Chapter 1

Vector spaces

1.1 Vector Space and Subspace

Definition 1.1.1

Let K be a commutative field $(K = \mathbb{R} \text{ or } K = \mathbb{C})$, and let the non-empty set E be equipped with an internal operation denoted by (+):

 $(+): \quad E \times E \quad \to E$ $(x, y) \quad \mapsto x + y,$

and also equipped with an external operation denoted by (\cdot) :

 $\begin{array}{ccc} (\ \cdot \): & \mathbb{K} & \times E \to E \\ & (\lambda, x) & \mapsto \lambda \cdot x \end{array}$

\emptyset Definition 1.1.2

A vector space over the field K or an K-vector space is a triplet $(E, +, \cdot)$ such that :

1. (E, +) is a commutative group.

2.
$$\forall \lambda \in \mathbb{K}, \forall x, y \in E, \lambda(x+y) = \lambda \cdot x + \lambda \cdot y$$

3.
$$\forall \lambda, \mu \in \mathbb{K}, \forall x \in E, (\lambda + \mu) \cdot x = \lambda \cdot x + \mu \cdot x.$$

- 4. $\forall \lambda, \mu \in \mathbb{K}, \forall x \in E, (\lambda \cdot \mu) \cdot x = \lambda(\mu \cdot x).$
- 5. $\forall x \in E, 1_{\mathbb{K}} \cdot x = x.$

The elements of K are called scalars, and those of the vector space are called vectors.

Proposition 1.1.3

If the set E is an $K-{\rm vector}$ space, then it satisfies the following properties :

1. $\forall x \in E, 0_{\mathbb{K}} \cdot x = 0_E.$

2. $\forall x \in E, -1_{\mathbb{K}} \cdot x = -x.$

- 3. $\forall \lambda \in \mathbb{K}, \ \lambda \cdot 0_E = 0_E.$
- 4. $\forall \lambda \in \mathbb{K}, \forall x, y \in E, \lambda \cdot (x y) = \lambda \cdot x \lambda \cdot y.$
- 5. $\forall \lambda \in \mathbb{K}, \forall x \in E, x \cdot \lambda = 0_E \Leftrightarrow x = 0_E \lor \lambda = 0_{\mathbb{K}}.$

Example 1.1.4

1. $(\mathbb{R}, +, \cdot)$ is an \mathbb{R} -vector space, $(\mathbb{C}, +, \cdot)$ is a \mathbb{C} -vector space.

2. If we consider the set $\mathbb{R}^2 = \mathbb{R} \times \mathbb{R}$ with the following operations :

$$(+): \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}^2$$
$$((x,y), (x',y')) \mapsto (x+x', y+y').$$
$$(\cdot): \mathbb{R} \times \mathbb{R}^2 \to \mathbb{R}^2$$
$$(\lambda, (x,y)) \mapsto (\lambda \cdot x, \lambda \cdot y).$$

So, $(\mathbb{R}^2, +, .)$ can be easily shown as an \mathbb{R} -vector space

Definition 1.1.5

Let F be a non-empty subset of E, and (E, +, .) be an K-vector space. We say that F is a subspace if (F, +, .) is also an K-vector space.

Note 1.1.6

- When $(F, +, \cdot)$ is an \mathbb{K} -subspace of $(E, +, \cdot)$, then $0_E \in F$.
- If $0_E \notin F$, then $(F, +, \cdot)$ cannot be an K-subspace of $(E, +, \cdot)$.

Theorem 1.1.7

Let $(E, +, \cdot)$ be an K-vector space and $F \subset E, F$ non-empty. The following are equivalent :

- 1. F is a subspace of E.
- 2. ${\cal F}$ is stable under addition and multiplication, i.e.,

$$\forall x, y \in F, \forall \lambda \in \mathbb{K}, x + y \in F, \lambda \cdot x \in F.$$

3.
$$\forall x, y \in F, \forall \lambda, \mu \in \mathbb{K}, \lambda \cdot x + \mu \cdot y \in F$$
, i.e., F is a subspace $\Leftrightarrow \begin{cases} F \neq \phi, \\ \forall x, y \in F, \forall \lambda, \mu \in \mathbb{K}, \lambda \cdot x + \mu \cdot y \in F \end{cases}$
4. $\forall x, y \in F, \forall \lambda, \mu \in \mathbb{K}, \lambda \cdot x + \mu \cdot y \in F$, i.e., F is a subspace $\Leftrightarrow \begin{cases} 0_E \in F, \\ \forall x, y \in F, \forall \lambda, \mu \in \mathbb{K}, \lambda \cdot x + \mu \cdot y \in F \end{cases}$

✓ Example 1.1.8

- 1. $\{0_E\}$ and E are subspaces of E.
- 2. $F = \{(x, y) \in \mathbb{R}^2 \mid x + y = 0\}$ is a subspace because,
 - (a) $0_E = 0_{\mathbb{R}^2} = (0,0) \in F$, then $F \neq \phi$
 - (b) $\forall (x, y), (x', y') \in F, \lambda, \mu \in \mathbb{R}$, we want to prove that $\lambda(x, y) + \mu(x', y') \in F$, i.e., $(\lambda x + \lambda y) + (\mu x' + \mu y') = 0$, which holds true. Therefore $\lambda(x, y) + \mu(x', y') \in F$ and F is a subspace of \mathbb{P}^2

Therefore, $\lambda(x,y) + \mu(x',y') \in F$, and F is a subspace of \mathbb{R}^2 .

3. The set represented by : $F = \{(x + y + z, x - y, z) \mid x, y, z \in \mathbb{R}\}$ is a subspace of \mathbb{R}^3 because,

- (a) $0_{\mathbb{R}^3} = (0,0,0) \in F$ since $(0,0,0) = (0+0+0,0-0,0) \Rightarrow F \neq \phi$.
- (b) $\forall X, Y \in F, \lambda, \mu \in \mathbb{R}$, we want to prove that $\lambda X + \mu Y \in F$. Let X = (x, y, z) and Y = (x', y', z'). Then,

$$\begin{split} \lambda X + \mu Y &= (\lambda x + \lambda y + \lambda z, \lambda x - \lambda y, \lambda z) + (\mu x' + \mu y' + \mu z', \mu x' - \mu y', \mu z'), \\ &= ((\lambda x + \lambda y + \lambda z) + (\mu x' + \mu y' + \mu z'), (\lambda x - \lambda y) + (\mu x' - \mu y'), \lambda z + \mu z'), \\ &= ((\lambda x + \mu x') + (\lambda y + \mu y') + (\lambda z + \mu z'), (\lambda x - \mu y') + (\mu x' - \mu y'), \lambda z + \mu z'). \end{split}$$

Therefore, $\lambda X + \mu Y \in F$. So, F is a subspace of \mathbb{R}^3 .

Theorem 1.1.9

The intersection of a non-empty families of subspaces are defined as the subspace.

Note 1.1.10

The union of two subspaces is not always a subspace.

Example 1.1.11

Let $E_1 = \{(x,0) \in \mathbb{R}^2\}$ and $E_2 = \{(0,y) \in \mathbb{R}^2\}$. The union $E_1 \cup E_2$ is not a subspace in light of $U_1 = (1,0) \in E_1, U_2 = (0,1) \in E_2$, but $U_1 + U_2 = (1,1) \notin E_1 \cup E_2$, as $(1,1) \notin E_1$ and $(1,1) \notin E_2$.

1.1.1 Sum of Two Subspaces

Definition 1.1.12

Let a vector space E consist of two subspaces, E_1 and E_2 . The sum of the two vector spaces denoted by $E_1 + E_2$, is defined as follows :

 $E_1 + E_2 = \{ U \in E \mid \exists U_1 \in E_1, \exists U_2 \in E_2 \text{ such that } U = U_1 + U_2 \}.$

Proposition 1.1.13

The sum of two subspaces E_1 and E_2 of the same vector space E is a subspace of E containing $E_1 \cup E_2$.

1.1.2 Direct Sum of Two Subspaces

Definition 1.1.14

The sum $E_1 + E_2$ is said to be direct if, for every $U = U_1 + U_2$, there exists a unique vector $U_1 \in E_1$ and a unique vector $U_2 \in E_2$ such that $U = U_1 + U_2$. This is denoted as $E_1 \oplus E_2$.

Theorem 1.1.15

The sum $E_1 + E_2$ is direct if and only if $E_1 \cap E_2 = \{0_E\}$.

1.1.3 Generating Sets, Linearly Independent Sets, Bases, and Dimension

In the following, we denote the vector space (E, +, .) as E.

⁷ Definition 1.1.16

Let E be a vector space and $e_1, e_2, ..., e_n$ be elements of E.

1. The set $\{e_1, e_2, ..., e_n\}$ is called linearly independent if for all $\lambda_1, \lambda_2, ..., \lambda_n \in \mathbb{R}$:

 $\lambda_1 e_1 + \lambda_2 e_2 + \ldots + \lambda_n e_n = 0 \Rightarrow \lambda_1 = \lambda_2 = \ldots = \lambda_n = 0,$

otherwise, they are called dependent.

- 2. The set $\{e_1, e_2, ..., e_n\}$ is called a generating set of E or E is generated by $\{e_1, e_2, ..., e_n\}$ if for every $x \in E$, there exist $\lambda_1, \lambda_2, ..., \lambda_n \in \mathbb{R}$ such that $x = \lambda_1 e_1 + \lambda_2 e_2 + ... + \lambda_n e_n$.
- 3. If $\{e_1, e_2, ..., e_n\}$ is a linearly independent and generating set of E, then it is called a basis of E.

Note 1.1.17

In a vector space E, every nonzero vector is linearly independent.

Theorem 1.1.18

If $\{e_1, e_2, ..., e_n\}$ and $\{e'_1, e'_2, ..., e'_m\}$ are two bases of the vector space E, then n = m. In other words, if a vector space has a basis, then all bases of E have the same number of elements (or the same cardinality), and this number depends only on the vector space E.

Definition 1.1.19

If E is an \mathbb{R} -vector space with basis $B = \{e_1, e_2, ..., e_n\}$, then the dimension of E is defined as :

 $\dim(E) = \operatorname{Card}(B).$

Note 1.1.20

Finding a set of vectors in E that form a linearly independent basis for a vector space is known as basis. and generating set for E. The number of elements in this set represents dim(E).

✓ Example 1.1.21

- 1. Find a basis for \mathbb{R}^3 . We can use the standard basis $\{(1,0,0), (0,1,0), (0,0,1)\}$.
- 2. Show that $f_1 = (1, -1), f_2 = (1, 1)$ form a basis for \mathbb{R}^2 . Show that $\{f_1, f_2\}$ is linearly independent and generating.
- 3. Consider $F = \{(x + y, x z, -y z) \mid x, y, z \in \mathbb{R}\}$. Find a basis for F.

1.1.4 Vector Space of Finite Dimension (Properties)

$\frac{1}{7}$ Theorem 1.1.22

Let E be a vector space of dimension \boldsymbol{n} :

- 1. The set $\{e_1, e_2, ..., e_n\}$ is a basis of E if and only if $\{e_1, e_2, ..., e_n\}$ is generating and linearly independent.
- 2. If $\{e_1, e_2, ..., e_p\}$ is a set of p vectors in E with p > n, then $\{e_1, e_2, ..., e_p\}$ cannot be linearly independent. Moreover, if $\{e_1, e_2, ..., e_p\}$ is generating, then there exist n vectors among $\{e_1, e_2, ..., e_p\}$ that form a basis for E.
- 3. If $\{e_1, e_2, ..., e_p\}$ is a set of p vectors in E with p < n, then $\{e_1, e_2, ..., e_p\}$ cannot be generating. Moreover, if $\{e_1, e_2, ..., e_p\}$ is linearly independent, then there exist (n p) vectors among $\{e_{p+1}, e_{p+2}, ..., e_n\}$ in E such that $\{e_1, e_2, ..., e_p, e_{p+1}, e_{p+2}, ..., e_n\}$ is a basis for E.

Example 1.1.23

- 1. In the previous example, $f_1 = (1, -1)$, $f_2 = (2, 1)$ to show that $\{f_1, f_2\}$ forms a basis of \mathbb{R}^2 , it suffices to show that $\{f_1, f_2\}$ is either linearly independent or generating (this property holds in the case of finite-dimensional vector spaces).
- 2. To show that $\{f_1 = (1, 1, 1), f_2 = (1, 1, 0), f_3 = (0, 1, -1)\}$ is a basis of \mathbb{R}^3 , it suffices to show that it is either linearly independent or generating since $\dim \mathbb{R}^3 = 3$. $\{f_1, f_2, f_3\}$ is linearly independent because : For all $\lambda_1, \lambda_2, \lambda_3 \in \mathbb{R}$:

 $\lambda_1(1,1,1) + \lambda_2(1,1,0) + \lambda_3(0,1,-1) = (0,0,0) \Rightarrow \lambda_1 = \lambda_2 = \lambda_3 = 0,$

which implies that $\{(1, 1, 1), (1, 1, 0), (0, 1, -1)\}$ is a basis of \mathbb{R}^3 .

3. Let's find a basis for $F = \{(x+y, x-z, -y-z) \mid x, y, z \in \mathbb{R}\}$. Since $F \subset \mathbb{R}^3$, $dimF \leq 3$, so the basis of F does not have more than three vectors. (x+y, x-z, -y-z) = x(1,1,0) + y(1,0,-1) + z(0,-1,-1). Thus, $v_1 = (1,1,0), v_2 = (1,0,-1), v_3 = (0,-1,-1)$ form a generating family for F. If this family is linearly independent, then it forms a basis for F. For all $\lambda_1, \lambda_2, \lambda_3 \in \mathbb{R}$,

 $\lambda_1(1,1,0) + \lambda_2(1,0,-1) + \lambda_3(0,-1,-1) = (0,0,0) \Rightarrow \lambda_2 = -\lambda_1, \lambda_1 = \lambda_3.$

So, $\{(1, 1, 0), (1, 0, -1), (0, -1, -1)\}$ is not linearly independent. However, according to the previous theorem, we can extract from this family a basis for F. To do this, we need to find two vectors from the family that are linearly independent. If found, they form a basis for F; otherwise, we take a non-null vector, and it becomes the basis for F. For example, let's take $\{v_1, v_2\}$:

 $\lambda_1(1,1,0) + \lambda_2(1,0,-1) = (0,0,0) \Rightarrow \lambda_1 = \lambda_2 = 0.$

Thus, $\{v_1, v_2\}$ is a basis for F and dim F = 2.

1.1.5 Supplementary Vector Subspace

Definition 1.1.24

Assume that vector space E has two subspaces, E_1 and E_2 . If $E_1 \oplus E_2 = E$, then E_1 and E_2 are considered supplemental.

Example 1.1.25

Let $E_1 = \{(x, 0) \in \mathbb{R}^2\}$, and $E_2 = \{(0, y) \in \mathbb{R}^2\}$. Note that : $E_1 \oplus E_2 = \mathbb{R}^2$, then E_1 and E_2 are supplementary.