Microeconomics

- Utility

How Do Consumers Make Choices?

- How do you make the best choice in conditions of scarcity?
- In other words, how do you get the "biggest bang for your buck?"
- Consider questions like:
- Why do people purchase more of something when its price falls?
- Why do people buy more goods and services when their budget increases?

Leaming Objectives

- By the end of this section, you will be able to:
- Expla in margina l utility a nd the signific ance of diminishing marginal utility
- Calculate marginal and total utility
- Propose decisionsthat maximize utility

Rationality and Self-Interest

- Assumption of Rationality: a lso called the theory of rational beha vior, it is the assumption that people will make choices in their own self-interest.
- The assumption of rationality—also called the theory of rational behavior-is prima rily a simplification that economists make in orderto create a useful model of human decision-making.
- The assumption that individuals a re purely self-interested doesn't imply that individuals are greedy and selfish. People clearly derive satisfaction from helping others, so "self-interest" can also include pursuing things that benefit other people.

Rationality in Action

Rationality in Action

Rationa lity suggests that c onsumers will act to maximize self-interest and businesses will act to maximize profits. Both are taking into account the benefits of a choice, given the costs.

Rationality and Consumers

- When a consumer is thinking about buying a product, what does he or she want? The theory of rational behavior would say that the consumer wants to maximize benefit and minimize cost.
- As the cost of the product increases, it
 becomes less likely that the consumer will decide that the benefits of the purchase outweigh the costs.

Rationality in Action (cont.)

Rationality and Students Example

- How do students decide on a major?
- A number of things may factor a student's decision on a major, such as what type of career a student is interested in, the reputation of specific departments at the university a student is attending, and the student's preferences for spec ific fields of study.
- You disc over that Business Analytics majors eam signific a ntly hig her sala ries. This disc overy inc rea ses the benefits in your mind of the Analytic smajor, and you decide to choose that major.

Rationality and Businesses

- Businesses also have predictable behavior, but rather than seeking to maximize ha ppiness or plea sure, they seek to maximize profits.
- When economists assume that businesses have a goal of maximizing profits, they can make predictionsabout how companies will react to changing business conditions.
- For example: If a company stands to eam more profit by moving some jobsoverseas, then that's the result that economists would predict.

Consumer Choice and Utility

Table 1. Algerian. Consumption Choices

- Consumerchoice: the combination of goods and services a consumer purchases

Average Household Income before Taxes	$\mathbf{6 5 0 0 0}$
Average Annual Expenditures	60000
Food at home	12000
Food away from home	5000
Housing	15000
Apparel and services	3000
Transportation	8000
Healthcare	4000
Entertainment	2500
Education	3500
Personal insurance and pensions	5000
All else: tobacco, reDZDing, personal care,	2000
cash contributions, miscellaneous	

Consumer Choice and the Budget Constraint

- Imagine that Ahmed likesto collectTshirts and watch movies
- the quantity of T-shirts is shown on the horizontal axis
- the quantity of movies is on the vertical axis
- The specific choicesalong the budget constraint line show the combinations of affordable T-shirts and movies

Utility

Table 2. Total Utility

T-Shirts (Quantity)	Total Utility	M ovies (Quantity)	Total Utility
$\mathbf{1}$	22	$\mathbf{1}$	16
$\mathbf{2}$	43	$\mathbf{2}$	31
$\mathbf{3}$	63	$\mathbf{3}$	45
$\mathbf{4}$	81	$\mathbf{4}$	58
$\mathbf{5}$	97	$\mathbf{5}$	70
$\mathbf{6}$	111	$\mathbf{6}$	81
$\mathbf{7}$	123	$\mathbf{7}$	91
$\mathbf{8}$	133	$\mathbf{8}$	100

- Uility: the satisfaction or happiness a person gets from consuming a good or service
- Ahmed obta ins utility from consuming T-shirts and consuming movies
- The second column shows the total utility, or total a mount of satisfaction

Total Utility

- This is a typic al total utility curve showing an inc rease in total utility as consumption of a good increases, though at a decreasing rate
- Total utility follows the expected pattem: it increases as the number of movies that Ahmed watches rises
- Calculate total utility by multiplying the utility of each good by the number of goods, then Dपding that together.
- Three T-shirts are worth 63 utils. Two movies are
 worth 31 utils.
- Total utility of $94(63+31)$.

Margina I Utility versus Tota I Utility

- A choice at the margin is a decision to do a little more or a little less of something
- Marginal utility is based on the notion that individuals rarely face all-ornothing decisions
- The change in total utility from consuming one more or one less of an item
- The marginal utility of a third slice of pizza is the change in satisfaction one gets when eating the third slice instead of stopping with two
- Marginal thinking: "How much better will I do on an exam if I study for one more hour?"

Calculating Marginal Utility

- Marginal Utility is equal to the change in total utility divided by the change in qua ntity

$$
M U=\frac{\text { change in total utility }}{\text { change in quantity }}
$$

Margina I Utility vs. Tota I Utility

- Marginal utility decreases as consumption of a good increases
- This is an example of the law of diminishing marginal utility, which holds that the additional utility dec reases with each unit added
- Diminishing marginal utility is a nother example of the more general law of diminishing retums

Budget Constraints and Choices

- Budget Constraint refers to all possible combinations of goods that someone can afford, given the prices of goodsand the income (ortime) we have to spend.
- Sunk Costs: costs incurred in the past that can't be recovered.
- Opportunity Cost measures cost by what is given up in exc hange; opportunity cost measures the value of the forgone altemative.

Ahmed's Burgers \& Bus Ticket Budget
Budget: \$10
Burgers: \$2
Bus Tickets: 50 cents

Budget Constraints and Choices (cont.)

Types of Budget Constraints

- Limited a mount of money to spend on the things we need a nd want.
- Limited a mount of time.

Budget Constra ints and Choices (cont. II)

Budget Constraint Results

- You have to make choices.
- Every choice involvestrade-offs.
- No matter how many goodsa consumerhasto choose from, every choice has an opportunity cost, i.e. the value of the other goods that a ren't chosen.
- The budget constraint framework assumes that sunk costs-costs incurred in the past that can't be recovered-should not affect the current decision.

Calculating Opportunity Cost Steps

Steps to Calc ulate Opportunity Cost

- Step 1. Use this equation where P and Q are the price and respective qua ntity of a ny number, n, of items purchased and Budget is the a mount of income one has to spend.
Budget $=P 1 \times Q 1+P 2 \times Q 2+\cdot \cdot+P n \times Q n$
- Step 2. Apply the budget constra int equation to the scenario.
$10=2 \times \mathrm{Q} 1+0.50 \times \mathrm{Q} 2$
- Step 3. Simplify the equation.

We are going solve for Q_{1}.

$$
\begin{aligned}
10 & =2 Q_{1}+0.50 Q_{2} \\
10-2 Q_{1} & =0.50 Q_{2} \\
-2 Q_{1} & =-10+0.50 Q_{2} \\
(2)\left(-2 Q_{1}\right) & =(2)-10+(2) 0.50 Q_{2} \\
-4 Q_{1} & =-20+Q_{2} \\
Q_{1} & =5-\frac{1}{4} Q_{2}
\end{aligned}
$$

- Step 4. Use the equation.

$$
\begin{aligned}
& Q_{1}=5-\left(\frac{1}{4}\right) 8 \\
& Q_{1}=5-2 \\
& Q_{1}=3
\end{aligned}
$$

- Step 5. the results.

Calculating Opportunity Cost - Graph

How many burgers and bus tickets can Ahmed buy?

- Ahmed'sbudged equation: $10=2 \times \mathrm{Q} 1+0.50 \times \mathrm{Q} 2$

Point	Quantity of Burgers (at \$2)	Quantity of Bus Trckets (at 50 cents)
A	5	0
B	4	4
C	3	8
D	2	12
E	1	16
F	0	20

Burgers: \$2
Bus Tickets: 50 cents

Bus Tickets

Rules for Maximizing Utility

- Consumerequilibrium: comparing the trade-offs between one affordable combination with all the other affordable combinations
- that is, the combination of goods and servic es that will maximize an individual's total utility
- Ahmed has income of 56 DDD. Movies cost 7 DZ and T-shirts cost 14 DZD. The points on the budget constraint line show the combinations of movies and T-shirts that are affordable

Applying the Rule

- To maximize total utility, spend each dollar on the item which yields the greatest marginal utility per dollar of expenditure
- Ahmed'sfirst purchase will be a movie. Why?
- Ahmed's choicesare to purchase either a T-shirt or a movie
- The first movie gives Ahmed more marginal utility perdollar than the first T-shirt, and because the movie is within his budget, he will purchase a movie first
- Ahmed will continue to purchase the good which giveshim the highest marginal utility per dollar until he exha usts the budget

Rules for Maximizing Utility cont.

Table 1. A Step-by-Step Approach to Maximizing Utility

Try	Which Has	Tota I Utility	Marginal Gain and Loss of Utility, Compared with Previous Choice	Conclusion
Choice 1: P	4 T-shirts and 0 movies	81 from 4 T-shirts +0 from 0 movies $=81$	-	-
Choice 2: Q	3 T-shirts and 2 movies	63 from 3 T-shirts + 31 from 0 movies $=94$	Loss of 18 from 1 less T-shirt, but gain of 31 from 2 more movies, fora net utility gain of 13	Q ispreferred over P
Choice 3: R	2 T-shirtsand 4 movies	43 from 2 T-shirts +58 from 4 movies $=101$	Loss of 20 from 1 less T-shirt, but gain of 27 from two more moviesfora net utility gain of 7	R is preferred overQ
Choice 4: S	1 T-shirt and 6 movies	22 from 1 T-shirt + 81 from 6 movies $=103$	Loss of 21 from 1 less T-shirt, but gain of 23 from two more movies, for a net utility ga in of 2	S is preferred over R
Choice 5: T	0 T-shirts and 8 movies	0 from 0 T-shirts +100 from 8 movies $=100$	Loss of 22 from 1 less T-shirt, but gain of 19 from two more movies, for a net utility loss of 3	S is preferred overT

Decision Making by Comparing Margina I Utility

- How Ahmed could use the following thought process (if he thought in utils) to make his decision regarding how many T-shirts and moviesto purchase:
- Step 1: From Table 1, Ahmed can see that the marginal utility of the fourth T-shirt is 18. If Ahmed gives up the fourth T-shirt, then he loses 18 utils
- Step 2: Giving up the fourth T-shirt, however, frees up14 DDD (the price of a T-shirt), allowing Ahmed to buy the first two movies (at 7 DZ each)
- Step 3: Ahmed knows that the marginal utility of the first movie is 16 and the marginal utility of the second movie is 15 . Thus, if Ahmed movesfrom point P to point Q, he gives up 18 utils (from the T-shirt), but gains 31 utils (from the movies)
- Step 4: Gaining 31 utils a nd losing 18 utils is a net ga in of 13 . This is just a nother way of sa ying that the total utility at Q (94 a ccording to the last column in Table 1) is 13 more than the total utility at P (81)
- Step 5: So, forAhmed, it makes sense to give up the fourth T-shirt in order to buy two movies

A Rule for Maximizing Utility

- This process of decision making described previously suggests a rule to follow when maximizing utility
- Since the price of T-shirts is not the same as the price of movies, it's not enough to just compare the marginal utility of T-shirts with the marginal utility of movies
- We need to control forthe prices of each product
- We can do this by computing and comparing marginal utility perdollarof expenditure foreach product
- Marginal utility per dinar is the a mount of additional utility Ahmed receives given the price of the product

The behaviour of economic actors is often constrained by the economic resources they have at their disposal

- Examples:
- -Individua Is maximising utility will be subject to a budget constraint
- -Firms maximising output will be subject to a cost constraint
- The function we want to maximise is called the objective function
- The restriction is called the constraint

$$
\begin{aligned}
& \operatorname{Max} \mathbf{U}=\mathrm{f}\left(\mathrm{X}_{1} \mathrm{X}_{2}\right)=X_{1}{ }_{1}^{2} X_{2} \\
& {\left[\mathrm{X}_{1}{ }^{*} \mathrm{X}_{2}{ }^{*}\right]}
\end{aligned}
$$

Subject to

$$
\mathrm{g}\left(\mathrm{X}_{1} \mathrm{X}_{2}\right)=\mathrm{P}_{1} \mathrm{X}_{1}+\mathrm{P}_{2} \mathrm{X}_{2}=\mathrm{M}
$$

Two ways to do this:

- By Substitution
- Lagrange Multiplier

Method 1: By Substitution

Step 1: Use the constraint to express X_{2} in terms of X_{1} (or vice-versa)

$$
X_{2}=\frac{M}{P_{2}}-\frac{P_{1}}{P_{2}} X_{1}
$$

Step 2: Substitute expression for \mathbf{X}_{2} into the objective function

$$
\begin{aligned}
& U=X_{1}^{2} X_{2}=X_{1}^{2}\left[\frac{M}{P_{2}}-\frac{P_{1}}{P_{2}} X_{1}\right] \\
& \operatorname{Max}_{X_{1}} U=X_{1}^{2} X_{2}=X_{1}^{2} \frac{M}{P_{2}}-X_{1}^{3} \frac{P_{1}}{P_{2}}
\end{aligned}
$$

Step 3:

$\operatorname{Max}_{X{ }_{1}} U=X_{1}^{2} X_{2}=X_{1}^{2} \frac{M}{P_{2}}-X_{1}^{3} \frac{P_{1}}{P_{2}}$

F.O. Condition

$$
\begin{aligned}
& d U=f_{1} \cdot d X_{1}=0 \\
& f_{1}=2 X_{1} \frac{M}{P_{2}}-3 X_{1}^{2} \frac{P_{1}}{P_{2}}=0 \\
& 2 \frac{M}{P_{2}}=3 X_{1} \frac{P_{1}}{P_{2}} \\
& X{ }^{*}{ }_{1}=\frac{2}{3} \frac{M}{P_{1}}
\end{aligned}
$$

($P_{1} X_{1}=2 / 3 M$, expenditure on good 1 is $2 / 3$ of income)

S. O. Condition

For a Max,

$$
\begin{aligned}
d{ }^{2} U & =f_{11} \cdot d X \quad{ }_{1}^{2}<0 \\
f_{11}= & 2 \frac{M}{P_{2}}-6 X \frac{P_{1}}{P_{2}}
\end{aligned}
$$

X_{1} needs to be large enough to sign N.D.
How Large? First find the X_{1} that sets,

$$
f_{11}=2 \frac{M}{P_{2}}-6 X, \frac{P_{1}}{P_{2}}=0
$$

Answer: $\quad x_{1}=\frac{1}{3} \frac{M}{P_{1}}$
The optimal ${ }_{x}{ }^{*}{ }^{\prime}=\frac{2}{3} \frac{M}{P_{1}} \Longrightarrow \mathbf{f}_{11}<\mathbf{O}$

Step 4: Substitute this value into constraint to find corresponding value of X_{2} that maximises objective function
Since $P_{1} X_{1}+P_{2} X_{2}=M$

$$
X^{*}{ }_{2}=\frac{M}{P_{2}}-\frac{P_{1}}{P_{2}} X_{1}=\frac{M}{P_{2}}-\frac{P_{1}}{P_{2}}\left[\frac{2}{3} \frac{M}{P_{1}}\right]=\frac{1}{3} \frac{M}{P_{2}}
$$

(note, rearranging, $P_{2} X_{2}=1 / 3 \mathrm{M}$. expenditure on good 2 is $1 / 3$ of M)

Method 2: By The Lagrange Multiplier

Max the Objective function:
$\operatorname{Max} \mathrm{U}=\mathrm{f}\left(\mathrm{X}_{1} \mathrm{X}_{2}\right)=X_{1^{2}} \mathrm{X}_{2}$
[$\mathrm{X}_{1}{ }^{*} \mathrm{X}_{2}{ }^{*}$]
Subject to the constraint:

$$
g\left(X_{1} X_{2}\right)=P_{1} X_{1}+P_{2} X_{2}-M=0
$$

Step 1: Define the Lagrangean Function L

$$
\begin{aligned}
& \text { (L= objective function }+\lambda \text { constraint }) \\
& \operatorname{Max} \mathrm{L}=\mathrm{f}\left(\mathrm{X}_{1} \mathrm{X}_{2}\right)+\lambda \mathrm{g}\left(\mathrm{X}_{1} \mathrm{X}_{2}\right) \\
& {\left[\mathrm{X}_{1}{ }^{*} \mathrm{X}_{2}^{*} \lambda^{*}\right]} \\
& \operatorname{Max}_{\left[\mathrm{X}_{1}{ }^{*} \mathrm{X}_{2}^{*} \lambda^{*}{ }^{*}\right]}=\mathrm{X}_{1}{ }^{2} \mathrm{X}_{2}+\lambda\left(\mathrm{M}-\mathrm{P}_{1} \mathrm{X}_{1}-\mathrm{P}_{2} \mathrm{X}_{2}\right)
\end{aligned}
$$

$$
\text { OR } \quad L=X_{1}^{2} X_{2}-\lambda\left(\mathrm{P}_{1} \mathrm{X}_{1}+\mathrm{P}_{2} \mathrm{X}_{2}-\mathrm{M}\right)
$$

Step 2: _Find all first order partial derivatives, set $\mathrm{dL}=0$

$$
\begin{array}{lll}
\text { 1. } \mathrm{Lx}_{1}=2 \mathrm{X}_{1} \mathrm{X}_{2}-\lambda \mathrm{P}_{1} & =0 & \text { eq1 } \\
\text { 2. } \mathrm{Lx}_{2}=\mathrm{X}_{1}^{2}-\lambda \mathrm{P}_{2} & =0 & \text { eq2 } \\
\text { 3. } \mathrm{L}_{\lambda}=\mathrm{M}-\mathrm{P}_{1} \mathrm{X}_{1}-\mathrm{P}_{2} \mathrm{X}_{2}=0 & \text { eq3 }
\end{array}
$$

Step 3: Solve the system of equations
Solving equations $1 \& 2$:
$\lambda=2 \mathrm{X}_{1} \mathrm{X}_{2} / \mathrm{P}_{1}=\mathrm{X}_{1}^{2} / \mathrm{P}_{2}$
so $2 \mathrm{X}_{1} \mathrm{P}_{2} \mathrm{X}_{2}=\mathrm{P}_{1} \mathrm{X}_{1}{ }^{2}$
so $2 \mathrm{P}_{2} \mathrm{X}_{2}=\mathrm{P}_{1} \mathrm{X}_{1}$
expenditure on good 2 is twice that of good 1

```
And substituting into eq 3
\(\mathrm{P}_{1} \mathrm{X}_{1}+\mathrm{P}_{2} \mathrm{X}_{2}-\mathrm{M}=0\)
\(2 \mathrm{P}_{2} \mathrm{X}_{2}+\mathrm{P}_{2} \mathrm{X}_{2}-\mathrm{M}=0\)
\(X_{2}{ }^{*}={ }^{1 / 3}{ }^{\mathrm{M}} / \mathrm{p}_{2}\)
```

and from eq 3:
$\mathrm{X}_{1}={ }^{\mathrm{M}} / \mathrm{P}_{1}-{ }^{\mathrm{P} 2 \mathrm{X} 2} / \mathrm{P} 1$
Substituting in for X_{2} : $\mathrm{X1}^{*}=2 / 3 \mathrm{M} / \mathrm{P} 1$

$$
X_{2}^{*}=\left[\frac{1}{3} \frac{M}{P_{2}}\right] \quad \& X_{1}^{*}=\left[\frac{2}{3} \frac{M}{P_{1}}\right]
$$

(again, note that rearranging reveals that $P_{1} X_{!}=2 / 3$
M and $P_{2} X_{2}=1 / 3 M$.
$2 / 3$ of income spent on good 1 , and $1 / 3$ on good2)

Step 4: Second Order Condition

$d^{2} L=L_{11} \cdot d X_{1}^{2}+L_{12} \cdot d X_{1} d X_{2}+L_{21} \cdot d X_{2} d X_{1}$
$+L_{22} \mathrm{dX}_{2}^{2}$
s.t. $g_{1} \cdot d X_{1}+g_{2} \cdot d X_{2}=0$
or $\mathrm{dX}_{2}=-\left(g_{1} / g_{2}\right) \cdot d X_{1}$
N. D. for a Max

$$
\begin{aligned}
& d^{2} L=\left[L_{11} \cdot g^{2}-2 L_{12 .} g_{1} \cdot g_{2}+L_{22} g^{2}{ }_{1}\right] d X^{2}{ }_{1} / g_{2}^{2} \\
& \mathbf{d}^{2} \mathbf{L}=\Phi \mathbf{d} X^{2}{ }_{1} / g^{2}{ }_{2} \text {, if } \Phi<O, N . D . \\
& B D=\left|\begin{array}{ccc}
0 & g_{1} & g_{2} \\
g_{1} & L_{11} & L_{12} \\
g_{2} & L_{21} & L_{22}
\end{array}\right|=-\Phi>0 \Rightarrow N^{2} . D \\
& B D=\left|\begin{array}{ccc}
0 & -P_{1} & -P_{2} \\
-P_{1} & 2 X_{2} & 2 X_{1} \\
-P_{2} & 2 X_{1} & 0
\end{array}\right|=-\Phi=2 P_{2} M>0 \Rightarrow N \cdot D \\
& d^{2} L<O, \text { N. D. (Max) }
\end{aligned}
$$

Example 1

- Question
- A consumers preferencescan be represented by the Utility Function, $\mathbf{U}(\mathbf{x}, \mathbf{y})=\mathbf{x} . \mathbf{y}$.
- How much will the utility maximising consumerdemand of goodsxand y if they have an income of DדD100, the price of good x is 5 D \triangle and the price of good y is 1 Dד?

Lagrangean Method:

$L=x \cdot y+\lambda[100-5 x-y]$
Eq. 1. $\mathbf{L}_{\mathrm{x}}=\mathrm{y}-5 \lambda=0$
Eq. 2. $\mathrm{L}_{\mathrm{y}}=\mathrm{x}-\lambda=\mathrm{O}$
Eq. 3. $\mathrm{L}_{\lambda}=100-5 x-y=0$
Eq 1\&2: $\quad \lambda={ }^{\mathrm{y}} / 5=\mathrm{x} \Rightarrow \mathrm{y}^{*}=5 \mathrm{x}$ Substitute into eq. 3 :
$100=5 x+y=10 x$
So $\mathrm{x}^{*}=10 \& \mathrm{y}^{*}=5 \mathrm{x}=50 \& \mathrm{U}^{*}=500$ (note that $P_{1} X_{1}=1 / 2 M$ and $P_{2} X_{2}=1 / 2 M$.
1/2 of income spent on good 1, and $1 / 2$ on good2)
Second Order Condition:

$$
B D=\left|\begin{array}{ccc}
0 & -5 & -1 \\
-5 & 0 & 1 \\
-1 & 1 & 0
\end{array}\right|=10>0 \Rightarrow \operatorname{Max}
$$

Quick Review

- What is utility and its connection to consumer behavior?
- How do you calculate the total utility of a collection of goods and services?
- What is the difference between total and marginal utility?
- Contrast and compute marginal utility and total utility
- Why does maximizing utility require that the last unit of each item purc hased must have the same marginal utility per dollar?
- How do you calculate the utility-maximizing choice?

