MEASURES OF SHAPE

Measures of shape are values quantifying several shape characteristics of a bar chart or histogram. There are generally two categories of shape measurements: skewness measurements and kurtosis measurements. Shape measurements only make sense when studying quantitative variables measured on an interval or ratio scale.

MOMENTS

MOMENTS FOR UNGROUPED DATA

If $x_{1}, x_{2}, x_{3}, \ldots, x_{n}$, are the N values assumed by the variable X, we define the quantity

$$
\boldsymbol{m}_{r}=\frac{\sum x_{i}^{r}}{n}
$$

called the $\mathrm{r}^{\text {th }}$ moment. (simple moments)
The first moment with $r=1$ is the arithmetic mean $\overline{\boldsymbol{X}}$.
The $\mathrm{r}^{\text {th }}$ moment about the mean $\overline{\boldsymbol{X}}$ (centered moments) is defined as

$$
M_{r}=\frac{\sum\left(X_{i}-\bar{X}\right)^{r}}{n}
$$

If $\mathrm{r}=1$, then $\mathrm{M}_{1}=0$. If $\mathrm{r}=2$, then $\mathrm{M}_{2}=\mathrm{s}$ (the variance).
Example: Calculate the simple moments m_{1}, m_{2}, m_{3}, and centered moments M_{1}, M_{2}, M_{3} and M_{4} for the following set of numbers

$$
3,6,11,18,7
$$

Solution

- simple moments
$m_{1}=\frac{3+6+11+18+7}{5}=9$
$m_{2}=\frac{3^{2}+6^{2}+11^{2}+18^{2}+7^{2}}{5}=107.89$
$m_{3}=\frac{3^{3}+6^{3}+11^{3}+18^{3}+7^{3}}{5}=1549.8$
$M_{1}=\frac{\sum(3-9)+(6-9)+(11-9)+(18-9)+(7-9)}{5}=0$
$M_{2}=\frac{\sum(3-9)^{2}+(6-9)^{2}+(11-9)^{2}+(18-9)^{2}+(7-9)^{2}}{5}=26.8$
$M_{3}=\frac{\sum(3-9)^{3}+(6-9)^{3}+(11-9)^{3}+(18-9)^{3}+(7-9)^{3}}{5}=97.2$
$M_{4}=\frac{\sum(3-9)^{4}+(6-9)^{4}+(11-9)^{4}+(18-9)^{4}+(7-9)^{4}}{5}=1594$

MOMENTS FOR GROUPED DATA

If $x_{1}, x_{2}, x_{3}, \ldots, x_{k}$, are data points and $n_{1}, n_{2}, x_{3}, \ldots, n_{k}$, represent their respective frequencies, then, the above moments are given by

$$
\boldsymbol{m}_{\boldsymbol{r}}=\frac{\sum n_{i} x_{i}^{r}}{\sum \boldsymbol{n}_{\boldsymbol{i}}}
$$

$$
\boldsymbol{M}_{\boldsymbol{r}}=\frac{\sum n_{i}\left(\boldsymbol{X}_{\boldsymbol{i}}-\overline{\boldsymbol{X}}\right)^{r}}{\sum \boldsymbol{n}_{\boldsymbol{i}}}
$$

Example: Find the simple moments m_{2}, and m_{3}, and centered moments M_{3} and M_{4} for the following frequency distribution

X_{i}	[20 25[[25 30[[30 35[[35 40[[40 45[[45 50[[50 55[[55 60[
n_{i}	4	10	24	34	14	8	4	2

Solution

xi		n_{i}	c_{i}	$\mathrm{n}_{\mathrm{i}} \mathrm{c}_{\mathrm{i}}$	$\mathrm{n}_{\mathrm{i}} \mathrm{c}_{\mathrm{i}}{ }^{2}$	$\mathrm{n}_{\mathrm{i}} \mathrm{c}^{3}$	$\mathrm{X}_{\mathrm{i}}-\overline{\mathrm{X}}$	$n_{i}\left(\mathrm{X}_{\mathrm{i}}-\overline{\mathrm{X}}\right)^{3}$	$n_{i}\left(\mathrm{X}_{\mathrm{i}}-\overline{\mathrm{X}}\right)^{4}$
$[20$	$25[$	4	22.5	90	2025	45562,5	$-14,7$	$-12706,092$	186779,552
$[25$	$30[$	10	27.5	275	7562,5	207968,75	$-9,7$	$-9126,73$	88529,281
$[30$	$35[$	24	32.5	780	25350	823875	$-4,7$	$-2491,752$	11711,2344
$[35$	$40[$	34	37.5	1275	47812,5	1792968,75	0,3	0,918	0,2754
$[40$	$45[$	14	42.5	595	25287,5	1074718,75	5,3	2084,278	11046,6734
$[45$	$50[$	8	47.5	380	18050	857375	10,3	8741,816	90040,7048
$[50$	$55[$	4	52.5	210	11025	578812,5	15,3	14326,308	219192,512
$[55$	$60[$	2	57.5	115	6612,5	380218,75	20,3	16730,854	339636,336
SUM	$\mathbf{1 0 0}$	l	$\mathbf{3 7 2 0}$	$\mathbf{1 4 3 7 2 5}$	$\mathbf{5 7 6 1 5 0 0}$	$/$	$\mathbf{1 7 5 5 9 , 6}$	$\mathbf{9 4 6 9 3 6}, 57$	

- simple moments
$m_{2}=\frac{143725}{100}=143.725$
$m_{3}=\frac{5761500}{100}=57615$
- centered moments
$M_{3}=\frac{17559.6}{100}=175.596$
$M_{4}=\frac{946936.57}{100}=9469.36$

SKEWNESS

Skewness is the degree of asymmetry, or departure from symmetry, of a distribution. If the frequency curve of a distribution has a longer tail to the right of the central maximum than to the left, the distribution is said to be skewed to the right, or to have positive skewness. If the reverse is true, it is said to be skewed to the left, or to have negative skewness.

skewed to the left

symmetrical

skewed to the right

SKEWNESS MEASUREMENTS

Skewness can be measured by the following coefficients

- The Pearson coefficients of skewness

- Pearson's first coefficient of skewness

$$
P_{1}=\frac{\bar{X}-M_{O}}{S}
$$

$\mathrm{P}_{1}=0$ the distribution is symmetric
$P_{1}>0$ the distribution is said to be skewed to the right
$\mathrm{P}_{1}<0$ the distribution is said to be skewed to the left

- Pearson's second coefficient of skewness

$$
P_{2}=\frac{3\left(\bar{X}-M_{e}\right)}{S}
$$

$\mathrm{P}_{2}=0$ the distribution is symmetric
$\mathrm{P}_{2}>0$ the distribution is said to be skewed to the right
$\mathrm{P}_{2}<0$ the distribution is said to be skewed to the left

- Pearson's coefficient of skewness β_{1}

$$
\beta_{1}=\frac{M_{3}^{2}}{S^{3}}
$$

For a symmetric distribution $\beta_{1}=0$
For a skewed distribution $\beta_{1} \neq 0$
Example: Find Pearson's coefficients of skewness for the following frequency distribution

| x_{i} | $\left[\begin{array}{ll}20 & 25[\end{array}\right.$ | $\left[\begin{array}{ll}25 & 30[\end{array}\right.$ | $\left[\begin{array}{ll}30 & 35[\end{array}\right.$ | $\left[\begin{array}{ll}35 & 40[\end{array}\right.$ | $[40$ | $45[$ | $[45$ | $50[$ | $[50$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | \(55\left[\begin{array}{cc}{[55} \& 60[

\hline \mathrm{n}_{\mathrm{i}} \& 4\end{array}\right.\)

Solution

xi	n_{i}	c_{i}	$\mathrm{n}_{\mathrm{i}} \mathrm{c}_{\mathrm{i}}$	$\mathrm{X}_{\mathrm{i}}-\overline{\mathrm{X}}$	$n_{i}\left(\mathrm{X}_{\mathrm{i}}-\overline{\mathrm{X}}\right)^{2}$	$n_{i}\left(\mathrm{X}_{\mathrm{i}}-\overline{\mathrm{X}}\right)^{3}$
[20 25[4	22.5	90	-14,7	864,36	-12706,092
$\left[\begin{array}{ll}25 & 30[\end{array}\right.$	10	27.5	275	-9,7	940,9	-9126,73
[30 35[24	32.5	780	-4,7	530,16	-2491,752
[35 40[34	37.5	1275	0,3	3,06	0,918
[40 45[14	42.5	595	5,3	393,26	2084,278
[45 50[8	47.5	380	10,3	848,72	8741,816
[50 55[4	52.5	210	15,3	936,36	14326,308
[55 60[2	57.5	115	20,3	824,18	16730,854
SUM	100	1	3720	1	5341	17559,6

We have calculated before $\bar{X}=37.2 \quad M_{e}=36.76 \quad S=7.34$
$M_{O}=35+\frac{34-24}{34-24+34-14} * 5=36.66$

- Pearson's first coefficient of skewness P_{1}
$P_{1}=\frac{37.2-36.66}{7.34} 0.073$
Since $P_{1}>0$ the distribution is slightly skewed to the right
- Pearson's second coefficient of skewness P_{2}

$$
P_{2}=\frac{3(37.2-36.76)}{7.34}=0.18
$$

Since $P_{2}>0$ the distribution is slightly skewed to the right

- Pearson's coefficient of skewness β_{1}

$$
\beta_{1}=\frac{(175.596)^{2}}{(7.34)^{3}}=77.972
$$

Since $\beta_{1}>0$ the distribution is skewed

- Fisher's coefficient of skewness \boldsymbol{F}_{1}

$$
\boldsymbol{F}_{\mathbf{1}}=\frac{M_{3}}{S^{3}}
$$

$\mathrm{F}_{1}=0$ the distribution is symmetric
$\mathrm{F}_{1}>0$ the distribution is said to be skewed to the right
$\mathrm{F}_{1}<0$ the distribution is said to be skewed to the left

- Yule's coefficient of skewness $\boldsymbol{C}_{\mathrm{y}}$

$$
C_{y}=\frac{\left(Q_{3}-Q_{2}\right)-\left(Q_{2}-Q_{1}\right)}{Q_{3}-Q_{1}}=\frac{Q_{3}-2 Q_{2}-Q_{1}}{Q_{3}-Q_{1}}
$$

$\mathrm{C}_{\mathrm{y}}=0$ the distribution is symmetric
$\mathrm{C}_{\mathrm{y}}>0$ the distribution is said to be skewed to the right
$\mathrm{C}_{\mathrm{y}}<0$ the distribution is said to be skewed to the left
Example: Find the coefficients of skewness of Fisher and Yule for the previous frequency distribution Solution

- Fisher's coefficient of skewness \boldsymbol{F}_{1}

$$
\boldsymbol{F}_{\mathbf{1}}=\frac{175.596}{(7.34)^{3}}=0.444
$$

Since $F_{1}>0$ the distribution is skewed to the right

- Yule's coefficient of skewness $\boldsymbol{C}_{\mathrm{y}}$

We have calculated before $Q_{1}=32.29 \quad Q_{2}=36.76 \quad Q_{3}=41.07$, so

$$
C_{y}=\frac{(41.07-36.76)-(36.76-32.29)}{41.07-32.29}=-0.037
$$

Unlike other coefficients of skewness Yule's coefficient $\left(\mathrm{C}_{\mathrm{y}}<0\right)$ indicates that the distribution is skewed to the left.

KURTOSIS

Kurtosis is the degree of peakedness of a distribution, usually taken relative to a normal distribution. A peaked distribution is called leptokurtic, while one which is flat-topped is called platykurtic. A normal distribution, which is not very peaked or very flat-topped, is called mesokurtic.

- Pearson's coefficient of kurtosis $\boldsymbol{\beta}_{2}$

$$
\boldsymbol{\beta}_{2}=\frac{M_{4}}{S^{4}}
$$

$\boldsymbol{\beta}_{\mathbf{2}}=3$ the distribution is mesokurtic
$\boldsymbol{\beta}_{\boldsymbol{2}}>3$ the distribution is leptokurtic
$\boldsymbol{\beta}_{\mathbf{2}}<3$ the distribution is platykurtic

- Fisher's coefficient of kurtosis $\boldsymbol{F}_{\mathbf{2}}$

$$
\boldsymbol{F}_{2}=\frac{M_{4}}{S^{4}}-\mathbf{3}=\boldsymbol{\beta}_{2}-\mathbf{3}
$$

$\mathrm{F}_{2}=0$ the distribution is mesokurtic $\mathrm{F}_{2}>0$ the distribution is leptokurtic $\mathrm{F}_{2}<0$ the distribution is platykurtic

- percentile coefficient of kurtosis: this coefficient is based on both quartiles and percentiles and is given by

$$
\kappa=\frac{Q_{3}-Q_{1}}{P_{90}-P_{10}}
$$

$\kappa=0.263$ the distribution is mesokurtic
$\kappa>0.263$ the distribution is leptokurtic
$\kappa<0.263$ the distribution is platykurtic
Example: Find the coefficients of skewness of Fisher and Yule for the previous frequency distribution

Solution

xi		n_{i}	$\mathrm{X}_{\mathrm{i}}-\overline{\mathrm{X}}$	$n_{i}\left(\mathrm{X}_{\mathrm{i}}-\overline{\mathrm{X}}\right)^{2}$	$n_{i}\left(\mathrm{X}_{\mathrm{i}}-\overline{\mathrm{X}}\right)^{4}$
$[20$	$25[$	4	$-14,7$	864,36	186779,552
$[25$	$30[$	10	$-9,7$	940,9	88529,281
$[30$	$35[$	24	$-4,7$	530,16	11711,2344
$[35$	$40[$	34	0,3	3,06	0,2754
$[40$	$45[$	14	5,3	393,26	11046,6734
$[45$	$50[$	8	10,3	848,72	90040,7048
$[50$	$55[$	4	15,3	936,36	219192,512
$[55$	$60[$	2	20,3	824,18	339636,336
SUM				$\mathbf{1 0 0}$	1
5341	$\mathbf{9 4 6 9 3 6}, 57$				

- Pearson's coefficient of kurtosis $\boldsymbol{\beta}_{\mathbf{2}}$

$$
\boldsymbol{\beta}_{\mathbf{2}}=\frac{9469.36}{(7.34)^{4}}=\mathbf{3 . 2 6 2}
$$

Since $\beta_{2}>3$ the distribution leptokurtic

- Fisher's coefficient of kurtosis \boldsymbol{F}_{2}

$$
\boldsymbol{F}_{2}=\frac{9469.36}{(7.34)^{4}}-3=3.262-3=0.262
$$

Since $\mathrm{F}_{2}>0$ the distribution is leptokurtic

- percentile coefficient of kurtosis:

$$
\kappa=\frac{Q_{3}-Q_{1}}{P_{90}-P_{10}}
$$

