
Chapter 1
Vector spaces

1.1 Vector Space and Subspace

Let K be a commutative field (K = R or K = C), and let the non-empty set E be equipped with an
internal operation denoted by (+) :

(+) : E × E → E

(x, y) 7→ x + y,

and also equipped with an external operation denoted by (·) :

(·) : K ×E → E

(λ, x) 7→ λ · x

Definition 1.1.1

A vector space over the field K or an K-vector space is a triplet (E, +, ·) such that :
1. (E, +) is a commutative group.
2. ∀λ ∈ K, ∀x, y ∈ E, λ(x + y) = λ · x + λ · y.
3. ∀λ, µ ∈ K, ∀x ∈ E, (λ + µ) · x = λ · x + µ · x.
4. ∀λ, µ ∈ K, ∀x ∈ E, (λ · µ) · x = λ(µ · x).
5. ∀x ∈ E, 1K · x = x.

The elements of K are called scalars, and those of the vector space are called vectors.

Definition 1.1.2

If the set E is an K−vector space, then it satisfies the following properties :
1. ∀x ∈ E, 0K · x = 0E .
2. ∀x ∈ E, −1K · x = −x.
3. ∀λ ∈ K, λ · 0E = 0E .
4. ∀λ ∈ K, ∀x, y ∈ E, λ · (x − y) = λ · x − λ · y.
5. ∀λ ∈ K, ∀x ∈ E, x · λ = 0E ⇔ x = 0E ∨ λ = 0K.

Proposition 1.1.3

1. (R, +, ·) is an R-vector space, (C, +, ·) is a C-vector space.
Example 1.1.4

4



1.1. Vector Space and Subspace CHAPITRE 1. VECTOR SPACES

2. If we consider the set R2 = R × R with the following operations :

(+) : R2 × R2 → R2

((x, y), (x′, y′)) 7→ (x + x′, y + y′).

(·) : R × R2 → R2

(λ, (x, y)) 7→ (λ · x, λ · y).

So, (R2, +, .) can be easily shown as an R−vector space

Let F be a non-empty subset of E, and (E, +, .) be an K−vector space. We say that F is a subspace if
(F ,+, .) is also an K−vector space.

Definition 1.1.5

— When (F, +, ·) is an K-subspace of (E, +, ·), then 0E ∈ F .
— If 0E /∈ F , then (F, +, ·) cannot be an K-subspace of (E, +, ·).

Note 1.1.6

Let (E, +, ·) be an K-vector space and F ⊂ E, F non-empty. The following are equivalent :
1. F is a subspace of E.
2. F is stable under addition and multiplication, i.e.,

∀x, y ∈ F, ∀λ ∈ K, x + y ∈ F, λ · x ∈ F.

3. ∀x, y ∈ F, ∀λ, µ ∈ K, λ·x+µ·y ∈ F , i.e., F is a subspace ⇔
{

F ̸= ϕ,
∀x, y ∈ F, ∀λ, µ ∈ K, λ · x + µ · y ∈ F

4. ∀x, y ∈ F, ∀λ, µ ∈ K, λ·x+µ·y ∈ F , i.e., F is a subspace ⇔
{

0E ∈ F,
∀x, y ∈ F, ∀λ, µ ∈ K, λ · x + µ · y ∈ F

Theorem 1.1.7

1. {0E} and E are subspaces of E.
2. F = {(x, y) ∈ R2 | x + y = 0} is a subspace because,

(a) 0E = 0R2 = (0, 0) ∈ F , then F ̸= ϕ

(b) ∀(x, y), (x′, y′) ∈ F, λ, µ ∈ R, we want to prove that λ(x, y) + µ(x′, y′) ∈ F , i.e., (λx + λy) +
(µx′ + µy′) = 0, which holds true.
Therefore, λ(x, y) + µ(x′, y′) ∈ F , and F is a subspace of R2.

3. The set represented by : F = {(x + y + z, x − y, z) | x, y, z ∈ R} is a subspace of R3 because,
(a) 0R3 = (0, 0, 0) ∈ F since (0, 0, 0) = (0 + 0 + 0, 0 − 0, 0) ⇒ F ̸= ϕ.
(b) ∀X, Y ∈ F, λ, µ ∈ R, we want to prove that λX +µY ∈ F . Let X = (x, y, z) and Y = (x′, y′, z′).

Then,

λX + µY = (λx + λy + λz, λx − λy, λz) + (µx′ + µy′ + µz′, µx′ − µy′, µz′),
= ((λx + λy + λz) + (µx′ + µy′ + µz′), (λx − λy) + (µx′ − µy′), λz + µz′),
= ((λx + µx′) + (λy + µy′) + (λz + µz′), (λx − µy′) + (µx′ − µy′), λz + µz′).

Therefore, λX + µY ∈ F . So, F is a subspace of R3.

Example 1.1.8
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The intersection of a non-empty families of subspaces are defined as the subspace.
Theorem 1.1.9

The union of two subspaces is not always a subspace.
Note 1.1.10

Let E1 = {(x, 0) ∈ R2} and E2 = {(0, y) ∈ R2}. The union E1 ∪ E2 is not a subspace in light of
U1 = (1, 0) ∈ E1, U2 = (0, 1) ∈ E2, but U1 + U2 = (1, 1) /∈ E1 ∪ E2, as (1, 1) /∈ E1 and (1, 1) /∈ E2.

Example 1.1.11

1.1.1 Sum of Two Subspaces

Let a vector space E consist of two subspaces, E1 and E2. The sum of the two vector spaces denoted by
E1 + E2, is defined as follows :

E1 + E2 = {U ∈ E | ∃U1 ∈ E1, ∃U2 ∈ E2 such that U = U1 + U2}.

Definition 1.1.12

The sum of two subspaces E1 and E2 of the same vector space E is a subspace of E containing E1 ∪ E2.
Proposition 1.1.13

1.1.2 Direct Sum of Two Subspaces

The sum E1 + E2 is said to be direct if, for every U = U1 + U2, there exists a unique vector U1 ∈ E1 and
a unique vector U2 ∈ E2 such that U = U1 + U2. This is denoted as E1 ⊕ E2.

Definition 1.1.14

The sum E1 + E2 is direct if and only if E1 ∩ E2 = {0E}.
Theorem 1.1.15

1.1.3 Generating Sets, Linearly Independent Sets, Bases, and Dimension
In the following, we denote the vector space (E, +, .) as E.

Let E be a vector space and e1, e2, ..., en be elements of E.
1. The set {e1, e2, ..., en} is called linearly independent if for all λ1, λ2, ..., λn ∈ R :

λ1e1 + λ2e2 + ... + λnen = 0 ⇒ λ1 = λ2 = ... = λn = 0,

otherwise, they are called dependent.
2. The set {e1, e2, ..., en} is called a generating set of E or E is generated by {e1, e2, ..., en} if for every

x ∈ E, there exist λ1, λ2, ..., λn ∈ R such that x = λ1e1 + λ2e2 + ... + λnen.
3. If {e1, e2, ..., en} is a linearly independent and generating set of E, then it is called a basis of E.

Definition 1.1.16

Algebra 2 Y. SOULA 6



1.1. Vector Space and Subspace CHAPITRE 1. VECTOR SPACES

In a vector space E, every nonzero vector is linearly independent.
Note 1.1.17

If {e1, e2, ..., en} and {e
′

1, e
′

2, ..., e
′

m} are two bases of the vector space E, then n = m. In other words, if a
vector space has a basis, then all bases of E have the same number of elements (or the same cardinality),
and this number depends only on the vector space E.

Theorem 1.1.18

If E is an R-vector space with basis B = {e1, e2, ..., en}, then the dimension of E is defined as :

dim(E) = Card(B).

Definition 1.1.19

Finding a set of vectors in E that form a linearly independent basis for a vector space is known as basis.
and generating set for E. The number of elements in this set represents dim(E).

Note 1.1.20

1. Find a basis for R3. We can use the standard basis {(1, 0, 0), (0, 1, 0), (0, 0, 1)}.
2. Show that f1 = (1, −1), f2 = (1, 1) form a basis for R2. Show that {f1, f2} is linearly independent

and generating.
3. Consider F = {(x + y, x − z, −y − z) | x, y, z ∈ R}. Find a basis for F .

Example 1.1.21

1.1.4 Vector Space of Finite Dimension (Properties)

Let E be a vector space of dimension n :
1. The set {e1, e2, ..., en} is a basis of E if and only if {e1, e2, ..., en} is generating and linearly inde-

pendent.
2. If {e1, e2, ..., ep} is a set of p vectors in E with p > n, then {e1, e2, ..., ep} cannot be linearly inde-

pendent. Moreover, if {e1, e2, ..., ep} is generating, then there exist n vectors among {e1, e2, ..., ep}
that form a basis for E.

3. If {e1, e2, ..., ep} is a set of p vectors in E with p < n, then {e1, e2, ..., ep} cannot be genera-
ting. Moreover, if {e1, e2, ..., ep} is linearly independent, then there exist (n − p) vectors among
{ep+1, ep+2, ..., en} in E such that {e1, e2, ..., ep, ep+1, ep+2, ..., en} is a basis for E.

Theorem 1.1.22

1. In the previous example, f1 = (1, −1), f2 = (2, 1) to show that {f1, f2} forms a basis of R2, it suffices
to show that {f1, f2} is either linearly independent or generating (this property holds in the case of
finite-dimensional vector spaces).

2. To show that {f1 = (1, 1, 1), f2 = (1, 1, 0), f3 = (0, 1, −1)} is a basis of R3, it suffices to show that
it is either linearly independent or generating since dim R3 = 3. {f1, f2, f3} is linearly independent
because : For all λ1, λ2, λ3 ∈ R :

λ1(1, 1, 1) + λ2(1, 1, 0) + λ3(0, 1, −1) = (0, 0, 0) ⇒ λ1 = λ2 = λ3 = 0,

Example 1.1.23
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which implies that {(1, 1, 1), (1, 1, 0), (0, 1, −1)} is a basis of R3.
3. Let’s find a basis for F = {(x+y, x−z, −y−z) | x, y, z ∈ R}. Since F ⊂ R3, dimF ≤ 3, so the basis of

F does not have more than three vectors. (x+y, x−z, −y−z) = x(1, 1, 0)+y(1, 0, −1)+z(0, −1, −1).
Thus, v1 = (1, 1, 0), v2 = (1, 0, −1), v3 = (0, −1, −1) form a generating family for F . If this family
is linearly independent, then it forms a basis for F .
For all λ1, λ2 ,λ3 ∈ R,

λ1(1, 1, 0) + λ2(1, 0, −1) + λ3(0, −1, −1) = (0, 0, 0) ⇒ λ2 = −λ1, λ1 = λ3.

So, {(1, 1, 0), (1, 0, −1), (0, −1, −1)} is not linearly independent. However, according to the previous
theorem, we can extract from this family a basis for F . To do this, we need to find two vectors from
the family that are linearly independent. If found, they form a basis for F ; otherwise, we take a
non-null vector, and it becomes the basis for F . For example, let’s take {v1, v2} :

λ1(1, 1, 0) + λ2(1, 0, −1) = (0, 0, 0) ⇒ λ1 = λ2 = 0.

Thus, {v1, v2} is a basis for F and dimF = 2.

1.1.5 Supplementary Vector Subspace

Assume that vector space E has two subspaces, E1 and E2.
If E1 ⊕ E2 = E, then E1 and E2 are considered supplemental.

Definition 1.1.24

Let E1 = {(x, 0) ∈ R2}, and E2 = {(0, y) ∈ R2}.
Note that : E1 ⊕ E2 = R2, then E1 and E2 are supplementary.

Example 1.1.25
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