Ministry of Higher Education and Scientific Research University of Larbi Ben M'Hidi, Oum El Bouaghi Faculty of Exact Sciences and Natural and Life Sciences Department of Mathematics and Computer Science

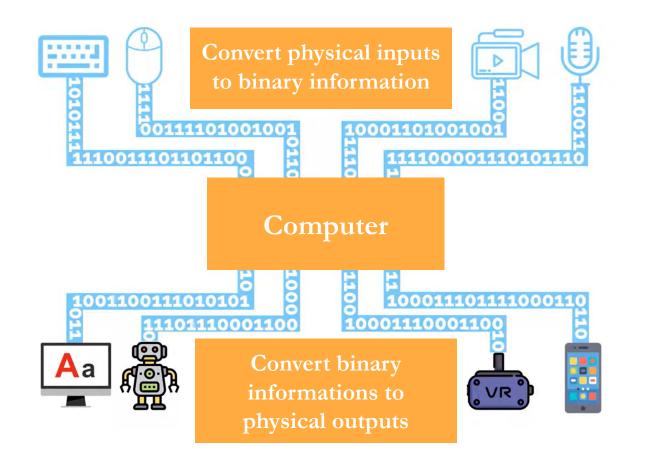
Computer Structure 1

Presented by: Dr. NASRI/A nasri.ahlem1988@gmail.com nasri.ahlem@univ-oeb.dz

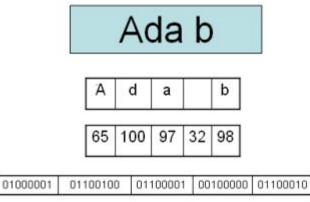
2023-2024

Chapter 1: Numeral systems

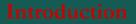
Introduction

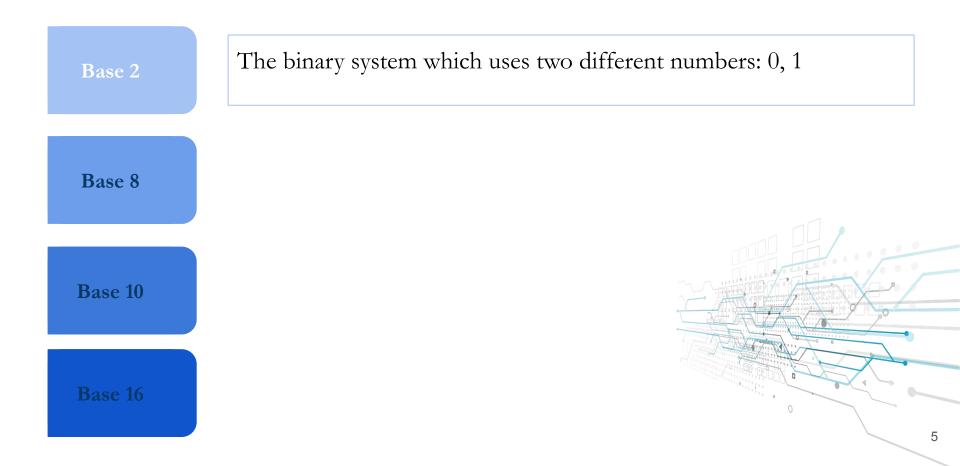


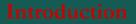
Coding information => creating a **correspondence** between the (normal) **external** representation and its **internal** representation in the computer

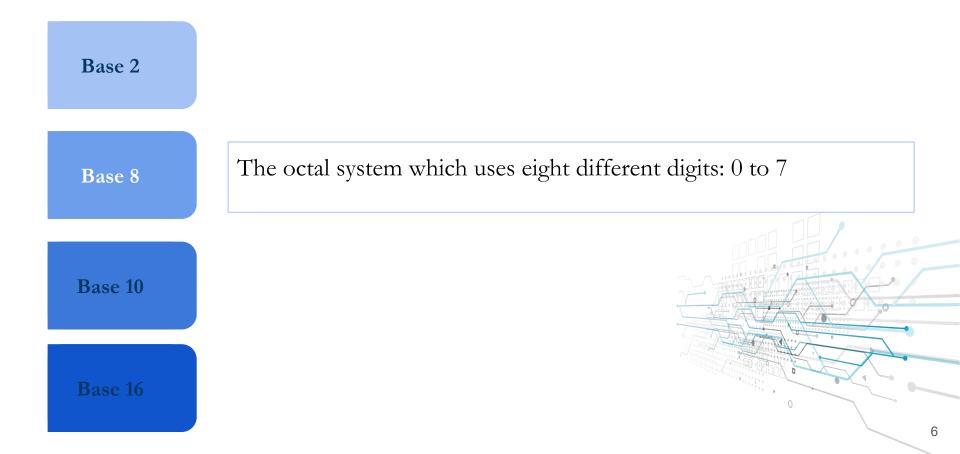


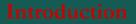
Example of encoding of the character string "Ada b".

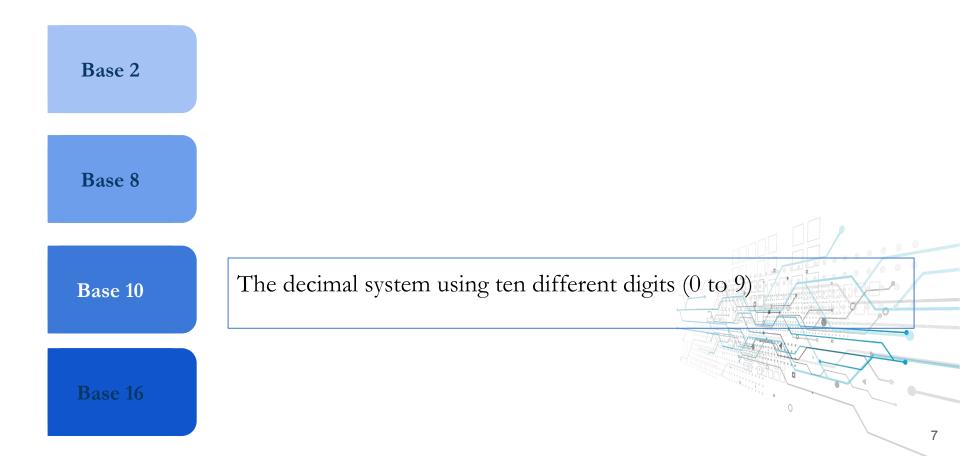


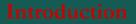


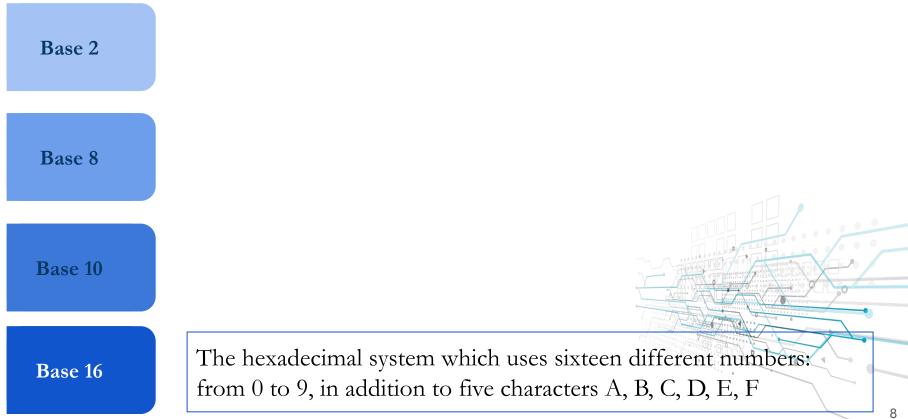








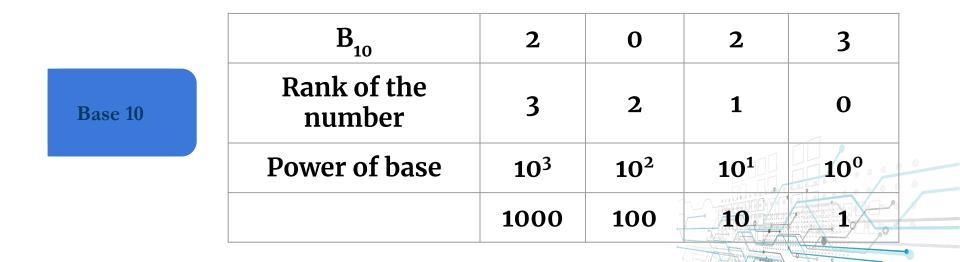


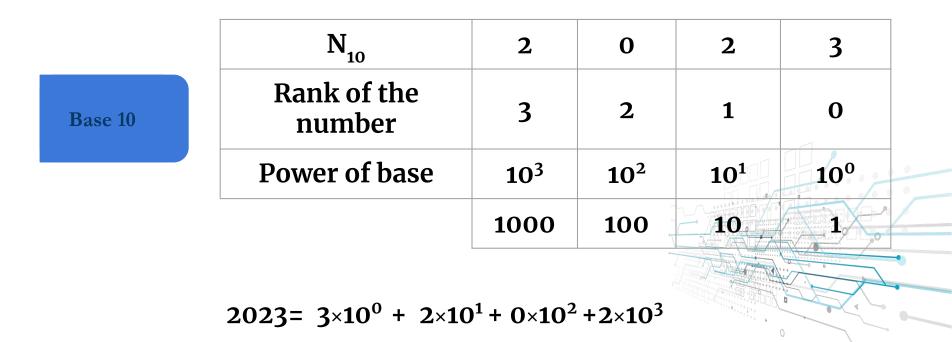


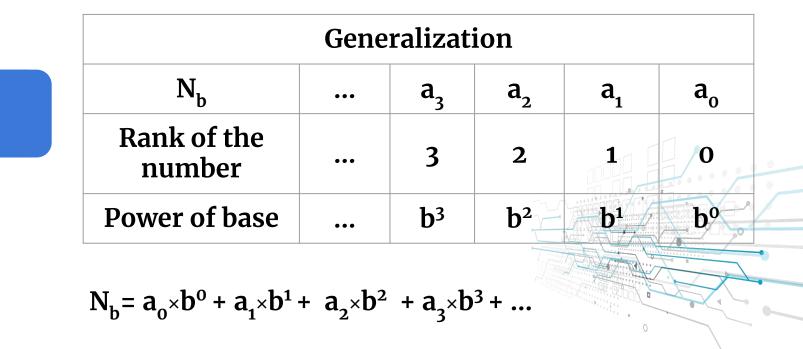
Numeral system is characterized by:

- A base B>1.
- Different coefficients or symbols \mathbf{a}_i such as: $0 \le \mathbf{a}_i < B$.

	Binary	Octal	Decimal	Hexadecimal
Base	2	8	10	
coefficients	0,1	0,1,2,3,4,5,6,7	0,1,2,3,4,5,6,7,8,9	0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F







Exercise:

Here are the given numbers: 1010, 1020, 108141, 2A0GF00, 01AFB, CEE, BAC.

- Among these numbers, which ones can be the presentation of a number in base 2, 8, 10 or 16?
- Give the smallest base in which each number can be written?

Solution

	Base 2	Base 8	Base 10	Base 16	Smallest Base
1010	Yes	Yes	Yes	Yes	2
1020	No	Yes	Yes	Yes	3
108141	No	No	Yes	Yes	9
2A0GF00	No	No	No	No	17
01AFB	No	No	No	Yes	16
CEE	No	No	No	Yes	15
BAC	No	No	No	Yes	13

Polynomial Form:

$$N = (a_n a_{n-1} a_{n-2} \dots a_1 a_0)_B$$

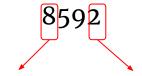
strong weight low weight
$$N = a_n B^n + a_{n-1} B^{n-1} + \dots + a_1 B^1 + a_0 B^0 = \sum_{i=0}^{i=n} a_i B^i$$

Polynomial Form:

$$N = (\underbrace{a_{n}a_{n-1}a_{n-2}\dots a_{1}a_{0}}_{\text{Integer Part}}, \underbrace{a_{-1}a_{-2}\dots a_{-m}}_{\text{Decimal part}})_{B}$$

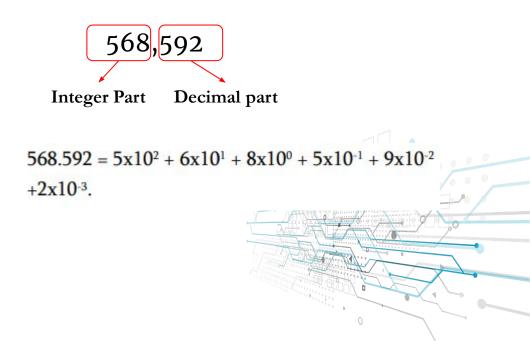
$$N = a_{n}B^{n} + a_{n-1}B^{n-1} + \dots + a_{1}B^{1} + a_{0}B^{0} + a_{-1}B^{-1} + a_{-2}B^{-2} + \dots + a_{-m}B^{-m} = \sum_{i=m}^{m} a_{i}B^{i}$$

Example:



strong weight low weight

 $8592 = 8x10^3 + 5x10^2 + 9x10^1 + 2x10^0.$



Converting from base B to decimal:

Method 1: Polynomial expansion

- Express the number in polynomial form using base b,
- then sum the various terms of the polynomial representation of the number.

Example:

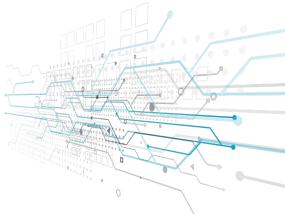
 $(12)_3 = 1 \times 3^1 + 2 \times 3^0 = 3 + 2 = (5)_{10}$

 $(101101)_2 = 1 \times 2^5 + 0 \times 2^4 + 1 \times 2^3 + 1 \times 2^2 + 0 \times 2^1 + 1 \times 2^0 = 32 + 8 + 4 + 1 = (45)_{10}$

Converting from base B to decimal:

Example:

 $(111,01011)_2 =$ $(1254,1)_8 =$ $(A5F,6)_{16} =$



Converting from base B to decimal:

Example:

$$(111,01011)_{2} = \mathbf{1} \times \mathbf{2^{2}} + \mathbf{1} \times \mathbf{2^{1}} + \mathbf{1} \times \mathbf{2^{0}} + \mathbf{0} \times \mathbf{2^{-1}} + \mathbf{1} \times \mathbf{2^{-2}} + \mathbf{0} \times \mathbf{2^{-3}} + \mathbf{1} \times \mathbf{2^{-4}} + \mathbf{1} \times \mathbf{2^{-5}}$$
$$= \mathbf{4} + \mathbf{2} + \mathbf{1} + \mathbf{0} + \mathbf{1}/\mathbf{4} + \mathbf{0} + \mathbf{1}/\mathbf{16} + \mathbf{1}/\mathbf{32} = (\mathbf{7}, \mathbf{34375})_{10}$$
$$(1254,1)_{8} =$$

 $(A5F,6)_{16} =$

Converting from base B to decimal:

Example:

$$(111,01011)_{2} = \mathbf{1} \times \mathbf{2^{2}} + \mathbf{1} \times \mathbf{2^{1}} + \mathbf{1} \times \mathbf{2^{0}} + \mathbf{0} \times \mathbf{2^{-1}} + \mathbf{1} \times \mathbf{2^{-2}} + \mathbf{0} \times \mathbf{2^{-3}} + \mathbf{1} \times \mathbf{2^{-4}} + \mathbf{1} \times \mathbf{2^{-5}}$$

= $\mathbf{4} + \mathbf{2} + \mathbf{1} + \mathbf{0} + \mathbf{1}/\mathbf{4} + \mathbf{0} + \mathbf{1}/\mathbf{16} + \mathbf{1}/\mathbf{32} = (7, \mathbf{3}\mathbf{4}\mathbf{3}\mathbf{75})_{10}$
 $(1254,1)_{8} = \mathbf{1} \times \mathbf{8^{3}} + \mathbf{2} \times \mathbf{8^{2}} + \mathbf{5} \times \mathbf{8^{1}} + \mathbf{4} \times \mathbf{8^{0}} + \mathbf{1} \times \mathbf{8^{-1}} = \mathbf{5}\mathbf{12} + \mathbf{128} + \mathbf{40} + \mathbf{4} + \mathbf{1/8} = (\mathbf{684}, \mathbf{125})_{10}$
 $(\mathbf{A5F,6})_{8} =$

Converting from base B to decimal:

Example:

$$(111,01011)_{2} = \mathbf{1} \times \mathbf{2^{2}} + \mathbf{1} \times \mathbf{2^{1}} + \mathbf{1} \times \mathbf{2^{0}} + \mathbf{0} \times \mathbf{2^{-1}} + \mathbf{1} \times \mathbf{2^{-2}} + \mathbf{0} \times \mathbf{2^{-3}} + \mathbf{1} \times \mathbf{2^{-4}} + \mathbf{1} \times \mathbf{2^{-5}}$$

= 4+2+1+0+1/4+0+1/16+1/32= (7, 34375)₁₀
$$(1254,1)_{8} = \mathbf{1} \times \mathbf{8^{3}} + \mathbf{2} \times \mathbf{8^{2}} + 5 \times \mathbf{8^{1}} + 4 \times \mathbf{8^{0}} + \mathbf{1} \times \mathbf{8^{-1}} = 5\mathbf{12} + \mathbf{128} + 4\mathbf{0} + 4 + \mathbf{1/8} = (\mathbf{684,125})_{\mathbf{10}}$$

$$(A5F,6)_{16} = \mathbf{10} \times \mathbf{16^{2}} + 5 \times \mathbf{16^{1}} + \mathbf{15} \times \mathbf{16^{0}} + \mathbf{6} \times \mathbf{16^{-1}} = (\mathbf{2655,375})_{\mathbf{10}}$$

Converting Integer Part

Method 1: Successive Subtractions

- Begin by determining the nearest power of B to the decimal number, and then subtract this power from the number
- Then, repeat the same process with the result of the subtraction until reaching 0

- **Converting Integer Part**
- Method 1: Successive Subtractions

Example 1:

 $(5)_{10} = (?)_2$

$$5 - 4 = 1 - 1 = 0$$
; *donc* $5 = 4 + 1$

$$5 = 1 \times 2^2 + 0 \times 2^1 + 1 \times 2^0 = (101)_2$$



Converting Integer Part

Method 1: Successive Subtractions

Example 2: $(45)_{10} = (?)_2$ 45 - 32 = 13 - 8 = 5 - 4 = 1 - 1 = 0; donc 45 = 32 + 8 + 4 + 1 $45 = 1 \times 2^5 + 0 \times 2^4 + 1 \times 2^3 + 1 \times 2^2 + 0 \times 2^1 + 1 \times 2^0 = (101101)_2$

Converting from decimal to base B:

Converting Integer Part

Method 1: Successive Subtractions

Example 3: $(555)_{10} = (?)_2$ 555 - 512 = 43 - 32 = 11 - 8 = 3 - 2 = 1 - 1 = 0; donc 555 = 512 + 32 + 8 + 2 + 1 $555 = 1 \times 2^9 + 0 \times 2^8 + 0 \times 2^7 + 0 \times 2^6 + 1 \times 2^5 + 0 \times 2^4 + 1 \times 2^3 + 0 \times 2^2 + 1 \times 2^1 - 2^2 + 1 \times 2^2 + 1$ $+ 1 \times 2^{0} = (1000101011)_{2}$

- **Converting Integer Part**
- Method 1: Successive Subtractions

Example 3:

$$(555)_{10} = (?)_9 = (?)_8 = (?)_{16}$$

It is not easy to find the first power of 8, 16 or 9 close to 555 !!!

This is the main disadvantage of this method.

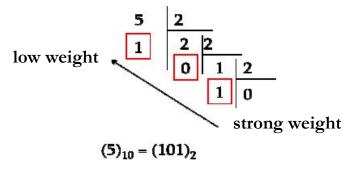
Converting Integer Part

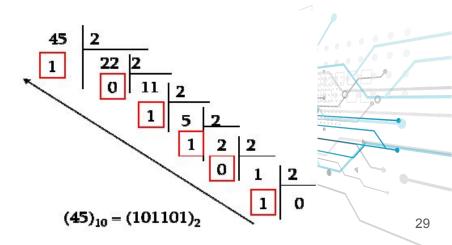
Method 2: Successive division

- Divide the whole number and each successive quotient by B until you obtain a null quotient.
- The sequence of remainders, in the reverse order of their obtaining, gives the representation of the decimal number in the base system B.

- **Converting Integer Part**
- Method 2: Successive division

Example 1:

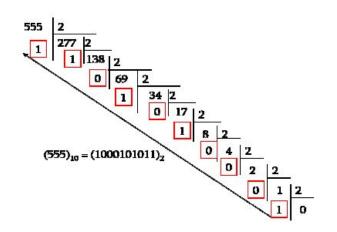


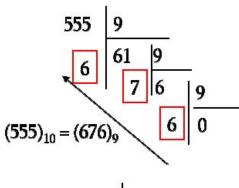


Converting from decimal to base B:

- **Converting Integer Part**
- Method 2: Successive division

Example 2:

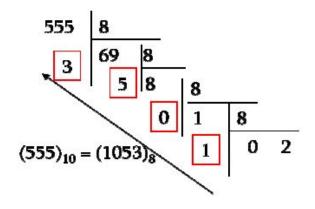


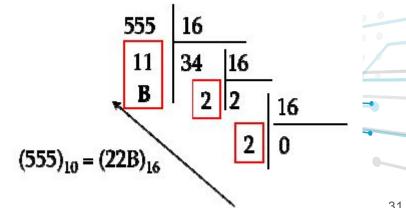


Converting from decimal to base B:

- **Converting Integer Part**
- Method 2: Successive division

Example 3:





Converting Decimal Part

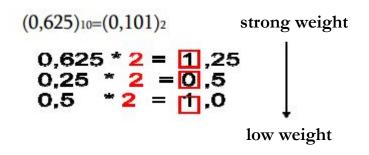
Method 2: Successive multiplications

- Multiply the decimal part and the decimal parts of successive products by the base B until you obtain either a null decimal part or a repetition of one of the decimal parts.
- The finite, or infinitely repeated, sequence of the whole parts of the products obtained constitutes the representation of the decimal part in base b.

```
Converting Decimal Part
```

Method 2: Successive multiplications

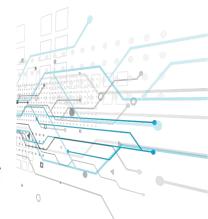
Example1:



 $(0,6)_{10}=(?)_2$

0.6 * 2 = 1.2; 0.2 * 2 = 0.4; 0.4 * 2 = 0.8; 0.8 * 2 = 1.6; 0.6 * 2 = 1.2; 0.2 * 2 = 0.4; 0.4 * 2 = 0.8; 0.8 * 2 = 1.6;0.8 * 2 = 1.6;

 $(0.6)_{10} = (0.10011001)_2$



```
Converting Decimal Part
```

Method 2: Successive multiplications

 $(0.325)_{10} = (0101001)_2 \leftarrow$

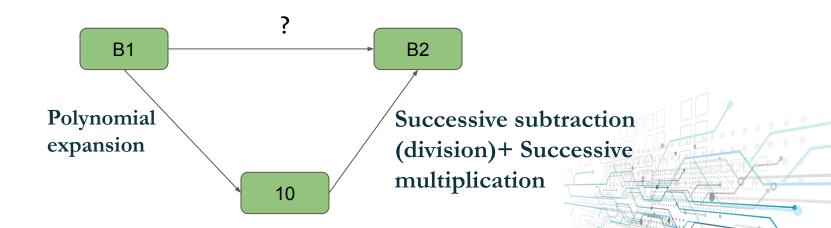
 $(0.325)_{10} = (01010011001)_2$.

Example2:

 $(0.325)_{10}=(?)_2$

```
0.325 * 2 = 0.650
0.650 * 2 = 1.300
0.300 * 2 = 0.600
0.600 * 2 = 1.200
0.200 * 2 = 0.400
0.400 * 2 = 0.800
0.800 * 2 = 1.600
0.600 * 2 = 1.200
0.200 * 2 = 0.400
0.400 * 2 = 0.800
0.800 * 2 = 1.600
```

Converting from base B1 to base B2:



Converting from base B1 to base B2:

Example1:

 $(32,4)_5 = (?)_2$

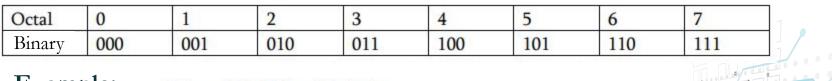
 $(32,4)_5 = 3 \times 5^1 + 2 \times 5^0 + 4 \times 5^{-1} = (17,8)_{10} = (10001,1100 \dots)_2$



Converting from base B1 to base B2:

Case of bases B and B^k (binary=>octal=>hexadecimal)

binary=>octal (do bursts on 3 bits)



Example: $(37)_8 = (011 \ 111)_2 = (11 \ 111)_2$

 $(1254, 1)_8 = (\underline{001} \ \underline{010} \ \underline{101} \ \underline{100}, \ \underline{001})_2 = (1\ 010\ 101\ 100, \ 001)_2$

 $(1000101011)_2 = (001 000 101 011)_2 = (1053)_8$

 $(1111000,01)_2 = (001 111 000, 010)_2 = (170,2)_8$

Converting from base B1 to base B2:

Case of bases B and B^k (binary=>octal=>hexadecimal)

binary=>hexadecimal (do bursts on 4 bits)

Hexa	0	1	2	3	4	5	6	7	8	9	A	В	С	D	Е	F
Binary	0000	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011	1100	1101	1110	1111

Example:

 $(A5F,6)_{16} = (1010 0101 1111, 0110)_2$

 $(1000101011)_2 = (0010 0010 1011)_2 = (22B)_{16}$

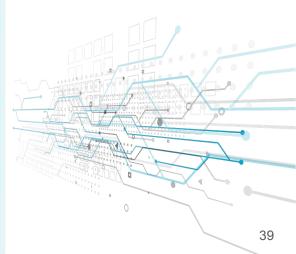
 $(1111000,01)_2 = (0111 1000, 0100)_2 = (78,4)_{16}$



Converting from base B1 to base B2:

Case of bases B and B^k (binary=>octal=>hexadecimal)

conversion	Method	Example			
$2 \Rightarrow 8$	3 binary digits \Rightarrow one octal digit	Binary Octal	$(101) \downarrow (5)$	$\frac{110}{\downarrow}$	$(\underline{011})_2 \\ \downarrow \\ 3)_8$
$8 \Rightarrow 2$	one octal digit \Rightarrow 3 binary digits	Octal Binary	(5 ↓ (<u>101</u>	$\begin{array}{c} 6 \\ \downarrow \\ \underline{110} \end{array}$	$3)_8$ \downarrow $\underline{011})_2$
$2 \Rightarrow 16$	4 binary digits \Rightarrow one hexadecimal digit	Binary Hexa	(<u>1010</u> ↓ (A	$\begin{array}{c} 0110\\ \downarrow\\ 6\end{array}$	$\begin{array}{c} \underline{0011}_{2}\\ \downarrow\\ 3)_{8}\end{array}$
$16 \Rightarrow 2$	one hexa decimal digit \Rightarrow 4 binary digits	Hexa Binary	(A ↓ (<u>1010</u>	$6 \\ \downarrow \\ 0110$	$\begin{array}{c} 3)_{16} \\ \downarrow \\ \underline{0011})_2 \end{array}$



Converting a large decimal number to binary

To convert a large decimal number to binary, it's recommended to initially convert it to **octal** or **hexadecimal**, and then proceed to binary conversion => to reduce the number of operations (division or subtraction).

Example:

- (25693)₁₀ = (?????????)₂ - **Method 1:** Successive divisions by 2
- Method 2: Successive subtractions
- Method 3: Convert to base 8 first
- Method 4: Convert to base 16 first



Converting a large decimal number to binary

Example:

 $(25693)_{10} = (110010001011101)_2$

- Method 1: Successive divisions by $2 \Rightarrow 15$ division operations
- Method 2: Successive subtractions => 8 subtraction operations
- Method 3: Convert to base 8 first

 $(25693)_{10} = (62135)_8 = (110\ 010\ 001\ 011\ 101)_2$

Divisions successives par $8 \Rightarrow 5$ division operations.

- Method 4: Convert to base 16 first

 $(25693)10 = (645D)16 = (0110\ 0100\ 0101\ 1101)2$

Successive divisions by 16=> 4 division operations

Converting a large decimal number to binary

To convert a large decimal number to binary, it's recommended to initially convert it to **octal** or **hexadecimal**, and then proceed to binary conversion => to reduce the number of operations (division or subtraction).

In general:

Method	Successive divisions	Successive subtractions	Convert to base 8	Convert to base 16
Number of Arithmetic	Nombre des	Number of 1	Number of bits per 3	Number of
Operations	bits	bits		bits per 4

Introduction	B-based	Conversion between	Arithmetic Operations in
Introduction	system	different bases	Binary

Binary Addition

Whenever the result exceeds 1, it produces a carryover to the adjacent column with a higher weight.

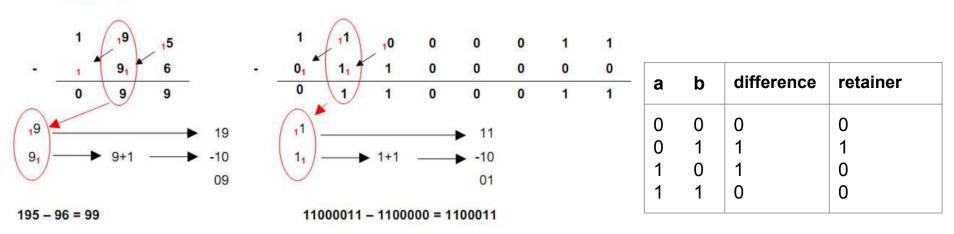
		-			0	4	0	0	1
В		1	0	0	1	1	1	1	0
+									
Α		1	1	0	0	1	0	1	1
R	1			1	1	1	1		

а	b	Sum	retainer
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1
			0
			43

Introduction	B-based	Conversion between	Arithmetic Operations in
minoduction	system	different bases	Binary

Binary Subtraction

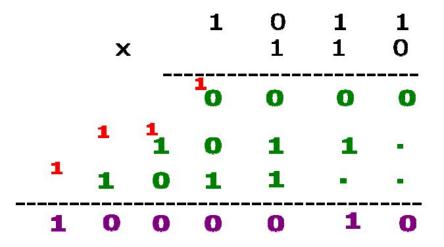
If the digit being subtracted has a **lower** numerical value than the subtracting digit, we **borrow** from the **column of higher weight**.



Introduction	B-based	Conversion between	Arithmetic Operations in
muoducuon	system	different bases	Binary

Binary Multiplication

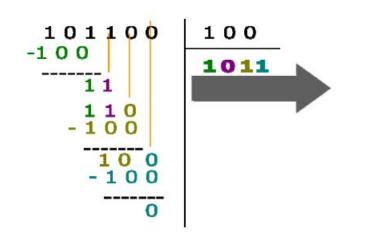
Successive addition of the multiplican such that multiplication by 0 results in a result equal to 0 and multiplication by 1 results in the copying of the multiplicand.



Introduction	B-based	Conversion between	Arithmetic Operations in
muoduction	system	different bases	Binary

Binary Division

Successive subtraction of dividend divisor.



Arithmetic Operations in a numeral system with any base

Performing the four basic arithmetic operations in a numeral system with a base other than 10 or 2 can be challenging. In such cases, when we have two numbers N1 and N2 with different bases, B1 and B2 respectively, it's helpful to convert them to either decimal or binary before proceeding with the desired operation

Introduction	B-based	Conversion between	Arithmetic Operations in
minoqueiton	system	different bases	Binary

Exercise:

We have two numbers **A** and **B** represented in three positions as follows:

A = $(a_3 a_2 a_1)_5$; B = $(b_3 b_2 b_1)_7$

1. What are the possible values for the coefficients a, b?

2. Knowing that $\mathbf{A} + \mathbf{B} = (138)_{9}$, $\mathbf{A} - \mathbf{B} = (200)_{6}$, Find the values of the coefficients \mathbf{a}_{i} , \mathbf{b}_{i} .

3. Transform A and B into binary then calculate A+B, A-B, A * (B/100), A/B.

Introduction	B-based	Conversion between	Arithmetic Operations in
miloduction	system	different bases	Binary

1.
$$a_i < 5 \text{ so, } a_i \in \{0, 1, 2, 3, 4\}$$
; $b_i < 7 \text{ so, } b_i \in \{0, 1, 2, 3, 4, 5, 6\}$;
2. $A+B=(138)_9$
A-B=(200)₆
The sum of these two equations gives : $2A=(138)_9+(200)_6$

You must convert the two operands to the same base to perform the operation. The best choice is to convert them to a decimal base.

Introduction	B-based	Conversion between	Arithmetic Operations in
mioduciion	system	different bases	Binary

$$(138)_{9} = 1 \times 9^{2} + 3 \times 9^{1} + 8 \times 9^{0} = (116)_{10}$$

$$(200)_{6} = 2 \times 6^{2} + 0 \times 6^{1} 2A = 116 + 72 \leftrightarrow 6 \times \overline{6}^{0} \times \overline{6}^{0} (94)_{10} = (72)_{10}$$

$$B = 116 - A \leftrightarrow B = (22)_{10}$$

 $\begin{cases} A = (94)_{10} = (??)_5 \\ B = (22)_{10} = (??)_7 \end{cases} \text{ By the method of successive divisions, we find: } \begin{cases} A = (334)_5 \\ B = (031)_7 \end{cases}$

By identification:
$$a_3 = 3$$
; $a_2 = 3$; $a_1 = 4$
 $b_3 = 0$; $b_2 = 3$; $b_1 = 1$

Introduction	B-based	Conversion between	Arithmetic Operations in				
	system	different bases	Binary				

3.
$$\begin{cases} A = (94)_{10} = (1011110)_2 \\ B = (22)_{10} = (10110)_2 \end{cases}$$

A 1 10 11 11 1 1 0
+
B 0 0 1 0 1 1 0
= 1 1 0 1 0 0

A	1	0	1	1	1	1	0	
-								
В	0	0	1	0	1	1	0	
=	1	0	0	1	0	0	0	

Introduction	B-based	Conversion between	Arithmetic Operations in				
	system	different bases	Binary				

A					1	0	1	1	1	1	0
*											
B/100								1	0	1,	1
=											
					11 1	0 0	11	11	1	1	0
+				01	0	1	1	1	1	0	•
+			110	0	0	0	0	0	0	•	
+	1	11	0	1	1	1	1	0			
=	1	0	0	0	0	0	0	1	0	1,	0

Introduction	B-based	Conversion between	Arithmetic Operations in				
	system	different bases	Binary				

