MEASURES OF CENTRAL TENDENCY

In order to describe a data set, we frequently seek out a representative or typical numerical value. It's common to refer to this value as the average. Since such typical values tend to lie centrally within a set of data arranged according to magnitude, averages are also known as measures of central tendency.

THE ARITHMETIC MEAN

One of the most widely used measures of central tendency is the arithmetic mean or briefly the mean. For a set of data, the mean can be defined as the sum of the data entries divided by the number of entries.

The mean for ungrouped data: For a set of n items $x_{1}, x_{2}, x_{3}, \ldots, x_{n}$, the mean $\bar{X}(\operatorname{read} x$ bar $)$ is calculated by the following formula:

$$
\bar{X}=\frac{\sum x_{i}}{n}
$$

Example

The weights (in kilograms) for a sample boxes are listed below.
151722162025
What is the mean weigh of the boxes?
To find the mean weigh, divide the sum of the weighs by the number of weighs in the sample.
$\bar{X}=\frac{15+17+22+16+20+25}{6}=19.16$
So, the mean weigh of the boxes is about 19.16 kg
The mean for grouped data (The weighted mean): A weighted mean is the mean of a data set whose entries have varying weights.
The weighted mean for discrete variable: If $\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}, \ldots, \mathrm{x}_{\mathrm{k}}$, are data points and $\mathrm{n}_{1}, \mathrm{n}_{2}, \mathrm{x}_{3}, \ldots, \mathrm{n}_{\mathrm{k}}$, represent their respective frequencies, then the weighted mean is given by

$$
\bar{X}=\frac{\sum\left(n_{i} * x_{i}\right)}{\sum n_{i}}
$$

Example

In order to study the housing occupancy rate, we have the following data

Number of residents x_{i}	2	3	4	5	6	7
Number of houses n_{i}	6	6	8	7	3	3

Find the mean of the data
$\bar{X}=\frac{2 * 6+3 * 6+4 * 8+5 * 7+6 * 3+7 * 3}{6+6+8+7+3+3}=\frac{136}{33}=4.12 \approx 4$
The value of the mean is abstract. The number of residents per house is about 4.12, number which does not correspond to a concrete fact.

The weighted mean for continuous variable: If a continuous variable data are presented in a frequency distribution, then the mean of the frequency distribution for a sample is approximated by

$$
\bar{X}=\frac{\sum\left(n_{i} * c_{i}\right)}{\sum n_{i}}
$$

where c_{i} is the midpoint of a class.

Example

Monthly salaries sample (in thousands of dinars) for administration employees.

Class Range	$[20$	$30[$	$[30$	$40[$	$[40$	$50[$	$[50$	$60[$	$[50$	$60[$	$[60$	$70[$

Frequency	7	11	6	9	5	4

Find the mean of the frequency distribution.
To find the mean of the frequency distribution, the computational procedure is as follows.

- Find the sum of the frequencies
- Find the midpoint of each class (c_{i}).
- Find the sum of the products of the midpoints and the frequencies $\left(n_{i} c_{i}\right)$.
- Calculate the weighted mean of the frequency distribution.

Class Range	Frequency	Midpoints	$\mathbf{n}_{\mathbf{i}} \mathbf{c}_{\mathbf{i}}$
$\left[\begin{array}{cc}20 & 30[\end{array}\right.$	7	25	175
$\left[\begin{array}{ll}30 & 40\end{array}\right.$	11	35	385
$\left[\begin{array}{ll}40 & 50\end{array}\right.$	6	45	270
$\left[\begin{array}{ll}50 & 60\end{array}\right.$	9	55	495
$\left[\begin{array}{ll}60 & 70[\end{array}\right.$	5	65	325
$\left[\begin{array}{cc}70 & 80\end{array}\right.$	4	75	300
SUM	$\mathbf{4 2}$	$/$	$\mathbf{1 9 5 0}$

$\bar{X}=\frac{1950}{42}=46.428$
So, the mean salary is about $46.428\left(10^{3}\right)$ DA

Properties of the arithmetic mean

1 - The arithmetic mean is fully representative since it considers all items observed.
2 - The arithmetic mean is affected by outliers.
3- The algebraic sum of the deviations of a set of numbers x_{i} from their arithmetic mean is zero.
$\sum\left(x_{i}-\bar{x}\right)=0$
4- The sum of the squares of the deviations of a set of numbers x_{i} from their arithmetic mean is a minimum.

$$
\sum\left(x_{i}-\bar{x}\right)^{2}=\min
$$

5- If k_{1} numbers have mean $\mathrm{m}_{1}, \mathrm{k}_{2}$ numbers have mean m_{2}, \ldots, k_{j} numbers have mean m_{j}, then the mean of all the numbers is the weighted arithmetic mean of all the means given by

$$
\bar{X}=\frac{k_{1} m_{1}+k_{2} m_{2}+\cdots+k_{j} m_{j}}{k_{1}+k_{2}+\cdots+k_{j}}
$$

GEOMETRIC MEAN

The geometric mean is a measure of the central tendency of a positive random variable and is used in a very broad range of natural and social science disciplines. For instance, the geometric mean is used in economics and finance to compute growth rate average and cumulative compounding rates.

The geometric mean for ungrouped data: The geometric mean G of a set of N positive numbers x_{1}, x_{2}, $\mathrm{x}_{3}, \ldots, \mathrm{x}_{\mathrm{n}}$ is the $\mathrm{N}^{\text {th }}$ root of the product of the numbers:

$$
G=\sqrt[n]{x_{1} x_{2} x_{3} \ldots x_{n}}
$$

We can also compute The geometric mean by logarithms as follow

$$
\operatorname{Ln}(G)=\frac{1}{n} \sum L n x_{i} \Rightarrow G=e^{\operatorname{Ln}(G)}=e^{\left(\frac{1}{n} \sum L n x_{i}\right)}
$$

The above formula shows that the logarithm of the geometric mean of a set of data is the weighted arithmetic mean of the logarithms of the data set entries.

Example: find the geometric mean of the numbers 3, 8 and 9

$$
G=\sqrt[n]{(3)(8)(9)}=6
$$

$$
\begin{aligned}
\operatorname{Ln}(G) & =\frac{1}{3}(\operatorname{Ln}(3)+\operatorname{Ln}(8)+\operatorname{Ln}(9)) \\
& =1.79175947 \Rightarrow G=e^{1.79175947} \\
& \Rightarrow G=6
\end{aligned}
$$

The geometric mean for grouped data: For grouped data If $\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}, \ldots, \mathrm{x}_{\mathrm{k}}$, are data points (or $\mathrm{c}_{1}, \mathrm{c}_{2}$, $\mathrm{c}_{3}, \ldots, \mathrm{c}_{\mathrm{k}}$, are midpoints) and $\mathrm{n}_{1}, \mathrm{n}_{2}, \mathrm{x}_{3}, \ldots, \mathrm{n}_{\mathrm{k}}$, represent their respective frequencies, then the weighted geometric mean is given by the following formula

$$
G=\sqrt[N]{\left(x_{1}\right)^{n_{1}}\left(x_{2}\right)^{n_{2}}\left(x_{3}\right)^{n_{3}} \ldots .\left(x_{k}\right)^{n_{k}}}
$$

Where $N=\sum_{i=1}^{k} n_{i}$
And also in logarithms form

$$
\operatorname{Ln}(G)=\frac{1}{N} \sum n_{i} \operatorname{Ln} x_{i}
$$

Example (a): find the geometric mean for the data in the table below

Number of residents x_{i}	Number of houses n_{i}	$\operatorname{Ln} \mathrm{x}_{\mathrm{i}}$	$\mathrm{n}_{\mathrm{i}} \operatorname{Ln} \mathrm{x}_{\mathrm{i}}$
2	1	0,69314718	0,69314718
3	3	1,09861229	3,29583687
4	2	1,38629436	2,77258872
5	1	1,60943791	1,60943791
\sum	7	$/$	$\mathbf{8 , 3 7 1 0 1 0 6 8}$

1st method

$$
\begin{aligned}
G & =\sqrt[7]{(2)^{1}(3)^{3}(4)^{2}(5)^{1}} \\
& =\sqrt[7]{4320} \\
& =3.306
\end{aligned}
$$

$2^{\text {nd }}$ method
$\operatorname{Ln}(G)=\frac{1}{7}(8.37101068)=1,19585867$
$G=e^{1.19585867}=3.306$
Example (b): find the geometric mean for the following frequency distribution

Class Range	Frequency	Midpoints (ci)	Ln ci	$\mathrm{n}_{\mathbf{i}} \mathbf{L n} \mathrm{c}_{\mathrm{i}}$
[20 30[7	25	3,218875825	22,53213077
[30 40[11	35	3,555348061	39,10882868
[40 50[6	45	3,80666249	22,83997494
[50 60[9	55	4,007333185	36,06599867
[60 70[5	65	4,17438727	20,87193635
[70 80[4	75	4,317488114	17,26995245
SUM	42	/		158,688822

$\operatorname{Ln}(G)=\frac{1}{42}(158,688822)$

$$
=3,77830528
$$

$G=e^{3,77830528}$
$=43,7418488$

The geometric mean is used in particular to calculate the growth rate average of some phenomena, such as economic growth rates, population growth, etc.

THE HARMONIC MEAN

The harmonic mean is used in cases where the variable being studied is a ratio of two variables, as in calculating a speed average (kilometers divided by the number of hours) or that of an average density (number of inhabitants divided by the area in m^{2}), etc.

The harmonic mean for ungrouped data: The harmonic mean H of a set of non-zero numbers $\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}$, \ldots, x_{n} is the reciprocal arithmetic mean of the reciprocals of these numbers:

$$
H=\frac{n}{\sum \frac{1}{x_{i}}} \quad H=\frac{n}{\frac{1}{x_{1}}+\frac{1}{x_{2}}+\frac{1}{x_{3}}+\cdots+\frac{1}{x_{n}}}
$$

Example (a): find the harmonic mean of the numbers 4,5, 8 and 10

$$
\begin{aligned}
H & =\frac{4}{\frac{1}{4}+\frac{1}{5}+\frac{1}{8}+\frac{1}{10}} \\
& =\frac{4}{0.25+0.2+0.125+0.1} \\
& =5.926
\end{aligned}
$$

The harmonic mean for grouped data: If $\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}, \ldots, \mathrm{x}_{\mathrm{k}}$, are non-zero data points (or $\mathrm{c}_{1}, \mathrm{c}_{2}, \mathrm{c}_{3}, \ldots, \mathrm{c}_{\mathrm{k}}$, are midpoints) and $\mathrm{n}_{1}, \mathrm{n}_{2}, \mathrm{x}_{3}, \ldots, \mathrm{n}_{\mathrm{k}}$, represent their respective frequencies, then the weighted harmonic mean is given by the following

$$
H=\frac{\sum n_{i}}{\sum \frac{n_{i}}{x_{i}}}
$$

Example (b): find the harmonic mean for the following frequency distribution

Class Range	Frequency	Midpoints (c_{i})	$\mathbf{n}_{\mathbf{i}} / \mathbf{c}_{\text {i }}$
[20 30[7	25	0,28
[30 40[11	35	0,314
[40 50[6	45	0,133
[50 60[9	55	0,164
[60 70[5	65	0,077
[70 80[4	75	0,053
SUM	42	1	1,022

$H=\frac{42}{1.022}=41.115$

Example (c):

A car drives for 200 kilometers at $80 \mathrm{~km} / \mathrm{h}$, then for 150 kilometers at $100 \mathrm{~km} / \mathrm{h}$.
What is the average speed during its trip?
$H=\frac{200+150}{\frac{200}{80}+\frac{150}{100}}=\frac{350}{4}=87.5$
So, the average speed during the trip is $87.5 \mathrm{~km} / \mathrm{h}$.

THE QUADRATIC MEAN

The quadratic mean of a set of numbers is the square root of the arithmetic mean of the squares of the numbers.
The quadratic mean is frequently used in physical applications and also intervenes in the definition of other statistical indicators, such as standard deviation.

THE QUADRATIC MEAN FOR UNGROUPED DATA

in the case of a set of (n) numbers $\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}$, the quadratic mean, is defined by

$$
\mathrm{Q}=\sqrt{\frac{\sum \mathrm{x}_{\mathrm{i}}^{2}}{\mathrm{n}}}
$$

Example (c): find the quadratic mean of the set 3, 4, 8, 10
$\mathrm{Q}=\sqrt{\frac{3^{2}+4^{2}+8^{2}+10^{2}}{4}}=6.874$

THE QUADRATIC MEAN FOR GROUPED DATA

For grouped data If $\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}, \ldots, \mathrm{x}_{\mathrm{k}}$, are data points (or $\mathrm{c}_{1}, \mathrm{c}_{2}, \mathrm{c}_{3}, \ldots, \mathrm{c}_{\mathrm{k}}$, are midpoints) and $\mathrm{n}_{1}, \mathrm{n}_{2}, \mathrm{x}_{3}$, $\ldots ., \mathrm{n}_{\mathrm{k}}$, represent their respective frequencies, then the weighted quadratic mean is given by

$$
\mathrm{Q}=\sqrt{\frac{\sum n_{i} \mathrm{x}_{\mathrm{i}}^{2}}{\sum \mathrm{n}_{i}}}
$$

Example: find the quadratic mean for the following frequency distribution

Class Range	Frequency	Midpoints (ci)	$\mathrm{c}_{\mathrm{i}}{ }^{2}$	$\mathrm{n}_{\mathrm{i}} \mathrm{c}_{\mathrm{i}}{ }^{\text {a }}$
[20 30[7	25	625	4375
[30 40[11	35	1225	13475
[40 50[6	45	2025	12150
[50 60[9	55	3025	27225
[60 70[5	65	4225	21125
[70 80[4	75	5625	22500
SUM	42	/	/	100850

$Q=\sqrt{\frac{100850}{42}}=49$
Note: The previously calculated averages satisfy the following relationship

$$
H<G<\bar{X}<Q
$$

THE MEDIAN

The median of a set of data is a value that divides the data set into two equal halves. This will therefore be the value of the variable such that 50% of the population is above and 50% is below.

THE MEDIAN OF UNGROUPED DATA

To find the median of a data set, the computational procedure is as follows: arrange the data in order of magnitude in increasing or decreasing order.
If the number of observations is odd, the median is the middle value of the ordered list. $M e=X_{\frac{n+1}{2}}$
If the number of observations is even, the median is the arithmetic mean of the two values closest to the middle of the ordered list.

$$
M e=\frac{X_{\frac{n}{2}}+X_{\frac{n}{2}+1}}{2}
$$

Example: find the median for the following set of numbers
(i) $3,5,6,14,18,10,7$
(ii) $12,22,18,15,19,10,24,20$

solution

(i) Re-arranging the numbers in ascending order, we have

\mathbf{X}_{1}	\mathbf{X}_{2}	\mathbf{X}_{3}	\mathbf{X}_{4}	\mathbf{X}_{5}	\mathbf{X}_{6}	\mathbf{X}_{7}
3	5	6	7	10	14	$\mathbf{1 8}$

Because there are seven entries (an odd number), the median is the middle data entry.
$M e=\frac{X_{7+1}^{2}}{}=X_{4}=7$
(ii) Re-arranging the numbers in ascending order, we have

\mathbf{X}_{1}	\mathbf{X}_{2}	\mathbf{X}_{3}	\mathbf{X}_{4}	\mathbf{X}_{5}	\mathbf{X}_{6}	\mathbf{X}_{7}	\mathbf{X}_{8}
10	$\mathbf{1 2}$	$\mathbf{1 5}$	$\mathbf{1 8}$	$\mathbf{1 9}$	$\mathbf{2 0}$	$\mathbf{2 2}$	$\mathbf{2 4}$

Since the data set has an even number of entries (8), the median is the mean of the two middle data entries.
$M e=\frac{X_{\frac{8}{2}}+X_{\frac{8}{2}+1}}{2}=\frac{X_{4}+X_{5}}{2}=\frac{18+19}{2}=18.5$

THE MEDIAN OF GROUPED DATA

The median for discrete variable: in the case of a discrete variable, the median can be obtained using the cumulative frequencies or the cumulative relative frequencies; the median is then the value of the variable with which a cumulative frequency of $\mathrm{N} / 2$ is associated or a cumulative relative frequency of 50% of the data set.

If the median does not fall on an exact value of the variable, for convention, we retain the value of the immediately superior variable.

Example: the following table represent the housing occupancy rate in a city

Number of residents x_{i}	2	3	4	5	6	7
Number of houses n_{i}	6	6	8	7	3	3

Find the median of the data

Solution

To find the median, first we find the cumulative frequency (or cumulative relative frequency) and then determine the rank of the median ($\mathrm{N} / 2$) (or 0.5).

$$
\frac{N}{2}=\frac{33}{2}=16.5
$$

Since the rank of the median lies between the respective cumulative values 12 and 20 corresponding to the variable values 3 and 4 , respectively, the value of the median is the largest value, i.e. $\mathrm{Me}=4$

The median for continuous variable: for continuous variable the median can be obtained either by interpolation or graphically.
a) The interpolation approach: To find the median, the computational procedure is as follows.

- find the cumulative frequency (or cumulative relative frequency)
- determine the rank of the median ($\mathrm{N} / 2$) (or 0.5).
- determine the median class, which is the class containing the median
- calculate the median by the formula

$$
M e=L_{l}+\frac{\frac{N}{2}-\left(\sum n_{i}\right)_{l-1}}{n_{e}} * k
$$

L_{l} : lower class boundary of the median class
N : total frequencies
$\left(\sum n_{i}\right)_{l-1}$: sum of frequencies of all classes lower than the median class
n_{e} : frequency of the median class
k : length of the median class interval
Example: find the median for the following frequency distribution of workers according to their age.

x_{i}	[20 25[[25 30[[30 35[[35 40[[40 45[[45 50[[50 55[[55 60[
n_{i}	4	10	24	34	14	8	4	2

Solution

1- First we find the cumulative frequency (or cumulative relative frequency)

xi	n_{i}	$\mathrm{n}_{\mathrm{i}} \boldsymbol{\nearrow}$	$\mathrm{n}_{\mathrm{i}} \downarrow$	f_{i}	$\mathrm{f}_{\mathrm{i}}{ }^{4}$	$\mathrm{f}_{\mathrm{i}} \downarrow$
[20 25[4	4	100	0,04	0,04	1
[25 30[10	14	96	0,1	0,14	0,96
[30 35[24	38	86	0,24	0,38	0,86
[35 40[34	72	62	0,34	0,72	0,62
[40 45[14	86	28	0,14	0,86	0,28
[45 50[8	94	14	0,08	0,94	0,14
[50 55	4	98	6	0,04	0,98	0,06
[55 60[2	100	2	0,02	1	0,02
	100			1		

2- We determine the rank of the median $\mathrm{N} / 2=100 / 2=50$ (50% of the data lie between 38 and 72)
3- The median class is [35 40[
4 - We calculate the median as follow
$M e=35+\frac{\frac{100}{2}-38}{34} * 5=36.76$
b) The graphical approach: The median of a grouped data can be obtained using the cumulative frequency curve (ogive) and finding from it the value ' x ' at the 50% point (abscissa), which corresponds to the intersection of the less then and the more then ogives.

QUANTILES

All quantities that are defined as partitioning a set of data arranged in order of magnitude into a number of equal portions are called quantiles. Examples include the quartiles, deciles and the percentiles.

QUARTILES: the quartiles are the values that divides a set of data into four equal parts. These values, denoted by $\mathrm{Q}_{1}, \mathrm{Q}_{2}$, and Q_{3}, are called the first, second, and third quartiles.
The first quartile Q_{1} is the value below which we find 25% of the data.
The second quartile Q_{2} is the median.
The third quartile Q_{3} is the value below which we find 75% of the data.
The calculation of the quartiles for both ungrouped and grouped data is similar to parallel calculations of the median for ungrouped and grouped data using appropriately modified versions.

QUARTILES OF UNGROUPED DATA

The calculation of the quartiles for ungrouped data is similar to parallel calculations of the median for ungrouped data using appropriately modified versions.

- arrange the data in order of magnitude in increasing order.
- If N is odd

$$
Q_{i}=\frac{X_{i(n+1)}^{4}}{}
$$

If N is even

$$
Q_{i}=X_{\frac{i n}{4}}
$$

QUARTILES OF GROUPED DATA

The calculation of the quartiles for grouped data is similar to parallel calculations of the median for grouped data using appropriately modified versions.
quartiles for discrete variable: The Q_{i} quartile is the value of the variable with which a cumulative frequency of ($\mathrm{i}^{*} \mathrm{~N} / 4$) is associated.
quartiles for continuous variable: the quartiles can be obtained by the formula

$$
Q_{i}=L_{l}+\frac{\frac{i N}{4}-\left(\sum n_{i}\right)_{l-1}}{n_{Q_{i}}} * k
$$

DECILES: the deciles are the values that spilt a set of data into ten equal parts. These values, denoted by $D_{1}, D_{2}, \ldots D_{9}$, are called the first decile, second decile, up to ninth decile.

DECILES OF UNGROUPED DATA

Deciles are determined in the same manner as quartiles

- arrange the data in order of magnitude in increasing order.
- If N is odd

$$
D_{i}=X_{\frac{i(n+1)}{10}}^{10}
$$

If N is even

$$
D_{i}=X_{\frac{i n}{10}}
$$

DECILES OF GROUPED DATA

The calculation of the deciles for grouped data is similar to parallel calculations of the quartiles for grouped data using appropriately modified versions.
The deciles for discrete variable: The D_{i} decile is the value of the variable with which a cumulative frequency of ($\mathrm{i} * \mathrm{~N} / 10$) is associated.

The quartiles for continuous variable: deciles can be obtained by the formula

$$
D_{i}=L_{l}+\frac{\frac{i N}{10}-\left(\sum n_{i}\right)_{l-1}}{n_{D_{i}}} * k
$$

PERCENTILES: percentiles are the values that spilt a set of data into one hundred equal parts. These values, denoted by $\mathrm{P}_{1}, \mathrm{P}_{2}, \ldots \mathrm{P}_{99}$, are called the first percentile, second percentile, up to ninety ninth percentile.

PERCENTILES OF UNGROUPED DATA

percentiles are determined in the same manner as quartiles and deciles

- arrange the data in order of magnitude in increasing order.
- If N is odd

$$
P_{i}=X_{\frac{i(n+1)}{100}}
$$

If N is even

$$
P_{i}=X_{\frac{i n}{100}}
$$

PERCENTILES OF GROUPED DATA

The calculation of the percentiles for grouped data is similar to parallel calculations of the quartiles for grouped data using appropriately modified versions.
percentiles for discrete variable: The P_{i} percentile is the value of the variable with which a cumulative frequency of $(i * \mathrm{~N} / 100)$ is associated.
percentiles for continuous variable: percentiles can be obtained by the formula

$$
P_{i}=L_{l}+\frac{\frac{i N}{100}-\left(\sum n_{i}\right)_{l-1}}{n_{P_{i}}} * k
$$

The graphical approach: quantiles of a grouped data can be obtained using the cumulative frequency or the cumulative relative (or percent) frequency curve (ogive) and finding from it the value ' x ' at the appropriate $\%$ point (abscissa).

Example: the following table gives the distribution of workers according to their age.

x_{i}	[20) 25[[25 30]	[30 35[[35 40]	[40 45[$\begin{array}{ll}45 & 50\end{array}$	[50 55]	[55 60]
n_{i}	4	10	24	34	14	8	4	2

For the above frequency distribution, find the following
The first and third quartile
The ninth decile
The ninety fifth percentile

Solution

1- First we find the cumulative frequency (or cumulative relative frequency)

xi		n_{i}	$\mathrm{n}_{\mathrm{i}} \boldsymbol{\nearrow}$	f_{i}
$[20 \quad 25[$	4	4	0,04	0,04
$[25 \quad 30[$	10	14	0,1	0,14
$[30 \quad 35[$	24	38	0,24	0,38
$[35 \quad 40[$	34	72	0,34	0,72
$[40$	$45[$	14	86	0,14
$[45$	$50[$	8	94	0,08
$[50$	$55[$	4	98	0,04
$[55 \quad 60[$	2	100	0,02	0,94
	100		1	1

For quartiles

2- We determine the rank of the first quartile $\mathrm{N} / 4=100 / 4=25$ (25% of the data lie between 14 and 38)
3- The first quartile class is $[30 \quad 35[$
4 - We calculate the first quartile as follow
$Q_{1}=30+\frac{\frac{100}{4}-14}{24} * 5=32.29$
By the same way we find the third quartile
$Q_{3}=40+\frac{\frac{3(100)}{4}-72}{14} * 5=41.07$
For the ninth decile
$D_{9}=45+\frac{\frac{9(100)}{10}-86}{8} * 5=47.5$
For the ninety fifth percentile
$P_{95}=50+\frac{\frac{95(100)}{100}-94}{4} * 5=51.25$

Graphically

THE MODE

The most frequent value of a distribution is called the mode.

A distribution having one mode, two modes, or more than two modes are called respectively Unimodal, bimodal or multi - modal distribution. the mode sometimes does not exist If no value is repeated, or if all classes have the same frequency.

THE MODE OF UNGROUPED DATA

The mode of a set of data is that value which occurs with the greatest frequency
Example: find the mode for the following set of numbers
(i) $3,5,6,5,18,5,7$
(ii) $1,4,2,4,6,6,8,4,6,3$
(iii) $12,22,18,15,19,10,24,20$
solution
(i) The mode is 5 , with frequency 3
(ii) The set is bimodal, it has two modes 4 and 6
(iii) There is no mode.

THE MODE OF GROUPED DATA

The mode of a grouped distribution is the value at the point around which the items tend to be most heavily concentrated.
The mode for discrete variable: The mode is the value of the variable most frequently observed
Example: find the mode of the following distribution

Number of residents x_{i}	2	3	4	5	6	7
Number of houses n_{i}	6	6	8	7	3	3

Solution

The mode is 4 , with frequency 8
The mode for continuous variable: for continuous variable the mode can be obtained either by interpolation or graphically.

- The mode by formula is as follow

$$
M_{o}=L_{l}+\frac{\Delta_{1}}{\Delta_{1}+\Delta_{2}} * k
$$

L_{l} : lower class boundary of the modal class
Δ_{1} : the difference between the frequency of the modal class and the frequency of the class immediately before the modal class.
Δ_{2} : the difference between the frequency of the modal class and the frequency of the class immediately after the modal class,
k : length of the median class interval
If the class widths are different, in order to calculate the mode, it is necessary to find the corrected frequencies as mentioned above.

- Graphical method: The mode for continuous variable data can be obtained using the histogram.

Example (a): Class widths are equal
find the mode of the following distribution using the formula and the graphical method.

Class Range	$\left[\begin{array}{ll}14 & 23[\end{array}\right.$	$\left[\begin{array}{ll}23 & 32[\end{array}\right.$	$\left[\begin{array}{ll}32 & 41[\end{array}\right.$	$\left[\begin{array}{ll}41 & 50[\end{array}\right.$	$\left[\begin{array}{ll}50 & 59[\end{array}\right.$	$\left[\begin{array}{ll}59 & 68[\end{array}\right.$
Frequency	4	5	7	9	11	6

Solution

$$
\begin{aligned}
M_{o} & =L_{l}+\frac{\Delta_{1}}{\Delta_{1}+\Delta_{2}} * k \\
& =50+\frac{11-9}{(11-9)+(11-6)} * 9=52.57
\end{aligned}
$$

graphical method

Example (b): Class widths are different
find the mode of the following distribution using the formula and the graphical method.

X_{i}	[20 25[[25 35[[35 45[[45 60[[60 80]	[80 85[
n_{i}	10	30	40	45	50	10

In order to find the mode, we have to calculate the corrected frequencies ($\mathrm{n}_{\mathrm{i}}{ }^{*}$).

x_{i}	n_{i}	L_{i}	d_{i}	$\mathrm{n}_{\mathrm{i}}^{*}$
$[20 \quad 25[$	10	5	2	$2 * 5=10$
$[25 \quad 35[$	30	10	3	$3 * 5=15$
$[3545[$	40	10	4	$4 * 5=20$
$[45 \quad 60[$	45	15	3	$3 * 5=15$
$[60 \quad 80[$	50	20	2.5	$2.5 * 5=12.5$
$[80 \quad 85[$	10	5	2	$2 * 5=10$
Sum	210	$/$		

Solution

$$
\begin{aligned}
M_{o} & =L_{l}+\frac{\Delta_{1}}{\Delta_{1}+\Delta_{2}} * k \\
& =35+\frac{20-15}{(20-15)+(20-15)} * 9=39.5
\end{aligned}
$$

graphical method

