Les Lipides

I- Généralités

- Rôles biologiques et propriétés fonctionnelles des lipides
- Classification

II- Les acides gras

- les acides gras saturés et insaturés
- nomenclatures
- propriétés physico-chimiques et réactivité

III- Les lipides simples

- les acylglycérols : structures et propriétés
- les cérides et stérides

IV- Les lipides complexes

- les glycérophospholipides
- les sphingolipides

V- Les lipides polyisopréniques

Définition

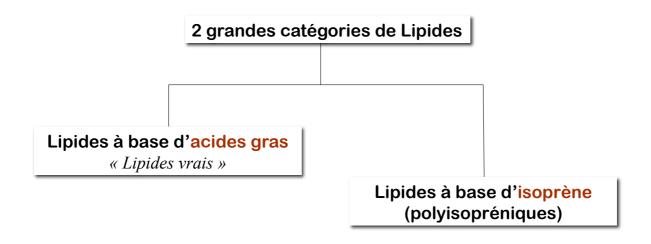
'Lipides' désigne les matières grasses, huileuses ou cireuse que l'on extrait à l'aide de solvants organiques

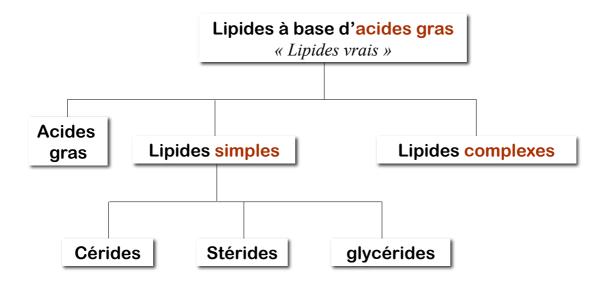
Famille où toutes les molécules ont en commun un caractère hydrophobe important

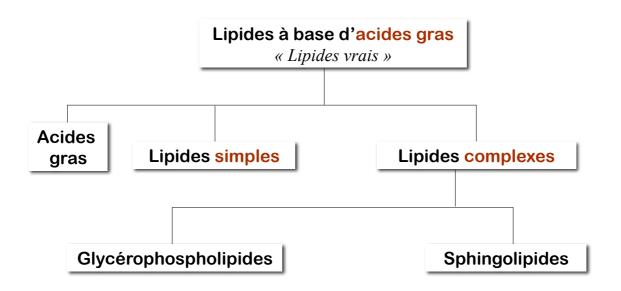
Rôles biologiques des lipides

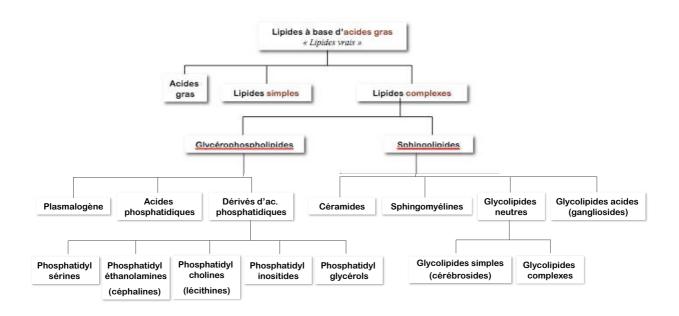
Fonctions biologiques:

- 1- Source énergétique
- 2- Eléments de structure :
 - Constituants des biomembranes (plasmiques ou intracellulaires)
 - Composants des cuticules cireuses des végétaux (protège de la déshydratation)
- 3- Précurseurs de métabolites essentiels :
 - Vitamines
 - Hormones
 - Récepteurs cellulaires

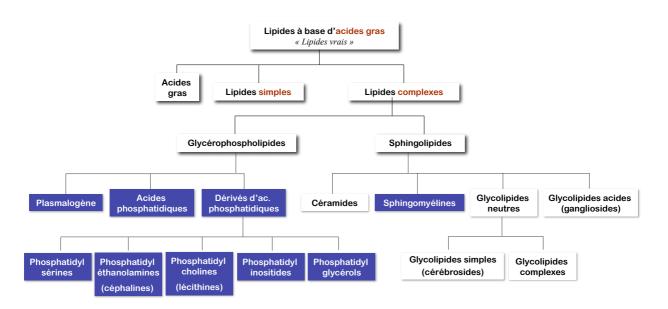

Propriétés fonctionnelles

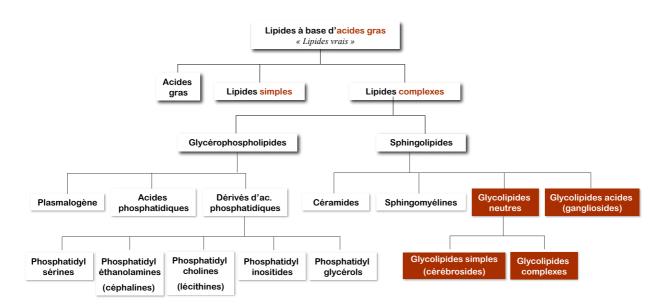

Les lipides sont très largement utilisés en industrie agroalimentaire, pharmaceutique et cosmétique. et ponctuellement utilisés dans les industries textiles métallurgiques et pétrolières

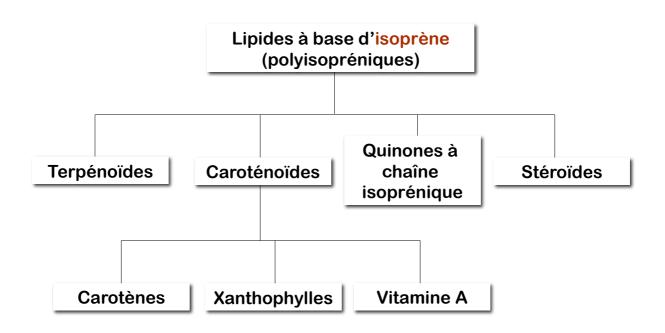

- 1- Propriétés tensio-actives :
 - agent émulsifiant / surfactant
 - agent moussant
 - agent mouillant
 - détergent

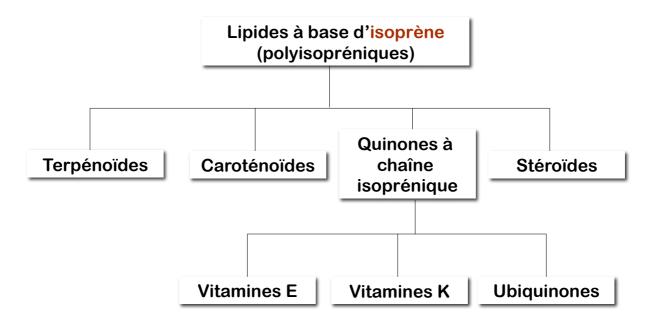

Propriétés fonctionnelles

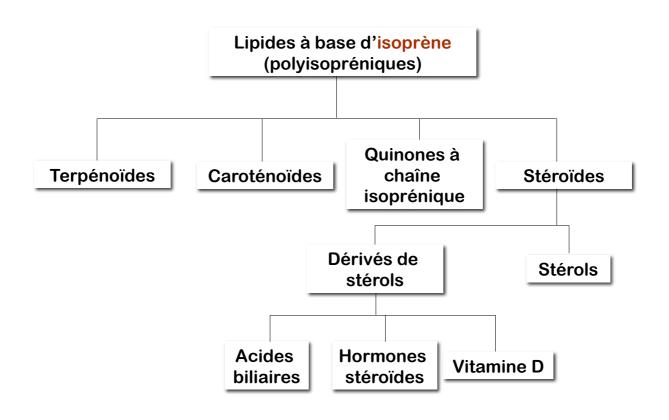
- 2- Propriétés anti-oxydante (β-carotènes/tocopherol)
- 3- Dépresseur de l'activité de l'eau (agent de conservation)
- 4- Pouvoir colorant (β-carotènes)
- 5- Pouvoir aromatique (terpènes) / Sapidité
- 6- Agent de texture : onctuosité, malléabilité (point de fusion bas)
- 7- Conducteur de chaleur



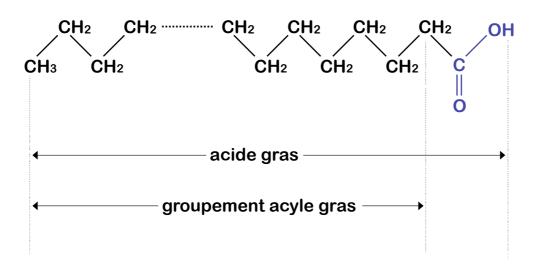



Classification

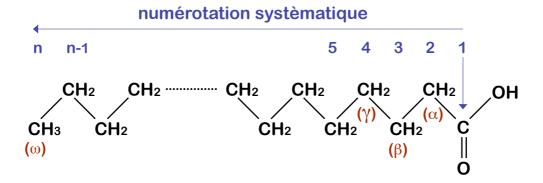

Les Phopholipides:



Les Glycolipides:



Les acides gras : présentation | -Généralités | -Rôles biologiques et propriétés fonctionnelles des lipides | -Rôles biologiques et propriétés fonctionnelles des lipides | -Rôles biologiques et propriétés fonctionnelles des lipides | -Rôles biologiques et propriétés | -Rôles biologiques | -Rôles biologiques


La majorité des acides gras naturels présente les caractères communs suivants :

- monocarboxylique
- chaîne linéaire avec un nombre pair de carbones (de 4 à 36)
- saturés ou en partie insaturés avec un nombre de double liaisons maximal de 6

Les acides gras : nomencalture

Les acides gras : nomencalture

Les acides gras saturés

Formule générale : C_n H_{2n} O₂

La structure des différents acides gras saturés ne diffère que par le nombre de carbone de la chaîne hydrocarbonée

Les acides gras saturés

- Nom systématique : n-[nC] «an oïque»

n : indique qu'il s'agit d'une chaîne

linéaire non branchée

[nC] : nombre de carbones

«an» : indique que la chaîne est saturée

- Symbole : Cn:0 (0 indique que la chaîne est saturée)

- Le nom courant rappel l'origine

Les acides gras saturés : exemple

- Nom systématique : « acide n-hexanoique »

n : indique qu'il s'agit d'une chaîne

linéaire non branchée

[nC] = 6

«an» : indique que la chaîne est saturée

- Symbole : C6:0 (0 indique que la chaîne est saturée)
- Le nom courant = acide caproïque

Les acides gras saturés : exemple

- Nom systématique : « acide n-hexadécanoique »

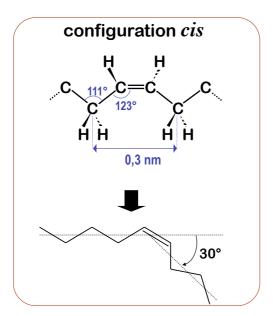
n : indique qu'il s'agit d'une chaîne linéaire non branchée

[nC] = 16

«an» : indique que la chaîne est saturée

- Symbole : C16:0 (0 indique que la chaîne est saturée)
- Le nom courant = acide palmitique

Les acides gras saturés


longueur relative	пС	nom systématique	nom courant	origine	
	4	n-butanoïque	butyrique	beurre	
chaîne courte	6	n-hexanoïque	caproïque	lait de	
	8	n-octanoïque	caprylique	chèvre	
	10	n-décanoïque	caprique		
	12	n-dodécanoïque	laurique (laurier)	huile,	
chaîne	14	n-tétradécanoïque	myristique (muscade)	graisses animales et végétales	
moyenne	16	n-hexadécanoïque	palmitique (palmier)		
	18	n-octadécanoïque	stéarique (suif)		
	20	n-icosanoïque	arachidique		
	22	n-docosanoïque	béhénique	graines	
-12	24	n-tétracosanoïque	lignocérique		
chaîne Iongue	26	n-hexacosanoïque	cérotique	cires des	
	28	n-octacosanoïque	montanique	plantes,	
	30	n-triacontanoïque	mélissique	bactéries,	
	32	n-dotriacontanoïque	lacéroïque	insectes	

Les acides gras insaturés

Formule générale : $C_n H_{2n-2x} O_2$ (x = nombre d'insaturation)

les plus courants : C₁₆ → C₂₀

2 isomères pour chaque liaison éthylénique :

configuration trans

Les acides gras insaturés

- Nom systématique : conf-p-[nC] x «én oïque»

conf-p-: configuration (cis/trans) et position des

doubles liaisons

[nC] : nombre de carbones

x: indique le nombre de double liaisons (di,tri...)

x = 1: acide monoénique ou monoinsaturé x > 1: acide polyénique ou polyinsaturé

- Symbole : $Cn: m\Delta^{(p,p')}$

Cn: nombre de carbones

m Δ : nombre de double liaisons

p,p'...: position des doubles liaisons

Les acides gras insaturés : exemple

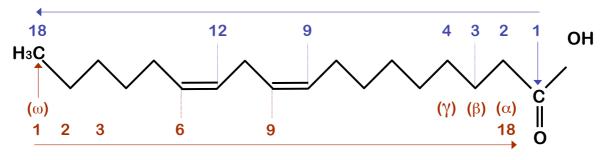
- Nom systématique : cis-9-hexadécénoique

- Symbole : C₁₆:1 Δ ⁽⁹⁾

- Nom courant = acide palmitoléique

Les acides gras insaturés : exemple

- Nom systématique : cis, cis-9,12-octadécadiénoique


- Symbole : C_{18:2} Δ ^(9,12)

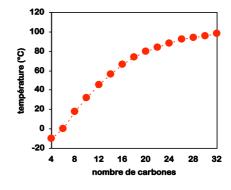
- Nom courant = acide linoléique

La nomenclature ω

exemple de l'acide linoléique :

numérotation systématique : C 18:2 $\Delta^{(9,12)}$

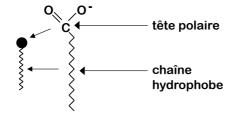
nomenclature ω : C18:2 ω -6, ω -9


Les acides gras insaturés

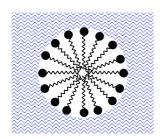
пС	nom systématique	nom courant	symbole	série
16	cis-9-hexadécénoique	palmitoléique	C16:1Δ ⁽⁹⁾	ω7
18	cis-9-octadécénoique	oléique	C18:1Δ ⁽⁹⁾	ω9
	cis-11-octadécénoique	vaccénique	C18:1Δ ⁽¹¹⁾	ω7
	cis,cis-9,12-octadécadiénoique	linoléique	C18:2Δ ^(9,12)	ω6
	tout cis-9,12,15-octadécatriénoique	linolénique	C18:3Δ ^(9,12,15)	ω3
20	tout cis-5,8,11,14-icosatétraénoique	arachidonique	C20:4 <u>\(\Delta\)</u> (5,8,11,14)	ω6
	tout cis-5,8,11,14,17- icosapentaénoique		C20:5Δ ^(5,8,11,14,17)	ω 3
24	cis-15-tétracosénoique	nervonique	C24:1Δ ⁽¹⁵⁾	ω9

Le point de fusion des acides gras

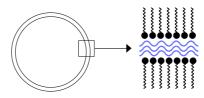
Le point de fusion est dépendant de la longueur de la chaîne* et du nombre d'insaturations* :


* Pour les acides gras saturés le point de fusion augmente avec la longueur de chaîne

* Pour les acides gras possédant le même nombre carbones, le point de fusion diminue lorsque le nombre d'insaturations augmente

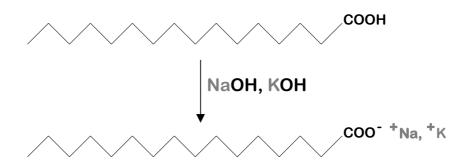

ac. gras	symbole	point de fusion
stéarique	C 18:0	69,6 °C
oléique	C18:1	16,3 °C
linoléique	C18:2	- 5,0 °C
linolénique	C18:3	- 11,0 °C

La solubilité des acides gras



Diminution de la solubilité dans l'eau avec le nombre de carbone de la chaîne hydrocarbonée (insolubilité pour nC > 5)

organisation en micelle dans l'eau



film moléculaire à l'interface air-eau

Réactivité chimique : formation de savons

En présence d'hydroxides métalliques les acides gras ce mettent sous forme de sels alcalins (« savons ») : calcul de l'indice de saponification

Indice de saponification (IS) = masse (mg) de potasse nécessaire à l'hydrolyse (saponification) d'1g d'ac.gras

$$IS = \frac{PM_{KOH} \times 1000}{PM_{AG}} \quad \Longleftrightarrow \quad PM_{AG} = \frac{56 \times 1000}{IS}$$

Réactivité chimique : réduction

Saturation de la double liaison par hydrogénation catalytique.

ex : ac palmitoléique → ac. palmitique ac. oléique → ac. stéarique

Réactivité chimique : addition d'iode

Fixation d'une mole d'iode par double liaison → réaction utilisée pour évaluer le taux d'insaturation d'une solution d'acides gras : "calcul de l'indice d'iode"

Indice d'iode = masse d'iode fixée / 100g d'acides gras

Réactivité chimique : addition d'iode

Calcul de l'indice diode :

$$I_{\text{iode}} = \frac{\text{Nbre doubles liaisons de l'AG insaturé x PM }I_2}{\text{PM AG insaturé}} \times 100$$

	l _{iode}
C _{16:1}	100
C _{18:1}	90
C _{18:2}	181
C _{18:3}	274

Réactivité chimique : oxydation forte

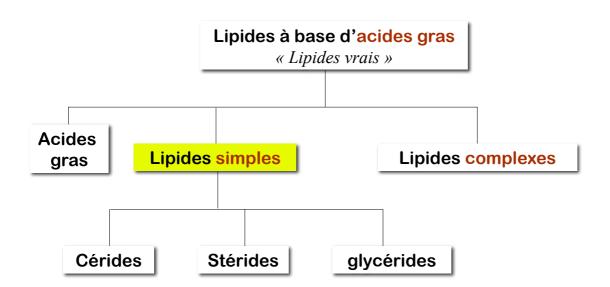
Rupture des doubles liaisons des acides gras insaturés / formation de groupement carboxyle sur chaque carbone engagé dans la double liaison

$$CH_{3}-[CH_{2}]_{n}-CH=CH-[CH_{2}]_{n}-COOH$$

$$HNO_{3} ou KMnO_{4}$$

$$CH_{3}-[CH_{2}]_{n}-C-OH$$

$$HO-C-[CH_{2}]_{n}-COOH$$


$$monoacide diacide$$

Réactivité chimique : oxydation forte

Exemple de l'acide linoléique

Réactivité chimique : auto-oxydation

En présence d'oxygène radicalaire, les ac. gras insaturés peuvent se transformer spontanément pour former des radicaux libres lipidiques ainsi que des dérivés peroxydes

Les lipides simples : présentation

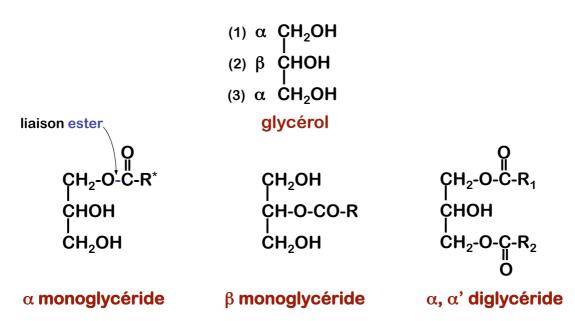
Aussi appelés « homolipides » = corps ternaires (C, H, O)

Rôles biologiques et propriétés fonctionnelles des lipides
 Classification

 II-Les acides gras
 les acides gras saturés et insaturés
 nomenclatures
 propriétés physico-chimiques et réactivité

 III-Les lipides simples
 les acylglycérols : structures et propriétés
 les cérides et stérides

 IV-Les lipides complexes
 les glycérophospholipides
 les sphingolipides


V-Les lipides polyisopréniques

- les acylglycérols (ou glycérides)
3 familles - les cérides (esters d'alcool gras)
- les stérides (esters d'alcool polycyclique)

Dans chacune des familles, les acides gras sont reliés par une liaison ester à une autre molécule comportant une ou plusieurs fonctions alcool

Les acylglycérols

= Association entre un, deux ou trois acide(s) gras à une molécule de glycérol

*R = chaîne hydrocarbonée de l'acide gras

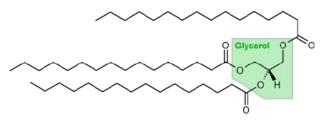
Les acylglycérols

Lorsque les molécules d'acides gras constituant le di- ou triester sont identiques, on parlera de di- ou triacylglycérol homogènes, dans le cas contraire de di- ou triacylglycerol mixtes (ou hétérogènes)

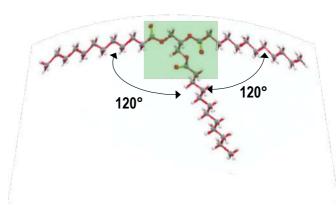
Les acylglycérols : configuration des TAG

Pour les
$$\alpha$$
-monoglycéride α, β diglycéride mixtes triglycérides mixte

La configuration du carbone asymétrique peut être précisée selon la représentation de Ficher :


Les acylglycérols : configuration des TAG

Exemple:


ac. palmitique
$${}^{1}\text{CH}_{2}\text{-O-CO-(CH}_{2})_{14}\text{-CH}_{3}$$

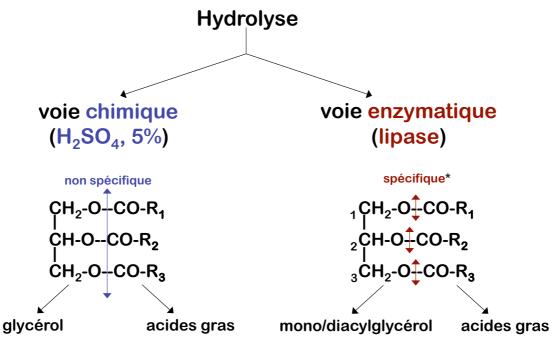
$${}^{1}\text{CH}_{3}\text{-(CH}_{2})_{7}\text{-CH=CH-(CH}_{2})_{7}\text{-OC-O-CH}}$$

$${}^{2}\text{3CH}_{2}\text{-O-CO-(CH}_{2})_{7}\text{-CH=CH}}$$

$${}^{1}\text{(CH}_{2})_{7}\text{-CH}_{3}}$$
 ac. oléique

1-palmityl-2,3-dioléyl sn glycérol

Les acylglycérols = structure spatiale


A l'état liquide les triglycérides sont organisés avec des angles réguliers de 120° entre les chaînes d'acides gras

Les acylglycérols = propriétés physiques

- faible solubilité dans l'eau (caractère très apolaire surtout pour les triacylglycérols)
- solubilité dans des solvants apolaires (acétone, éther, chloroforme...)
- propriétés dépendantes des acides gras constitutifs (point de fusion, viscosité...)

Les acylglycérols = propriétés chimiques

*(ex) la lipase pancréatique produit une hydrolyse en C₁ et C₃

Les acylglycérols = propriétés chimiques

Réaction de saponification : traitement à chaud par un excès de NaOH ou KOH

$$R_2\text{-OC-O-CH} \xrightarrow{\begin{array}{c} \text{CH}_2\text{-O-CO-R}_1\\ \text{CH}_2\text{-O-CO-R}_3 \end{array}} \xrightarrow{\begin{array}{c} \text{S KOH}\\ \text{A} \end{array}} \xrightarrow{\begin{array}{c} \text{CH}_2\text{-OH}\\ \text{CH}_2\text{-OH} \end{array}} \xrightarrow{\begin{array}{c} \text{R}_1\text{-COO}^- \ ^+\text{K}\\ \text{CH}_2\text{-OH} \end{array}} \xrightarrow{\begin{array}{c} \text{R}_2\text{-COO}^- \ ^+\text{K}\\ \text{CH}_2\text{-OH} \end{array}} \xrightarrow{\begin{array}{c} \text{R}_3\text{-COO}^- \ ^+\text{K}\\ \text{CH}_2\text{-OH} \end{array}} \xrightarrow{\begin{array}{c} \text{COO}^- \ ^+\text{COO}^-} \xrightarrow{\begin{array}{c} \text{COO}^- \ ^+\text{K}\\ \text{CH}_2\text{-OH} \end{array}} \xrightarrow{\begin{array}{c} \text{COO}^$$

Les acylglycérols = propriétés chimiques

Caractérisation d'un triglycéride homogène :

$$R-OC-O - CH \xrightarrow{3 \text{ KOH}} \xrightarrow{\text{CH}_2-OH} \xrightarrow{\text{CH}_2-OH} \xrightarrow{\text{CH}_2-OH} \xrightarrow{\text{CH}_2-OH} \xrightarrow{\text{CH}_2-O-CO-R}$$

$$Triglycéride \qquad \qquad \text{glycérol} \qquad \text{acide de potassium} \\ PM_{TG} = 3 PM_R + (6x16 + 5 + 6x12) \\ = 3 PM_R + 173$$

Indice de saponification, IS =
$$\frac{3 \times PM_{KOH} \times 1000}{PM_{TG}} = \frac{3 \times 56 \times 1000}{3 PM_{R} + 173}$$

Les acylglycérols = propriétés chimiques

Caractérisation d'un triglycéride homogène, exemple :

$$PM_{TG} = 3 PM_R + 173 = \frac{3 \times 56 \times 1000}{IS} = \frac{168.10^3}{190} = 884 \text{ g.mol}^{-1}$$

$$PM_R = \frac{884 - 173}{3} = 237 \text{ g.mol}^{-1}$$

Masse molaire de l'AG (R-COOH), $PM_{AG} = 237 + 45 = 282 \text{ g.mol}^{-1}$

Si R comprend une insaturation : formule brute de l'AG = $C_n H_{2n-2} O_2$: $PM_{AG} = 12n + 2n - 2 + 32 = 282$ 14n = 252n = 18

AG = Acide Oléïque (C_{18:1})