
1

Algorithmic and Data Structure 2

Chapter 3

“ Pointers”

Outline

Chapter 3 .. 1

“ Pointers” .. 1

1. Introduction ... 2

2. Definition .. 2

Chapter 3: Pointers

2

1. Introduction

Any variable manipulated in a program is stored somewhere in central memory. This memory

consists of bytes, which are uniquely identified by a number called an address. To find a

variable, it is enough to know the address of the byte where it is stored (or, if it is a variable

covers several contiguous bytes, the address of the first of these bytes). For obvious reasons

for readability, we often designate variables by identifiers, and not by their address. It is the

compiler, which then makes the link between the identifier of the variable with its address in

memory. However, it is sometimes very practical to directly manipulate a variable by its

address.

Example:

int i, j; i = 3;

j = i;

If the compiler placed the variable i at address 4831836000 in memory, and the variable j at

address 4831836004, we have

Object Address value

i 4831836000 3

j 4831836004 3

Two different variables have different addresses. The assignment i = j; only operates on the

values of the variables.

2. Definition

A pointer is an object whose value is equal to the address of another object. Even if the value

of a pointer is always an integer (possibly a long integer), the type of a pointer depends on the

type of the object it points to. This distinction is essential for interpreting the value of a pointer.

Indeed, for a pointer to an object of type char, the value gives the address of the byte where this

object is stored. For a pointer to an object of integer or real type, the value gives the address of

the first byte where the object is stored? where an integer is stored on 2 bytes and a real is stored

on 4 bytes. (in C language the number of bytes of a given type is calculated by the function:

sizeof (type)).

Chapter 3: Pointers

3

 Algorithm C language

Declaration

pointer_name: * Type; (Type is the type of the

pointed object.)

Example :

p1:*character; //p1 is a pointer pointing to a

character object.

p2:*integer; // p2 is a pointer pointing to an integer

object.

p3: real; //p3 is a pointer pointing to a real object.

Type * pointer_name ; (Type is the type of the

pointed object).

Example :

char *p1;

int *p2;

float *p3;

After declaration and before use, a pointer must be initialized (otherwise it can point to any region of memory!):

Initialization

1. Assigning a null value

p  NULL ;

2. Assigning the address of another variable

p  &i ;

Algorithm example;

Variables i: integer; p:*integer;

Begin

i3;

p  &i ;

1. Assigning a null value

p = NULL ;

2. Assigning the address of another variable

p = &i ;

Example

Chapter 3: Pointers

4

write (“the contents of the memory box pointed to

by p”,*p);

p  5 ;

write (“i=”,i, “*p=”,*p);

END

3. The dynamic allocation of a new memory

space. Dynamic allocation is the operation of

reserving memory space of a defined size.

allocate(p);

allocate (p): reserves a memory location of the size

corresponding to the type, and puts in the variable

p the address of the reserved memory area.

3. Dynamic allocation in C is done through (among other things) the

function malloc(numberBytes) of the standard library stdlib.h

 type* p = (type*) malloc (sizeof (type));

Example

Chapter 3: Pointers

5

Memory

Liberation

This is the operation, which consists of freeing the

allocated memory space. Free (p);

Free (p): frees the memory area whose address is in

p (and makes it available for the allocation of other

variables), it leaves the pointer value as is (does not

erase the address which is in the pointer variable).

In C, memory is freed using the free function of the standard library

stdlib.h:

void free(p);

Any memory space dynamically allocated via malloc (or equivalent)

must be deallocated using free.

Pointer

arithmetic

The value of a pointer being an integer, we can apply a certain number of classic arithmetic operators to it. The only valid

arithmetic operations on pointers are:

 The addition of an integer to a pointer. The result is a pointer of the same type as the starting pointer;

 The subtraction of an integer from a pointer. The result is a pointer of the same type as the starting pointer;

 The difference between two pointers both pointing to objects of the same type. The result is an integer.

Chapter 3: Pointers

6

Example

If k: integer; p:*type;

The expression "p+k" designates a pointer to an

object of type integer whose value is equal to the

value of p incremented by k*sizeof(type).

// sizeof(type) is size(type).

This is the same case for subtracting an integer from

a pointer and for the increment and decrement

operators ++ and--.

Example on addition

Example on the difference of two pointers

Pointers and

arrays

Any one-dimensional array can be replaced by a pointer to its first element.

Equivalences:

 t equivalent to t +0 equivalent to &t[0];

 t+i equivalent to &t[i];

Chapter 3: Pointers

7

 *t equivalent to t[0];

 *(t+i) equivalent to t[i]

The following loops are equivalent

for i  1 to n do

Read (t[i]) ;

i i +1 ;

endfor

for i  1 to n do

Read (*(t +i)) ;

i i +1 ;

endfor

for p1 t to t+n do

Read (*p1) ;

p1 p1 +1 ;

endfor

Chapter 3: Pointers

8

Pointers and

records

When using a pointer to a record. Its fields will be

referenced by the name of the pointer followed by an

arrow then the name of the field in question.

Example

