
1

Algorithmic and Data Structure 2

Chapter 1

“Procedures & Functions”

Outline

1. Definitions .. 2

2. Sub-algorithm types .. 3

2.1. Procedure ... 3

2.2. Function ... 4

3. Parameter passing mode ... 5

3.1. Passing parameters by value.. 5

3.2. Passing parameters by variable ... 7

4. Application examples ... 8

Chapter1: Procedures & Functions

2

Chapter 1: Procedures & Functions

1. Definitions

A sub-algorithm is a block that is part of an algorithm. It is declared in the header part (before

the start of the algorithm “begin”), then called in the body of the algorithm.

Since it is a block in its own right, it possibly has a header, a series of instructions, and

management of results just like the algorithm that contains it.

Notes:

- A sub-algorithm uses the variables declared in the algorithm (called global variables). It can

also have its own variables (called local) declared in the space reserved for it; but which can

only be used in this sub-algorithm and nowhere else because its scope (visibility) is limited

to the block which contains it. The space of these local variables is only reserved when the

sub-algorithm is called and is freed at the end of execution.

- A sub-algorithm is declared in a general way i.e. it can be called several times with different

values using arguments. These latter, although they are optional, are called parameters

and are clearly declared, if necessary, in the header of the sub-algorithm.

- A parameter is a value of the main block that the sub-algorithm needs to execute with real

data the sequence of actions (instructions) that he is responsible for carrying out. There are

two types of parameters:

 The formal parameters, definition of the number and type of values that the sub-

algorithm must receive to start successfully. We declare the formal parameters

during the declaration of the sub-algorithm.

 The effective parameters are real values (constant or variable) received by the sub-

algorithm during the execution of the main block. They are defined independently

at each call of the sub-algorithm in the main algorithm.

- The execution of a sub-algorithm (procedure or function) is done by a call instruction

(following sections). Applying this instruction generates a jump to the called sub-

algorithm. The end of this sub-algorithm restarts the instruction sequence interrupted by

the call.

Chapter1: Procedures & Functions

3

2. Sub-algorithm types

A sub-algorithm can be in the form of a function or procedure.

A function is a sub-algorithm, which, from data, calculates and returns to the algorithm One

and Only one result, whereas in general, a procedure displays the requested result(s).

2.1.Procedure

A procedure is a block of instructions named and declared in the header of the algorithm and

called in its body whenever the programmer needs it.

Declaration of a procedure:

Procedure Procedure_Name (Parameter_Name: Prarameter_Type ;……);

Declaration

Variable_name: Variable_type; Local variables

…

Begin

… Instructions; Body of the procedure

END;

A procedure can be called by specifying, at the desired time, its name and possibly its

parameters; this triggers the execution of the procedure instructions.

Example : Here is an algorithm using a procedure that calculates a sum of 100 numbers.

Algorithm Test;

Variables i, S: integer;

Procedure Sum;

Begin /*Start of Procedure*/

S ←0;

For i← 1 to 100 do

 S ← S + i

EndFor

Write (“The sum of the first 100 numbers is”, S);

Chapter1: Procedures & Functions

4

End; /*End of Procedure*/

Begin /*Start of algorithm*/

Sum

END /*End of algorithm*/

2.2.Function

A function is a block of instructions that necessarily returns one and only one result value to

the calling algorithm. A function never displays the response on the screen because it simply

returns it to the calling algorithm.

Declaration of a function:

Function Function_Name (Parameter_Name: Prarameter_Type ;……): Function_Type;

Declaration

Variable_name: Variable_type; Local variables

…

Begin

… Instructions; Body of the function

 Function_Name ← Result;

END;

Since the main purpose of a function is to return a value, it is therefore necessary to specify the

type of the function which is in reality the type of this value.

A function call is an assignment expression so that the result is retrieved into a global variable

Global-variable-name ← Function_Name (parameters);

Example: The previous algorithm, which calculates a sum of N numbers, can use a function

instead of a procedure.

Algorithm Test;

Variables i, Som: integer;

Function Sum : integer;

Chapter1: Procedures & Functions

5

Variable S: integer;

Begin /*Start of Function*/

S ←0;

For i← 1 to 100 do

 S ← S + i;

EndFor

 Sum ← S;

End; /*End of Function*/

Begin /*Start of algorithm*/

Som ← Sum;

Write (“The sum of 100 first numbers is”, Som);

END /*End of algorithm*/

Note: Just like a procedure, a function can call other sub-algorithms provided that they are

defined before it or that they are declared in its header.

3. Parameter passing mode

A sub-algorithm with parameters is very useful because it allows you to repeat a series of

complex operations for values that we do not know in advance. There are two types of parameter

passing: by value and by variable (also called by reference or by address).

3.1.Passing parameters by value

This is the default transmission mode, there is a copy of the value. In this mode, the content of

the effective parameters cannot be modified by the instructions of the function or procedure;

because we are not working directly with the variable, but on a copy. At the end of the execution

of the sub-algorithm the variable will retain its initial value. The parameters in this case are

used as data.

Syntax:

Procedure procedure_name (param1 :type1 ; param2, param3 :type2);

Function <function_name> (param1 :type1 ; param2 :type2): Function_type;

Chapter1: Procedures & Functions

6

Example : Consider the following algorithm.

Algorithm Pas-val;

Variable M: integer;

Procedure P1 (number: integer);

Begin

 If (number < 0) then

 number ← -number;

 Endif

 Write (number);

END;

Begin

 Read (M);

 P1(M);

 Write (M);

END

Let's run this algorithm for the value (-6)

Before the procedure call: the only variable declared is the global variable (M).

M Screen

-6

After the procedure call: the parameter variable "number" is declared and receives a copy of

the value of M.

M number Screen

-6 -6

-6 6

-6 6 6

When returning to the algorithm (at the call level) only the global variable remains with its

initial value.

M Screen

-6

-6 -6

Chapter1: Procedures & Functions

7

3.2.Passing parameters by variable

Here, it is no longer a matter of simply using the value of the variable, but also its location in

memory (hence the expression “by address”). In fact, the formal parameter replaces the

effective parameter during the execution time of the sub-algorithm and at the exit it transmits

its new value.

Such a parameter passing is done by using the keyword “Var” .

Syntax:

Procedure procedure_name (Var param1 :type1, param2, param3 :type2);

Function <function_name> (Var param1: type1, param2 : type2): Function_type;

Note: Parameters passed by value and by address can coexist within the same sub-algorithm.

You just need to separate the two types of passage with a (;).

Syntax:

Procedure procedure_name (Var param1 :type1 ; param2, param3 :type2);

In this case param1 is passed by reference while the other two are passed by value.

Function <function_name> (param1 :type1 ; Var param2 :type2): Function_type;

In this case param1 is passed by value while the second is passed by variable (reference).

Example : Either the previous algorithm modified in the parameter passing mode.

Algorithm Pas-val;

Variable M: integer;

Procedure P1 (Var number: integer);

Begin

 If (number < 0) then

 number ← -number;

 End if

 Write (number);

END

Begin

 Read (M);

 P1(M);

 Write (M);

END

Chapter1: Procedures & Functions

8

Let's run this algorithm for the value (-6)

Before the procedure call: the only variable declared is the global variable (M).

M Screen

-6

After the procedure call: the variable-parameter number replaces the variable M.

M

number

Screen

-6

6

6 6

When returning to the algorithm only the global variable remains with its new value.

M Screen

-6 “input value”

6 6

4. Application examples

Example 1 :

An algorithm that calculates and displays the absolute value of a value using a function.

Algorithm example1;

Variable a, b: integer;

Function abs (n: Integer): Integer;

Variable AbsoluteValue: integer;

Begin

If (n >= 0) then

 AbsoluteValue ← n;

else

 AbsoluteValue ← - n;

Endif

 abs ← AbsoluteValue ;

END

Chapter1: Procedures & Functions

9

Begin

Write (“Enter an integer :”);

Read (a);

b ← abs (a);

Write (“the absolute value of “, a, “is”, b);

END

Example 2:

It is required to write an algorithm that asks the user to enter an integer value (X) then it tells

the user if X is a positive or negative number.

Algorithm example2;

Variable X: integer;

Procedure positive_negative (n: Integer);

Begin

If (n >= 0) then

 Write (“positive”);

else

 Write (“negative”);

Endif

END

Begin

Write (“Enter an integer :”);

Read (X);

Positive_negative (X);

END

