### **BCH 209: INTRODUCTORY ENZYMOLOGY**

#### **LECTURER:**

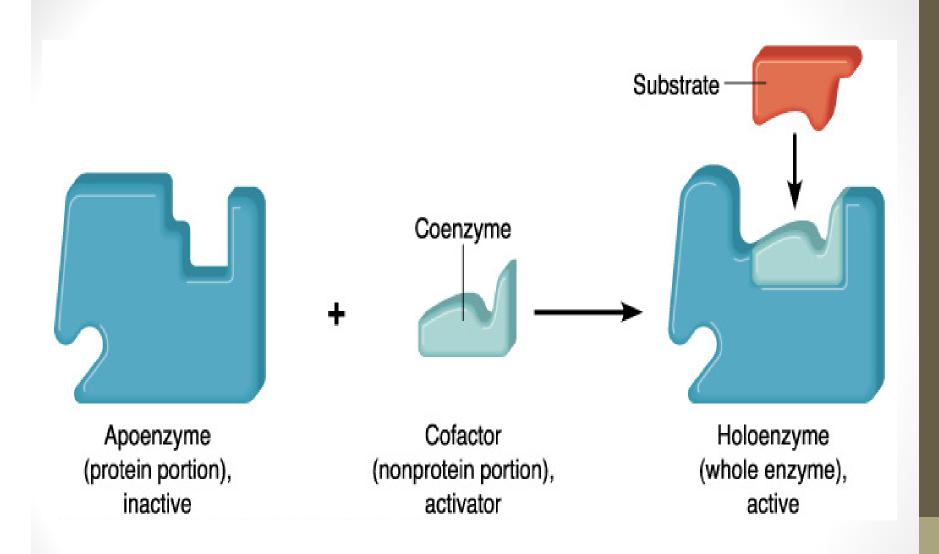
DR. O. J. AVWIOROKO

#### **Course Outline:**

- > Discovery, Naming and Classification of Enzymes.
- Properties of Enzyme
- > Steady State Enzyme Kinetics
- ➤ Michaelis-Menten Equation
- Lineweaver-Bulk plot
- > Estimation of Kinetic parameters--- Km, Vmax, Ki etc.
- > Enzyme Activation & Inhibition
- > Concept of active site, vitamins & coenzymes.
- Zymogen activation, Digestive enzymes, Muscle actins, ATPase, Troponin, & Allosterism
- > Isolation, Purification & Characterisation of enzymes.

# INTRODUCTION

- Enzymology
- ➤ What is an enzyme?
- Mention some sources of enzymes known to you.


# Enzymes

- Macromolecular components composed of protein. They are known as biological catalysts responsible for supporting almost all of the chemical reactions that maintain life processes
- Enzymes are found in all tissues and fluids of the body.
- Enzymes have a high degree of specificity for types of reaction catalized and for their substrate
- Enzymes are also stereospecific catalysts for specific stereoisomers (L & D)

- All enzymes are proteins except ribozymes;
- ribozymes are certain RNA molecules that act as catalysts
- ribozymes catalyzing the cleavage and synthesis of phosphodiester bond in RNA at specific sites in RNA

# Some Common Terminologies

- Apoenzyme; protein portion of an enzyme (i.e., lacking a coenzyme)
- Enzyme; protein which catalyzes a biochemical reaction, an enzyme name ends in -ase (e.g., amylase and carbonic anhydrase)
- **Holoenzyme**; complete active enzyme (i.e., protein + coenzyme)
- Allosteric enzyme; a regulatory enzyme whose affinity for its substrate is affected by the presence or absence of other molecules.



# Discovery of Enzymes: A Brief History.

In 1833, a French chemist Anselme Payen discovered the first enzyme, diastase.



In 1878, German physiologist Wilhelm Kuhne, first used the term enzymes.



- Some Importance or Applications of Enzymes.
- **➢ Biomarkers for diagnosis of diseases**
- ➤ As components of analytical reagents e.g Randox kits for Glucose oxidase.
- > Food industries e.g for bread making etc
- > Pharmaceutical industries
- **Breweries**
- > Textile industries
- **→** Paper industries etc.

### > ENZYME NOMENCLATURE

- What is nomenclature?
- ➤ How have names been given to enzymes in the past? And......
- ➤ How should we give names to new enzymes?

# > CLASSES OF ENZYMES

- ➤ 1) Oxidoreductases
- ≥2) Transferases
- ≥3) Hydrolases
- ➤4) Lyases
- ≥5) Isomerases
- ≽6) Ligases

#### > CLASSES AND SUBCLASSES OF ENZYMES

# **▶1)** OXIDOREDUCTASES

Subclasses: Dehydrogenases, Oxidases, Reductases, Peroxidases, Catalase, Oxygenase, and Hydroxylases.

# **▶2) TRANSFERASES**

Subclasses: Transaldolase, transketolase; Acyl, methyl, glycosyl, and phosphoryltransferases; Kinases, and Phosphomutases

#### ≥3) HYDROLASES

Subclasses: Esterases, Glycosidases, Peptidases, phosphatases, Thiolases, Phospholipase, Amidases, Deaminases, Ribonucleases.

#### **>**4) LYASES

Subclasses: Decarboxylases, Aldolases, Hydratases, Dehydratases, Synthases, Lyases.

### **>**5) ISOMERASES

Subclasses: Racemases, Epimerases, Isomerases, Mutases (not all)

#### ≻6) LIGASES

Subclasses: Synthetases, Carboxylases.

# >OTHER PROPERTIES OF ENZYMES

#### (a) Solubility:

Enzymes as proteins are soluble in water or dilute salt solution

(b)Molecular weight

Enzymes have high \(\gamma \) Mw (varying from 10000 -several thousands)

#### (c) Enzymes are charged molecules:

Due to the presences of amino acids, each enzyme has a charge. The charge depends on the pH of the solution.

At very low pH the amino acids are fully protonated and there is a positive charge on the proteins; as pH is increased, the protein losses a proton to neutralize the OH- group and becomes a zwitter ion (a charged molecule with equal number of +ve and –ve charges. As more alkali is added, the NH<sub>3</sub><sup>+</sup> group gives its H+ and protein becomes positively charged.

#### (c) Enzymes have buffering capacity (acid-base).

They are amphotericmolecules i.e behave both as acids and bases. (due to presence of both free amino group and free carboxyl group ) -they act as buffer. At pKa they make the most efficient buffer.

#### (d)Each enzyme has a specific Isoelectric pH (pI):

It is the pH at which the net charge on protein equal to zero—so they do not move in an electric field.
[It is the pH at which the protein molecule carries an equal positive and negative charges]

Above PI -negatively charged can move in an electric field

Below PI -positive charged and can move under an electric field.

- (e)Denaturation: When proteins are heated, or subjected to extremes of temperature, high salt, organic solvents etc, the non-covalent bonds break, changing the native structure to random coil. This unfolding of protein is due to loss of secondary, tertiary and quaternary structure.
- It does not affect primary structure.
- Effect of Denaturation: Loss of activity due to loss of shape and active site. (Protein become insoluble & precipitates).
- Denaturing Factors:
- Heat
- • Change in pH  $(\uparrow, \downarrow)$
- Radiation
- Heavy metals
- Detergents
- Digestive enzymes
- Urea (8M)
- Repeated freezing and thawing (which cause disruption of hydrogen or other weak bonds)

#### **Assignment:**

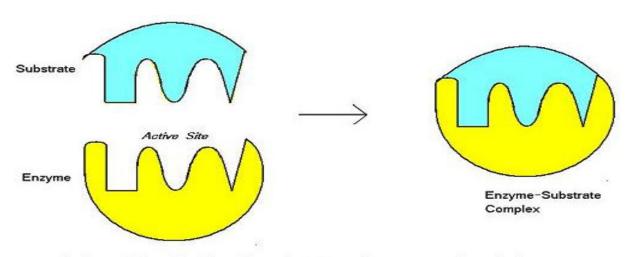
Write a short note on the six classes of enzymes. Give an example each of an enzyme-catalyzed reaction under each class.

# Active site of an enzyme

- The catalytic activity of enzyme involves the binding of their substrates to form an enzyme-substrate complex (*ES*). In an enzymetic reaction, the substrate binds to a specific region of the enzyme called the active site.
- While bound to the active site, the substrate is converted into the product of the reaction, which is then released from the enzyme.

$$S + E \rightleftharpoons ES \rightleftharpoons E + P$$

# The active site of an enzyme lower EA and speed the chemical reaction barrier by;-

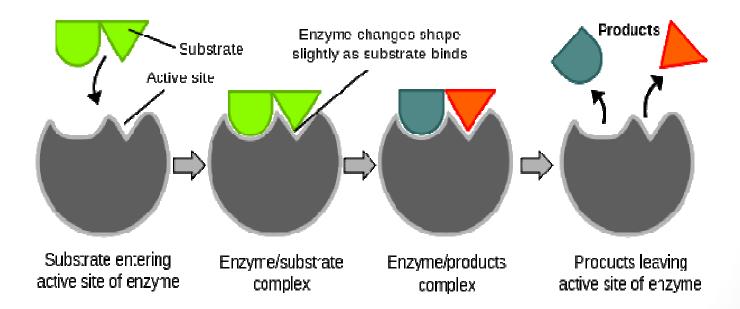

- 1-orienting substrates correctly
- 2-strain substrate bonds
- 3-providing a favorable micro-environment
- 4-covalently bonding to the substrate

# Proposed models or Hypotheses of substrate binding

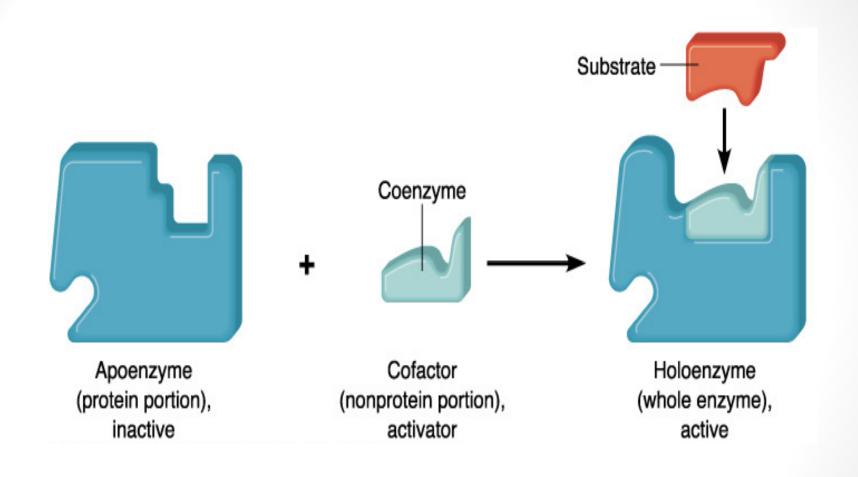
- Two model of substrate binding to the active site of the enzyme;
- 1) Lock and key model or hypothesis
- 2) Induced fit model or hypothesis.

## Lock and Key Hypothesis or model

- --This model assumes that the substrate and enzyme active site have complementary shapes in which the substrate fits exactly into the active site.
- -- The enzyme's active site represents the 'lock' while the substrate denotes the 'key'. Catalysis therefore only takes when a substrate with the right shape complements the active site shape.




Lock-and-key Model.- The substrate and enzyme active site have complementary shapes


# The Induced Fit Hypothesis or model

--This model proposes that the initial interaction between enzyme and substrate is relatively weak, but that these weak interactions rapidly induce conformational changes in the enzyme that strengthen binding.

--Hence, the configurations of both the enzyme and substrate are modified by substrate binding and it is this conformational change that leads to product formation.



## **BCH 209: VITAMINS, COENZYMES AND COFACTORS**



# EXAMPLES OF COFACTORS & SOME ENZYMES THAT REQUIRE THEM FOR CATALYTIC ACTIVITY

#### TABLE 6-1 Some Inorganic Elements That Serve as Cofactors for Enzymes

Cu<sup>2+</sup> Cytochrome oxidase

Fe2+ or Fe3+ Cytochrome oxidase, catalase, peroxidase

K<sup>+</sup> Pyruvate kinase

Mg<sup>2+</sup> Hexokinase, glucose 6-phosphatase,

pyruvate kinase

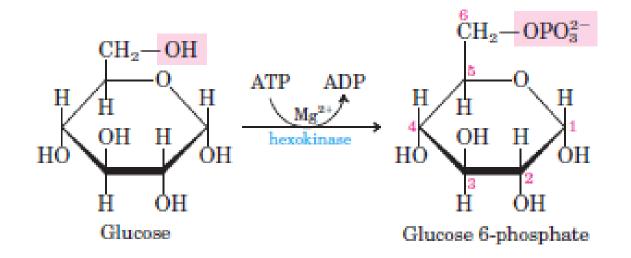
Mn<sup>2+</sup> Arginase, ribonucleotide reductase

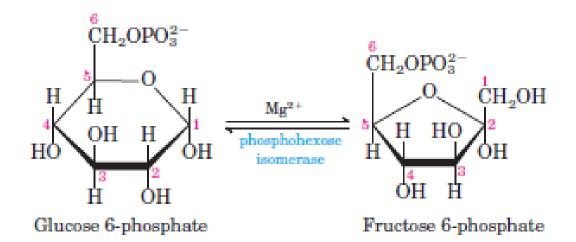
Mo Dinitrogenase

Ni<sup>2+</sup> Urease

Se Glutathione peroxidase

Zn<sup>2+</sup> Carbonic anhydrase, alcohol


dehydrogenase, carboxypeptidases


A and B

#### **VITAMINS AND COENZYMES**

- #-- A vitamin is an organic compound and an essential nutrient that an organism requires in limited amounts.
- #-- Essential & non essential vitamins.
- #-- Majority of vitamins serves as coenzymes.

#### **EXAMPLES OF REACTIONS INVOLVING COFACTORS**





#### **VITAMIN-BASED COENZYMES**

Table 1.1 The vitamins.

| Vitamin           | Chemical name | Deficiency disease            | Biochemical function   | Coenzyme chemistry                               |
|-------------------|---------------|-------------------------------|------------------------|--------------------------------------------------|
| A                 | Retinol       | Night blindness               | Visual pigments        | _                                                |
| $B_1$             | Thiamine      | Beriberi                      | Coenzyme (TPP)         | Decarboxylation of $\alpha$ -keto acids          |
| $\mathbf{B}_2$    | Riboflavin    | Skin lesions                  | Coenzyme (FAD, FMN)    | 1e <sup>-</sup> /2e <sup>-</sup> redox chemistry |
| Niacin            | Nicotinamide  | Pellagra                      | Coenzyme (NAD)         | Redox chemistry                                  |
| $\mathbf{B}_{6}$  | Pyridoxal     | Convulsions                   | Coenzyme (PLP)         | Reactions of $\alpha$ -amino acids               |
| $\mathbf{B}_{12}$ | Cobalamine    | Pernicious anaemia            | Coenzyme               | Radical re-arrangements                          |
| C                 | Ascorbic acid | Scurvy                        | Coenzyme, anti-oxidant | Redox agent (collagen formation)                 |
| D                 | Calciferols   | Rickets                       | Calcium homeostasis    | _                                                |
| E                 | Tocopherols   | Newborn haemolytic<br>anaemia | Anti-oxidant           |                                                  |

#### **VITAMIN-BASED COENZYMES**

| H | Biotin           | Skin lesions          | Coenzyme                              | Carboxylation                      |
|---|------------------|-----------------------|---------------------------------------|------------------------------------|
| K | Phylloquinone    | Bleeding disorders    | Coenzyme, anti-oxidant                | Carboxylation of glutamyl peptides |
|   | Folic acid       | Megaloblastic anaemia | Coenzyme<br>(tetrahydrofolate)        | 1-carbon transfers                 |
|   | Pantothenic acid | Burning foot syndrome | Coenzyme (CoA,<br>phosphopantotheine) | Acyl transfer                      |

CoA, coenzyme A; FAD, flavin adenine dinucleotide; FMN, flavin mononucleotide; NAD, nicotinamide adenine dinucleotide; PLP, pyridoxal-5'-phosphate; TPP, thiamine pyrophosphate.

# Examples of Coenzymes, Structures and Some Specific Biochemical Reactions they are involved in.

Nicotinamide adenine dinucleotide (NAD+)

#### **Examples of a biochemical reaction that involved NAD**<sup>+</sup>:

$$\begin{array}{c} O & H \\ C & \\ HCOH & + HO-P-O-\\ CH_2OPO_3^{2-} & O^- \end{array} \\ \begin{array}{c} NAD^+ & NADH + H^+ \\ \hline & & \\ glyceraldehyde \\ 3-phosphate \\ dehydrogenase \\ \end{array}$$

1,3-Bisphosphoglycerate

Flavin adenine dinucleotide (FAD)

#### **Examples of a biochemical reaction that involved FAD:**

 $Thiamine\ pyrophosphate\ (TPP)$ 

#### **Examples of a biochemical reaction that involved TPP:**

#### **Assignment 1**

Draw the structure of the following coenzymes and write an equation of a biochemical reaction they are involved in:

- i) Coenzyme A (CoA)
- ii) Biotin
- iii) Tetrahydrofolate.

# Recommended Textbooks for further insight

- Lehninger Principles of Biochemistry by Nelson and Cox.
- Textbook of Biochemistry with Clinical Correlations by Thomas M. Devlin.
- ➤ Harper's Biochemistry
- ➤ Visit the Library for Encyclopædia Britannica, Journals, Periodicals etc.