Exercises on Functions and Limits

Exercise 1: Basic Limits

Evaluate the following limits:

1.	0
	$\lim_{x \to 3} (2x^2 - 5x + 1)$
2.	$3x^2 - 4x + 1$
	$\lim_{x \to -2} \frac{3x^2 - 4x + 1}{x + 2}$
3.	$\lim_{x \to 0} \frac{\sin(5x)}{x}$
4	$\lim_{x \to 0} \frac{1}{x}$
4.	$\lim_{x \to \infty} \frac{5x^3 + 2x}{3x^3 - 4x^2 + 1}$
	$x \to \infty \ 3x^3 - 4x^2 + 1$

Exercise 2: One-Sided Limits

Evaluate the left-hand and right-hand limits: 1.

	$\lim_{x \to 0^+} \frac{1}{x}$
2.	$\lim_{x\to 0^-}\frac{1}{x}$
3.	$\lim_{x \to 1^+} \frac{x-1}{x^2-1}$
4.	$x \rightarrow 1^+ x^2 - 1$

$$\lim_{x \to 1^-} \frac{x-1}{x^2-1}$$

Exercise 3: Indeterminate Forms

Use L'Hôpital's Rule to evaluate the following indeterminate forms: 1. T_{1}

	$\lim_{x \to 0} \frac{e^x - 1}{x}$
2.	$\lim_{x \to \infty} \frac{x}{\ln(x)}$
3.	$\lim_{x \to 0} \frac{x - \sin(x)}{x^3}$
4.	$\lim_{x \to 0} \frac{\tan(x) - x}{x^3}$
	$x \rightarrow 0$ x^3

Exercise 4: Continuity and Limits

Determine if the following functions are continuous at the specified points and justify your answer using limits:

1.

$$f(x) = \frac{x^2 - 4}{x - 2}$$
, at $x = 2$

2.

$$g(x) = \begin{cases} x^2 - 3x + 2 & \text{if } x \neq 1\\ 0 & \text{if } x = 1 \end{cases}, \text{ at } x = 1$$

3.

$$h(x) = \begin{cases} 3x+1 & \text{if } x < 2\\ x^2 - 4x + 5 & \text{if } x \ge 2 \end{cases}, \text{ at } x = 2$$

Exercise 5: Challenging Limits

1. Prove that:

$$\lim_{x \to 0} \frac{\ln(1+x)}{x} = 1$$

2. Evaluate:

$$\lim_{x \to 0} \frac{\sin(x) - x}{x^3}$$

3. Show that:

$$\lim_{x \to \infty} \left(x - \sqrt{x^2 + 2x} \right) = 1$$

4. Given $f(x) = \frac{\sin(x)}{x}$, prove that:

$$\lim_{x \to 0} f'(x) = 0$$

Exercise 6: Composite and Piecewise Functions

1. Let:

$$f(x) = \begin{cases} x^2 & \text{if } x < 1\\ 2x+1 & \text{if } x \ge 1 \end{cases}$$

Find the following:

$$\lim_{x \to 1^-} f(x), \quad \lim_{x \to 1^+} f(x)$$

Is the function continuous at x = 1? 2. Given:

$$g(x) = \sqrt{1 + x^2}$$

Find:

$$\lim_{x \to 0} \frac{g(x) - 1}{x^2}$$

Exercise 7: Limits at Infinity

Evaluate the following limits as $x \to \infty$: 1.

 $\lim_{x \to \infty} \frac{x^2 + 1}{2x^2 + 5}$ $\lim_{x \to \infty} \frac{\ln(x)}{x}$

3.

2.

 $\lim_{x \to \infty} \frac{e^x}{x^n}, \quad n \text{ is a positive integer}$

4. Evaluate:

$$\lim_{x \to \infty} \left(1 + \frac{1}{x} \right)^x$$

Exercise 8: Application of Limits in Real-World **Problems**

1. A tank is being filled with water at a rate of $\frac{1}{t+1}$ liters per second, where t is the time in seconds. Find the limit of the filling rate as $t \to \infty$. What does this result mean physically?

2. A certain population of bacteria grows according to the function:

$$P(t) = 1000 \left(1 - e^{-0.1t}\right)$$

Find the population as $t \to \infty$. What is the limiting population?