السلسلة 3 ديناميك النقطة المادية

التمرين 1:

كتلتان m_1 و دات محور ثابت. الكتلة m_1 تنزلق على m_2 و m_1 مستوي مائل غير أملس يشكل $\alpha=30^\circ$ مع الأفق مع العلم أن معاملات الاحتكاك الساكنة و الحركية هي على الترتيب m_1 مستوي مائل غير أملس يشكل $\alpha=30^\circ$ مع الأفق مع العلم أن معاملات الاحتكاك الساكنة و الحركية هي على الترتيب $m_1=1$ و $m_1=1$ و $m_2=1$ الشكل $m_1=1$ الشكل $m_2=1$ و $m_1=1$ و $m_2=1$ و $m_1=1$ و $m_2=1$ الشكل $m_1=1$ و $m_2=1$ و $m_1=1$ و $m_2=1$ و $m_1=1$ و $m_2=1$ الشكل $m_1=1$ و $m_1=$

 m_{2min} التي تحافظ على توازن النظام.

ا لمدة ثانيتين. $m_2=1,5~Kg$ من ارتفاع h لمدة ثانيتين. $m_2=1,5~Kg$

- احسب التسار عات الناتجة عن الكتلتين.
- احسب الارتفاعh . اوجد سرعات الكتلتين حتى ترتطم الكتلة m2 بالأرض.

التمرين 2:

لنعتبر جسم ذو كتلة m_1 كنقطة مادية يستطيع الانزلاق على مساحة أفقية مع معامل احتكاك حركي μ_d إحدى نهايتيه موصولة بخيط غير قابل للتمطيط مهمل الكتلة يمر على محز بكرة كتلتها مهملة نهايته مربوطة بكتلة ثانية m_2 الشكل 1. بتطبيق قوة جر طويلتها F و التي تشكل زاوية θ مع الأفق. اوجد تسار عات الكتاتين.

التمرين 3:

m=3Kg نعتبر شاحنة ثابتة ذات حيز حمولة للتفريغ. نضع في حيز الحمولة طوب كتلته

ترفع الشاحنة حيز الحمولة تدريجيا. معاملات الاحتكاك الساكن و المتحرك بين حيز الحمولة و الطوب على التوالي:

$$\mu_s = 0.6$$
 et $\mu_c = 0.3$.

ه. احسب زاوية حد الميل $lpha_0$ لحيز الحمولة مع الافق لكي يسبب انزلاق الطوب.

 $.g=10~ms^{-2}$ اذا كان °lpha=45, احسب تسارع الطوب نعطي.

التمرين 4 :

نعتبر جسم ذو كتلة M مرتبط بجسم أخر ذو كتلة m=2kg عن طريق خيط غير قابل للتمطيط كتلته مهملة. و ليكن نابض ثابت مرونته K=150N/m كتلته مهملة مربوط بالكتلة m من جهة و بالحائط من الجهة الأخرى.

1/ باعتبار احتكاك الكتلة m مهمل على المستوي الأفقي احسب حرفيا التسارع الناتج عن النظام وكذلك توتر الخيط.

المعلقة التي من اجلها يبقى النظام ساكن. M باعتبار الاحتكاكات غير مهملة و النابض غير مستطيل. ما هي القيمة العظمى للكتلة المعلقة التي من اجلها يبقى النظام ساكن. $\mu_s = 0.6$

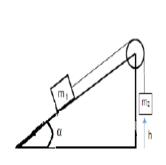
المعامل المع

1ere MI

Exercise 1:

Two masses m_1 and m_2 are linked by an inextensible wire which passes through a pulley of negligible mass and fixed axis. The mass m_1 slides on a non-smooth inclined plane which makes an angle $\alpha=30^\circ$ with respect to the horizontal knowing that the static and dynamic friction coefficients are respectively $\mu_s=0.7$ and $\mu_d=0.3$. We will take $g=9.8~m/s^2$ and $m_1=1Kg$.

- 1. Calculate the minimum mass m_{2min} that keeps the system in equilibrium.
- 2. We now take the mass $m_2 = 1.5 \, Kg$. It is released, without initial speed, from a height h for a time of 2s.
 - a) Calculate the accelerations taken by the two masses.
 - b) Calculate the height h. Deduce the velocities of the two masses when the mass m_2 hits the ground


Exercise 2:

A block of mass m_1 assimilated to a material point can slide on a horizontal surface with a coefficient of dynamic friction. μ_d One of these ends is connected by an inextensible wire of negligible mass passing through a pulley of negligible mass connected to a second mass m_2 . We apply a force of modulus F and making an angle θ with the horizontal. Find the accelerations of the two masses.

Exercise 3:

We consider a stationary truck with a lowered dump. We place a mass brick on the dumpster m=3Kg. The truck gradually lifts its dumpster. The static and kinetic friction coefficients between the bucket and the brick are respectively $\mu_s=0.6$ and $\mu_c=0.3$.

- a. Calculate the limit angle α_0 of inclination of the skip relative to the horizontal to cause the brick to slide.
- b. If $\alpha = 45^{\circ}$, determine the acceleration of the brick. Take $g = 10 \ m \ s^{-2}$.

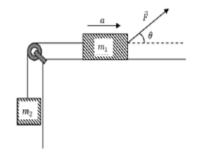
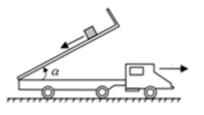
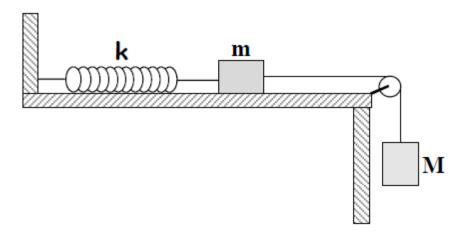


figure ex.2




figure ex. 3

1ere MI

Exercise 4:

A body of mass \mathbf{M} is connected to a body of mass $\mathbf{m}=2$ kg via an inextensible wire of negligible mass. A spring $\mathbf{K}=\mathbf{150N/m}$ of negligible mass is attached to the mass \mathbf{m} and to the wall.

- 1°)- In the case where we neglect the friction of the mass \mathbf{m} on the horizontal plane, literally calculate the acceleration taken by the system as well as the tension of the wire.
- 2°)- Since friction is no longer negligible and the spring is not stretched, what is the maximum value of the mass M to be suspended so that the system remains at rest? The value of the static friction coefficient is $\mu_s = 0.8$
- $3^{\circ})$ We now take a mass M=3 kg and the spring is stretched by 10cm , calculate at this position the acceleration of the system and the tension of the wire knowing that the coefficient of dynamic friction is μ_d =0.25 .

