2

1
3

1
2

1
3

1
4

1
3

1
4

1
5

1A�10@ 0
1
0

1A =

0@ �36
192
�180

1A
P2 :

0@ p02
p12
p22

1A =

0@ 1 1
2

1
3

1
2

1
3

1
4

1
3

1
4

1
5

1A�10@ 0
0
1

1A =

0@ 30
�180
180

1A
Which means:

P0 (X) = 30X2 � 36X + 9
P1 (X) = �180X2 + 192X � 36
P2 (X) = 180X2 � 180X + 30

4. For

'0 (P ) = P (1) , '1 (P ) = P
0 (1) , '2 (P ) =

1Z
0

P (x) dx,

let �0; �1; �2 2 R such that

�0'0 + �1'1 + �2'2 = 0.

Then, for every P 2 R2 [X], we have

�0'0 (P ) + �1'1 (P ) + �2'2 (P ) = 0

�0P (1) + �1P
0 (1) + �2

1Z
0

P (X) dx = 0

Therefore, for P is one of the elements of the canonical basis f1; X;X2g,
we get the following system:8<:

�0 + �2 = 0
�0 + �1 +

1
2
�2 = 0

�0 + 2�1 +
1
3
�2 = 0

(10)
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The system matrix

0@ 1 0 1
1 1 1

2

1 2 1
3

1A is of determinant= 1
3
6= 0, which

means that the system has only zero solution. Therefore f'0; '1; '2g
is a basis for (R2 [X])�. Now, let fP0; P1; P2g be the antedual basis for
(R2 [X]). Then,

'i (Pj) = 'i
�
p0j + p1jX + p2jX

2
�
=

�
1 for i = j
0 for all i 6= j ,

we get the following systems in matrix form0@ 1 1 1
0 1 2
1 1

2
1
3

1A0@ p00
p10
p20

1A =

0@ 1
0
0

1A (11)

0@ 1 1 1
0 1 2
1 1

2
1
3

1A0@ p01
p11
p21

1A =

0@ 0
1
0

1A
0@ 1 1 1
0 1 2
1 1

2
1
3

1A0@ p02
p12
p22

1A =

0@ 0
0
1

1A

P0 :

0@ p00
p10
p20

1A =

0@ 1 1 1
0 1 2
1 1

2
1
3

1A�10@ 1
0
0

1A =

0@ �2
6
�3

1A
P1 :

0@ p01
p11
p21

1A =

0@ 1 1 1
0 1 2
1 1

2
1
3

1A�10@ 0
1
0

1A =

0@ 1
2

�2
3
2

1A
P2 :

0@ p02
p12
p22

1A =

0@ 1 1 1
0 1 2
1 1

2
1
3

1A�10@ 0
0
1

1A =

0@ 3
�6
3

1A

Note that The matrix in Systems (11) is the transpose

0@ 1 1 1
0 1 2
1 1

2
1
3

1A of

the matrix

0@ 1 0 1
1 1 1

2

1 2 1
3

1A in System (10):
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Its rows represent the dual basis f'0; '1; '2g, while the columns of its

inverse

0@ �2 1
2

3
6 �2 �6
�3 3

2
3

1A represent the antedual basis fP0; P1; P2g:

P0 (X) = �3X2 + 6X � 2

P1 (X) =
3

2
X2 � 2X + 1

2
P2 (X) = 3X2 � 6X + 3
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