Université Larbi Ben M'hidi Om El-Bouaghi Examen de Géométrie Département MI

L2 Mathématiques appliquées

2022/2023

Nom et prénom :	Groupe
Exercice 01 : [06 pts]	-
1) Soit \mathcal{F} un sous-espace affine de d'un espace affine \mathcal{E} . Soit A,B et C trois poi	nts de \mathcal{F} et D le point de E
verifiant $\overrightarrow{AC} = -2\overrightarrow{AB} + 3\overrightarrow{BD}$. Montrer que $D \in \mathcal{F}$.	
2) Soit $A(1,-1,0), B(2,2,-1) \in \mathbb{R}^3$. Calculer les cordonnées du point G , où G pondérés $(A,1), (B,2)$.	d'est le barycentre de points
3) Soit \mathcal{E} un espace affine. Complet les définitions suivantes :	
Une droite affine est	
Un plan affine est	
Un sous-espace affine de dimension 0 est un	
4) Soient (d_1) et (d_2) deux droites dans un espace affine de dimension 3. Rappel de l'intersection de (d_1) et (d_2) .	er les différents cas possibles

Exercice $02:[10 \text{ pts}]$
On se place dans l'espace affine \mathbb{R}^3 . Soient :
• le point $A(1,2,3)$.
• les droites $(d_1): \begin{cases} x = 3 - t \\ y = 1 + 2t , t \in \mathbb{R}, \\ z = -1 + t \end{cases} (d_2): \begin{cases} x = 1 + 3s \\ y = -2s , s \in \mathbb{R}. \\ z = 3 + 5s \end{cases}$
• les plans (P_1) : $\begin{cases} x = 1 - t + 2s \\ y = -2 + t - s, \ t, s \in \mathbb{R}, (P_2) : \ 2x - y + 3z - 1 = 0. \\ z = 4 - t - 2s \end{cases}$
1) Déterminer $(d_1) \cap (d_2)$.
2) Donner une équation cartésienne de (P_1) .

3) Déterminer $(P_1) \cap (P_2)$.
4) Déterminer l'intersection $(d_1) \cap (P_2)$.

5) Calculer la distance entre A et (d_1) .
Exercice $03:[04 \text{ pts}]$
Déterminer une base orthonormée du sous-espace vectoriel de \mathbb{R}^4 engendré par les vecteurs
$v_1(1,1,0,0), v_2(0,0,1,1) \text{ et } v_3(0,0,0,1).$
Bon courage .