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1 Itroduction

Recall that the set of linear maps of a vector space F into a vector space F' on
the same field K is a vector space over K denoted ¢ (E, F'). It is of dimension
dim E£ x dim F' and isomorphic to the space of matrices Mgim pxdim £ (K)).
Linear forms are special types of linear maps. They are sometimes also called
covectors, as they are of great importance in the decomposition of quadratic
forms into sums of squares, in other words the presentation by the diagonal
form.

Definition 1 A linear form is a linear map of the vector space E into the
body K (seen as a vector space on itself), its kernel is called a hyperplane.

From the dimension theorem and the previous definition, we result that
a linear form is either zero or surjective. In the second case, its kernel is
supplementary to a vector line.

Example 2 The trace is a linear form on the space of square matrices of
order n. We deduce that the subspace of zero trace matrices is a hyperplane,
hence the dimension is equal to n? — 1. Thus its supplementary is a subspace
of scalar matrices.

Definition 3 The space of linear forms ¢ (E,K) is called the dual space of
E, denoted by E*.



2 Matrix representation

Let {vy,---,v,} be basis for the vector space F, and ¢ € E*. Then, the
matrix representing ¢ in this basis is a row matrix 1 x n with coefficients
¢ (v;) € K. In fact, let

T =XV + -+ TpUp :>g0(x)=I1s0(v1)+---+xn90(vn),

which gives in matrix form:

X1

px)= o) - ©(v,) N

Tn

Thus we can conclude that every matrix of rank 1 can be identified to a
linear form.

3 Dual basis and antedual basis

From Definition 3 and the matrix representation, one can easy see that the
vector spaces E' and E* have the same dimension. Therefore, they are iso-
morphic.

Theorem 4 For every basis {vy,--- ,v,} for the vector space E, there exists
unique basis {py, -+ , ¢, for E* satisfies the following condition: For every
1 =1,...,n, we have

i (vj) = 0ij-
The basis {¢y, -+ ,¢,} is called the dual basis of the basis {vy,--- ,v,}, some-
times is denoted by {vy,--- v’}

Proof. From the matrix representation, it is clear that a linear form is
entirely determined by the image of each vector from the basis {vy,- - , v, }.
Thus for each fixed i, the n equations ¢, (v;) = d;;, j = 1,n uniquely define
the form ¢;.

Now, let us prove that {¢,,---,¢,} isa basis for E*. Since E* has the
same dimension as F, it is sufficient to prove that the n forms are free:

Let a,..., a, € K, such that

a1y + -+ anp, =0,
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then, for j = 1,...,n, we have

0 = (awpy+ - +anpy,) (v5)
= oy (U5) + -+ ap; (v) + -+ angpy (v5)
= a0+ Fa;- 14+ Fa, - 0=q

(In the other words, for each v; from the basis of E, we correspond the
unique form ¢, from the basis of E*). Therefore, for

r=x01+ -+ a0, €L
we have v} (x) = x;, which gives
r=v] (z)v1 + -+ v (x)v, (1)

i.e. the coordinates of a vector x in F in the given basis are the images of x
by the dual basis. For ¢ € E*, such that

* *
= Q1] + ... + auU,,

we have,
o (z) = oqvp () + - + gy, (2). (2)

In the other hand, from equation (1), we have
@ (2) = v (2) @ (1) + -+ + 05 (@) (o) 3)
Since ¢ (x) is uniquely represented, then Equations (2) and (3) give
a; =@ ), fori=1, .. n.
Thus, we have the following corollary: =

Corollary 5 Let {vy,--- ,v,} be a basis for the vector space E and {v§,--- vt}
be the dual basis for the dual vector space E*. Then, the form- coordinates
of a vector x € E and its dual x* = ¢ € E* in the related bases are



Example 6 The canonical basis of the space of null trace matrices of order
2 s the following

(o ) (00) o= (V)

Thus, the dual basis is {e}, €5, €5} such that

apnn a2 .
e; ( = ay, fori=1,2,3.

a13 —ai

Therefore, we can represent such matriz by form- coordinates in the canonical
basis by the following column:

Also, we represent a linear form ¢ on the space of null trace matrices in the
dual basis by the row vector:

e=(wler) plea) @les))

For example, if o = trace, then, ¢ = ( 0 00 ) is the null form. It is the
restriction of the trace on the space of square matrices to its kernal.

Example 7 Let A € GL,, (K), then the columns of A constitutes a basis for

K". The dual basis is given by the rows of its inverse.
Ry

Infact,letA:(Cl R O Cn)andA_lz R;

R,
From equality A7 A = 1,,, it deduced that L; (C;) = b;;. i.e. L; = CJ,
1 = 1,...,n. Therefore the R; constitute the dual basis. Hence, to find the
antedual basis of the dual basis, we construct the row matrixz of the given
dual basis, then, we calculate its inverse. The columns of the inverse matrix
constitute the antedual basis..



4 The orthogonality respected to the duality

Let F' and F* be two subvector spaces of F and E* respectively. We let to
students to verify that the following sets are subvector spaces of E and E*
respectively:

Ft = {pe E*YweF p) =0}
(F)" = {veEVpeF o) =0}

Definition 8 Let F' and F™* be two subvector spaces of E and E* respectively.
The space F- (resp. (F*)") is called the orthogonal of F (resp. F*) respected
to the duality.

The subspace of K™ of the solutions of an homogenous linear system is
the orthogonal of the linear forms defining this system. For example, giving
the following system:

x|+ 233‘2 — T3 = 0
2.731 — X+ X4 = 0
T3+ x4 = 0

Then (F*)" = {(3z,z, 5z, —5z) , = € R} is the orthogonal of F* = {,, vy, s},
where the ¢, are the rows of the system matrix:

1 2 —-10
2 -1 0 1
0 0 1 1

Note that dim F* + dim (F*)" = dimE = 4. Thus, we can mention the
following theorem:

Theorem 9 Let F' be a subvector space of the vector space E. Then, the
following relation holds:

dim F + dim F*+ = dim E.
(The same property holds if we exchange E by E*).

Indeed, the theorem is an immediate result of the solutions of a linear
system of p equations with n unknown coefficients. The space of solutions is
of dimension equal to n — p.



5 Exercise series

Exercise 10 (Lagrange Interpolation) Let R, [X] be vector space of real poly-
nomials of degree < n and ag,. .., a,y1 distinct real numbers.

1. Prove that the set of polynomials {Lq,...,L,} is a basis for R, [X],

where %
L=][>—%,i=0,...n
o4y — Ay
J#i
2. Prove that the linear forms P +— P (a;) for i = 0,..., n constitute a

basis for (R,[X])*, the dual of the basis {Lq, ..., Ly}

Exercise 11 Let ap, . . . ,a, € R be distinct real numbers and p,, . . .
@, be linear forms on E = R, [X] given by the relations:

v; (P) = P(a;) foralli=0,...,n.

1. Prove that the set {gpo, cey gon} 1s a dual basis for E and determine its
antedual basis.

2. Deduce the same result for ¢, (P) = P (i) fori=0,...,n.

3. Same question as in 1) for n =2, where @; are defined by

1

v, (P) = /xiP (x)dx for alli=0,...,n.
0

4. Same question for n = 2 and the @,; are defined by

2o (P) =P (1), ¢y (P) = P'(1). 5 (P) = /P(x) dz.



6 Solutions of the series

Solution of exercise 1
First of all, we notice that since the ag, . . . ,a, € R are all distinct, then
the polynomials L; are well defined and all distinct.

1. Since |A| = n+1 = dim F, then to prove that the set of the polynomials
A={L,,....L,}

is a basis for ' = R, [X], it is sufficient to prove that A is free. Let
Qg, ..., 0, € R such that

OéoLo + ...+ OénLn = 0.

That means the polynomial agLgy + ... + o, Ly, is the zero polynomial.
Therefore, for every a; € {ao,...,a,}, the polynomial evaluated in a;
vanishes. It follows that

OéoLO (CLj) + ...+ Oann (CLj) =0.

By using the definition of L;, that gives

|1 forj=1
Li(“j)_{ 0 forall j#i

Hence, for j = 0, we have

aglo (ag) + ... + anLy(ag) =0=ag x 1+ a3 X 0+ ... + a,, X 0 = .

By the same manner we get

alLl (al) =0= a5eeey anLn (an) =0= Q.

Consequently, the set A is free.

2. For all i =0,..., n, let ¢, be the linear forms defined by

0, B — E*.

P—P(a;)



Since dim £* = dim E = n + 1, then to prove that the set

A" =A{pg, -, 00}

is a basis for E*, it is sufficient to prove that it is free.

Let ay, ....,a,, € R such that

aopp, + ... + anp, = 0.

That means the linear form

= g + - + angp,,

is the zero linear form. Therefore, for every P € R, [X], we get ¢ (P) =
0. It follows that

aop, (P) + ... + anp, (P) =0 = aoP (ag) + ... + an P (ay) -
Since L; € R, [X], then, for P = L;, the previous equality gives
0=aoL; (ap) + ... + L (an) -
Since o
Li(ai) = { (1) g ;11:7;]7& i
then, for all j =0, ...,n, we get
0=aoLj(ap) + ... + a,L; (an) = o;Lj (a;) = aj,
which means that the the set A* = {¢,, ..., ¢, } is free.

Solution of exercise 2

1. Let ay, ...., a,, € R such that
app, + ...+ anp, = 0.
Then, for every P € R, [X], we get ¢ (P) = 0. It follows that
aop, (P)+ ...+ anp,, (P) =0=aopP (ag) + ... + a, P (ay) .
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Therefore, for P is one of the elements of the canonical basis {1, X, ..., X"},

we get ' 4
0i (P) =, (X7) =a] forj=1,..,n.

Thus we have the following system:

ag+oag+ ...+ a, =0
oot + aray + ... +apa, =0

(4)
aoaly +agal + ..o+ apa, =0

By putting the system in matrix form, we have

1 1 - 1 Qg 0
ag @1 - G Qaq 0
n n n
ay aj a, oy, 0
The matrix
1 1 1
aO al PR an
A= .
ag a? .. a/z

is a Vendermand matrix, its determinant is

detA:H(ai—aj).

Since all the a; are distinct, then det A # 0. Therefore System (4) has
only zero as solution, i.e. o; =0 for all : = 1,...,n. Which means that
the ¢, are linearly independent. Therefore the set {¢y, ..., ¢, } is a basis
for (R, [X])".

The antedual basis is constituted of the polynomials F,..., P, such that

|1 fori=3
‘pi(JDJ')_{ 0 forall i+ j



That gives
|1 fori=3
Pj(“i>_{ 0 foralli#j °

First method:
For all j =0,...,n, let P; be as follows

Pj (X) =po; + - —I—pijj + ... —i—pan"
Then for a fixed j and 7 = 0, ..., n, we have

Pj(ag) = 0=po; + aop1j + aﬁpzj + ...+ agDn;
Pi(a1) = 0=py;+ aipij + aipaj + ... + a}Pn;

5 (a;) = 1 =rpo; +ajpj+ (l?pzj + ...+ G?Pnj

P;(a,) = 0=py;+ ampi; + @ZP% + o apDnj

That means we have every fixed j, we have a linear system of the form

(

poj + aop1j + agpaj + ... +afpn; =0

poj + a;piy + aipo; + . Fafpy; =1

( Poj + anp1j + aZpoj + ... +alp,; =0

By putting the previous system in matrix form we have

Poj 0
1 a -+ ag .] .
1 a; - a’il :
: pij | =11
1 a, ay, :
pnj 0
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The system matrix A is a vendermand matrix, which means that it is
invertible, Then the system has the unique solution

Poj N 0
. ]_ aO o e ao .
: 1 ay - af -

DPjj - o : : 1 : (5)
: 1 a, --- a® :

pnj 0

That implies that the entries of each column of the inverse matrix
represents the coefficients p;; of corresponding polynomial P; for all
j =0,...,n. (for students: by using the matrix form in (5) determine
the antedual basis for n = 2).

Second method:

Since

(1 fori=j
Pj(ai)_{() forall i #£ 5 ~

Then, for a fixed j and all © = 0, ...,n, with ¢ # j, the a; are roots of
the polynomial P; while a; is not. That yields to

Py (X) = (H (X — ai)) Q; (X) (6)

i#j
and
Pj(a;) = <H (a; — ai)) Qj (a;) =1.
i#j
Therefore
Q) (ay) = ==
H (aj a;)

That means that (), (X) is a constant. Otherwise it would be a fraction,
while @; (X) is a polynomial.

By replacing the value of ); (X) in relation (6), we get

H(X—ai)

i#] X —a;
P - H [

H (aj —ai)

1#]
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Therefore, the antedual basis is constituted of Lagrange interpolations.

. It is sufficient to take a; = ¢ for all : =0, ..., n, then

. For

Let aq,....,a,, € R such that

app, + ..+ anp, = 0.

Then, for every P € R, [X], we get ¢ (P) = 0. It follows that

1 1
ap, (P)+...+anp, (P)=0= ao/xOP(x) dm+...+an/x"P(x) dz.
0 0

Therefore, for P is one of the elements of the canonical basis {1, X, ..., X"},
we get the following system:

4 1 1
ao/Xodx—i-...—i-ozn/X”dx =0
0 0
1

1
ao/de+...+an/X”+1dx =0
0 0 ’

1 1

ao/X"dx—i- —l—ozn/X?"dx =0
\ 0 0
which gives
(3&0-’-%?1—}-4—#110671 =0
§a0+§a1+...+n—+2an =0
; (7)
=100 + 7501 + g, =0
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System (7) in matrix form becomes

1 1
L3 [ oo 0
3 3 2 a | |0

1 1 1
n+l n+4+2 2n+1 Qn 0

The matrix of the system is a Hilbert matrix H = (h;;) of order n + 1,
such that the entries h;; = Zﬂ%l The determinant of the Hilbert
matrix is given by the following relation:

4
det H = <n

)
Can

where
n—1 n—1
c, = Hz’"‘l = Hz'
i=1 i=1

That means det H # 0. Therefore, System (7) has only zero as solution,
ie. a; =0 forall v = 1,...,n. Which means that the ¢, are linearly

*

independent. Therefore the set {¢y, ..., ¢, } is a basis for (R,, [X])".
Let us now find the antedual basis of {¢py, ..., v, }. Let

P (X) =poj +pi; X + ...+ ppy X", forall j =1,...,n (8)

such that

1
1 fori=jy

wp)= [xma={§ 2, o

Relations (8) and (9) yield to the following system in matrix form:

1 1
1 2 nt1 Doy 0
1 1 1 _
S n+j pij | =11
1 1 1
n+l nt+2 2n+1 Dnj 0



Since the matrix of the system is the Hilbert matrix, then it is invertible,
which allows us to find all the polynomial P; of the antedual basis by
the relation:

1 -1

ST ) (Y
p%j -+ & o 1
P . #2 ST 0
Let the inverse matrix be H ! = (h’ )
K, oy o By
oo D,
h,(n:+1)1 h/(n:rl)Z Wt 1) (mt1)
Then,
hi; i R oo o B 0
h:;j = hijl h;Q h; ;H 1 forall j =1,...,n,
hiw’ h?n;m h?n;m W1 (ns) (:)

i.e. the elements of the antedual basis are the columns of the inverse
of the system matrix.

For example, for n = 2, we have
9 —-36 30

JH Y= =36 192 —180
30 —180 180

H —

WM = =
L e
YRS [ |~
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The elements of the antedual basis are:
-1

Poo 1 % % 1 9
Po o | po | =13 % I 0= —36

P20 % 1 % 0 30

Por 1L INT /0 —36
P P11 = % % }l 1 = 192

Pa1 3 1% 0 —180

-1

Po2 1 2 1 0 30
P o P12 | = % % i 0] =1 —180

DPa2 3 1 1 180

Which means:

Py(X) = 30X*—36X +9
P (X) = —180X*+ 192X — 36
Py (X) = 180X?% — 180X + 30

. For

oo (P)= P (1), 01 (P) = P' (1), (P)z/m:c)dx,

let oy, a1, 9 € R such that
Qop, + a1y + aspy = 0.
Then, for every P € Ry [X], we have

aop, (P) + arpy (P) + azpy (P) = 0
1

0P (1) + P (1) + ag/P(X) dr = 0

Therefore, for P is one of the elements of the canonical basis {1, X, X2},
we get the following system:

Qg + Q2 =0
a+ o+ 302 =0 (10)
(%)) + 20[1 + %042 = O
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The system matrix

—_ = =
N = O
W~ =

is of determinant= % # 0, which

means that the system has only zero solution. Therefore {¢g, 1, ¥5}
is a basis for (Ry [X])". Now, let {Py, P1, P} be the antedual basis for

(Rs [X]). Then,

1 fori=7y
i (P) = @i (poj + X +po; X?) = { 0 for all z’J#J' ’

we get the following systems in matrix form

11 1 Poo 1
01 2 P1o = 0
15 3 P20 0
1 1 1 Po1 0
01 2 m | = |1
1§ 3 P21 0
1 1 1 Po2 0
01 2 P12 = 0
15 3 D22 1
-1
Poo 1 11 1
PO : P10 = 01 2 0 =
P20 1 132 0
Do 111\ "/0
Py pn | =10 1 2 1| =
P21 1 1 3 0
Doz 111\ "'/0
PQ . P12 = 01 2 0 =
P22 1 1 3 1

Note that The matrix in Systems (11) is the transpose

the matrix in System (10).

[ S S—y
N = O
WIHN = =
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W= N =

(11)

of



Its rows represent the dual basis {¢y, ¢y, @5}, while the columns of its

-2 I 3
2
inverse 6 —2 —6 | represent the antedual basis { Py, P, Py }:
-3 2 3
Py(X) = —3X?+6X -2
3 1
P (X) = 5X2—2X+5

P (X) = 3X*-6X+3
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