Exercise 1

In this exercise, numbers will be represented in 8 bits.

1. Code the decimal numbers in binary: 32 and 122. (0.5*2pt)

$$(32)_{10}$$
 = $(00100000)_2$ and $(122)_{10}$ = $(01111010)_2$

2. Code the integers (+122) and (-32) in 1's complement and in 2's complement. (2pt)

Decimal	1's Complement	2' Complement	
+122	01111010	01111010	
-32	11011111	11100000	

3. Calculate, in binary, the addition of the two decimal numbers 122 and (- 32). (1pt)

01111010

- 00100000

01011010

4. Can the result of adding the two numbers (-122) and (-32) be represented in sign and absolute value using 8 bits? If so, why? If not, what are the limitations? (1pt)

No, we cannot represent -122 + -32 in binary using 8 bits because the result of the addition in decimal will be -154, and we cannot represent -154 on 8 bits according to the sign and absolute value representation. It requires 9 bits to represent it.

Exercise 2

The coding of a real number in floating point is done according to the IEEE 754 -32 standard:

$$(-1)^{\mathrm{S}} \times (1, \mathbf{M}_{\mathrm{n}}) \times 2^{\mathrm{E}}$$

- S: the sign bit.
- E: the exponent represented in 8-bit (coded with excess 127).
- M_n : the mantissa normalized to 23 bits.
- 1. What are the smallest and largest decimal values for the exponent ? (0.5*2pt)

The exponent is encoded with excess 127, meaning it is represented by the binary equivalent C such that: C = E + 127.

Let E_L and E_S be the largest and smallest value of the exponent.

As the representation of C is done in binary in 8 bits, therefore: $C_L = 2^8 - 1 = 255$; $C_S = 0$

Hence
$$C_L = E_L + 127 \leftrightarrow E_L = 255 - 127 = 128$$

$$C_S = E_S + 127 \leftrightarrow E_S = 0 - 127 = -127$$

- 2. Code the following real numbers according to the IEEE standard 754-32: (-17,75) and (+21,05) (2pt)
- $(-17,75)_{10} = (10001,11)_2 = (-1)^1 \times (1,000111) \times 2^4 <=> E=4 => C= 4+127 = 131= (10000011)_2$

• $(+21.05)_{10} = (10101.00000101)_2 = (-1)^0 \times (1,010100000101) \times 2^4 \iff E=4 \implies C=4+127 = 131=(10000011)_2$

```
(+21.05)_{10}= (0 \ 10000011 \ 01010000010100000000000)_{IEEE 754-32}
```

$$M_n = 100101 \Leftrightarrow (-1)^1 \times (1,100101) \times 2^5$$
 0.5pt => $(110010.1)_2 = (-50,5)_{10}$ 1 pt

Exercise 3 (6pt)

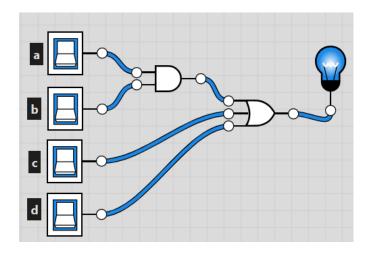
1. Simplify algebraically the following equation E = (a+c+d) (b+c+d) and give its circuit with minimum of gates. (2pt)

Method 1: 1pt

$$E = (a+(c+d)) (b+(c+d)) = ab + a (c+d) + b (c+d) + (c+d) (c+d) = ab + a (c+d) + b (c+d) + (c+d) = ab + (c+d) (a+b+1) = ab + c + d$$

Method 2:

$$E = (a + c + d) (b + c + d) = ab + ac + ad + bc + cc + cd + bd + cd + dd = ab + ac + ad + bc + c + cd + bd + d = ab + (1+a+b+d) c + (1+a+b) d = ab + c + d$$



Logigram representing the function E. 1pt

2. Express a ⊕ b in the second canonical form. (0,5*2 pt)

a	b	a⊕b	maxtermes
0	0	0	a + b
0	1	1	
1	0	1	
1	1	0	$\bar{a} + \bar{b}$

$$a \oplus b = (a + b)(\bar{a} + \bar{b})$$

3. When does $(a \oplus b \oplus c) + (a \oplus c) = 0?$ (1pt)

Method 1:

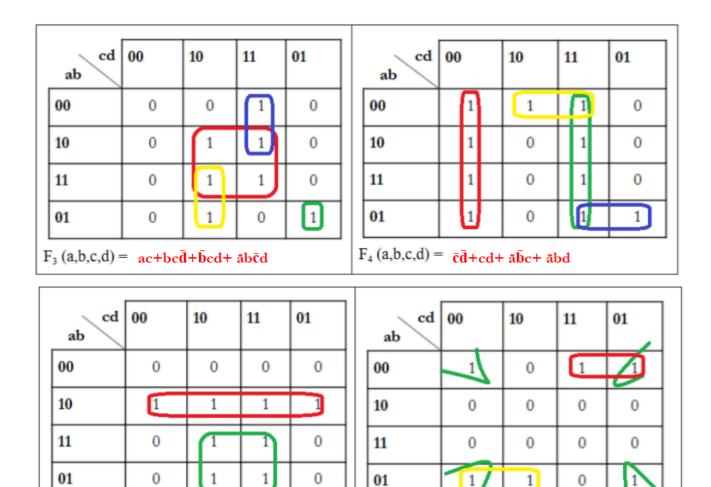
a	b	c	a⊕b	$a \oplus b \oplus c$	a⊕ c	$(a \oplus b \oplus c) + (a \oplus c)$
0	0	0	0	0	0	0
0	0	1	0	1	1	1
0	1	0	1	1	0	1
0	1	1	1	0	1	1
1	0	0	1	1	1	1
1	0	1	1	0	0	0
1	1	0	0	0	1	1
1	1	1	0	1	0	1

Method 2:

$$(a \oplus b \oplus c) + (a \oplus c) = 0 \Leftrightarrow a \oplus b \oplus c = 0 \text{ et } a \oplus c = 0 \Leftrightarrow (a \oplus c) \oplus b = 0 \text{ et } a = c \Leftrightarrow 0 \oplus b$$

= $0 \text{ et } a = c \Leftrightarrow b = 0 \text{ et } a = c$

4. Provide the simplified function while clearly showing the grouping in the Karnaugh table:(2pt)



Exercice 4 (4pts)

 $F_1(a,b,c,d) = a\bar{b}+bc$

Create a logic circuit to check whether a four-digit (a,b,c and d) binary number is prime.

1° Truth table: (1pt)

		_				
a	b	c	d	F	TypeTerm	Term
0	0	0	0	0	Max	a+b+c+d
0	0	0	1	1	Min	ābēd
0	0	1	0	1	Min	ābcd
0	0	1	1	1	Min	ābcd
0	1	0	0	0	Max	a+b+c+d
0	1	0	1	1	Min	ābcd
0	1	1	0	0	Max	a+b+c+d
0	1	1	1	1	Min	ābcd
1	0	0	0	0	Max	ā+b+c+d
1	0	0	1	0	Max	ā+b+c+đ

2°: Canonical Forms: (0.5*2pt)

 $F_2(a,b,c,d) = \bar{a}\bar{c} + \bar{a}\bar{b}d + \bar{a}b\bar{d}$

1st Canonical From: Sum of MinTerm:

 $F(a,b,c,d) = \bar{a}b\bar{c}d + \bar{a$

2nd canonical Form: Product of MaxTerm:

 $F(a,b,c,d) = (a+b+c+d)(a+b+c+d)(a+b+c+d)(\bar{a}+b+c+d)$

1	0	1	0	0	Max	ā+b+c+d
1	0	1	1	1	Min	abcd
1	1	0	0	0	Max	ā+b+c+d
1	1	0	1	1	Min	abcd
1	1	1	0	0	Max	ā+b+c+d
1	1	1	1	0	Max	ā+b+c+d

3° Simplification (0.5*2 pt)

ab cd	00	10	11	01
00	0	1	1	1
10	0	0	1	0
11	0	0	0	1
01	0	0	1	1

 $F(a,b,c,d) = \overline{a}d + \overline{a}b\overline{c} + b\overline{c}d + b\overline{c}d$

4° Logigram (logical circuit) 1pt

