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Mathematics for Engineering Sciences

Chapter 01: Matrix Analysis

Chapter Objective: Define the concepts of:

e Matrix

e Operations on matrices

Introduction:

Numerical analysis, also known as computational mathematics or applied mathematics, is the field
where algorithms are studied to solve mathematical analysis problems using arithmetic calculations.
These problems are based on systems that involve matrices. This chapter focuses mainly on matrix
analysis. In Chapter 1 we used matrices and vectors as simple storage devices. In this chapter matrices
and vectors take on a life of their own. We develop the arithmetic of matrices and vectors. Much of
what we do is motivated by a desire to extend the ideas of ordinary arithmetic to matrices. Our
notational style of writing a matrix in the form A = [ai J-] hints that a matrix could be treated like a
single number. What if we could manipulate equations with matrix and vector quantities in the same
way that we do equations with scalars? We shall see that this powerful idea gives us now methods for
formulating and solving practical problems. In this chapter we use it to find effective methods for
solving linear and nonlinear systems, solve problems of graph theory and analyze an important

modeling tool of applied mathematics called a Markov chain

I. Matrix
I.1 Definition
A matrix is a rectangular array of elements with n rows and m columns. Let A be a matrix. We denote

ajj as the element in the i row and j column of matrix A. In general, the matrix A4 is written as:

11 A2 Am The matrix A is said to be of size n X m, where:

A1 Qpp - Ayp
A= .

e 1 :number of rows
An1 QAnz2 " Qum
e m: number of columns

1.2 Some types of matrices

e Rectangular matrix: The number of rows is different from the number of columns n # m.
A1 Q12 Qum
Q21 Qzz°" dom

A=

Ap1 Ap2 " Aupm
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Square matrix: The number of rows equals the number of columns n = m.
A1 Q12 Aqpn
Az1 Qzz " Q2n

an1 Qpz " App
There are several types of square matrices:

Diagonal matrix: a; = 0 for i #j.

aq1 0---0
= 0 aZ:Z e 0
0 0--- Ann

Symmetric or antisymmetric matrix:
v' Symmetric if ajj = aji
+ Antisymmetric if aij = -aji
Upper triangular matrix: a; = 0 for i > j
A1 Q12 Aqp
A= 0 azz.“‘ Uzn
0 0- a,,
Lower triangular matrix: a; = 0 for i <j.
a;; 0.0
4= as, a‘ZZ e 0
An1 Qn2 " Apn
Singular matrix: A matrix is singular if its determinant is zero.
Orthogonal matrix: A matrix 4 is orthogonal if A~ = AT,
Positive definite matrix: A matrix A4 is positive definite if the elements (a;;) on the main diagonal

are non-zero, even during Gaussian elimination.

1.3 Special matrices

Transpose matrix: The transpose of a matrix A”is obtained by swapping its rows with its
columns.

Conjugate matrix: The conjugate of matrix A is denoted by A, where the elements are
conjugated.

Adjoint matrix: The adjoint of matrix A is denoted by A* = AT,

Hermitian matrix: A matrix is Hermitian if A = A"

Dominant diagonal matrix: A matrix is said to have a dominant diagonal if |a;;| = Z7=1|al- j|

Strongly dominant diagonal matrix: A matrix is strongly dominant if |a;| > 27=1|al- j |
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I1. Operations on Matrices

I1.1 Sum and Difference of Matrices

How should we define addition or subtraction of matrices? We take a clue from elementary two- and
three-dimensional vectors, such as the type we would encounter in geometry or calculus. There, in order
to add two vectors, one condition has to hold: the vectors have to be the same size. If they are the same
size, we simply add the vectors coordinate by coordinate to obtain a new vector of the same size, which

is what the following definition does.

Definition 2.2. Matrix Addition and Subtraction Let A = [a;;] and B =
[bij] be m x n matrices. Then the sum of the matrices, denoted by A+ B, is
the m x n matrix defined by the formula

A+ B = [ai; + by].
The negative of the matrix A, denoted by —A4, is defined by the formula
—.t‘]. = [—H.ijj] .

Finally, the difference of A and B, denoted by A— B, is defined by the formula
A—B= ['IIJ—E":J]

Notice that matrices must be the same size before we attempt to add them. We say that two such matrices

or vectors are conformable for addition.

Example Let

310 =321
A=[_201] and B=[ 140].

Find A+ B, A—- B, and —A.

Solution. Here we see that

310], [-321 3-3 1+20+1 031
A+B=[—201]+[ 140}=[-2+1n+41+0]=[-141]'
Likewise,
A_p_| 310]_[-321] _[3--31-20-1] _[ 6-1-1
~ =201 140] " |[-2-10-41=0| |=3-4 1

The negative of A is even simpler:

e[ 339
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I1.2 Multiplication by a Scalar

The next arithmetic concept we want to explore is that of scalar multiplication. Once again, we take a
clue from the elementary vectors, where the idea behind scalar multiplication is simply to “scale” a vector
a certain amount by multiplying each of its coordinates by that amount, which is what the following

definition says.

Definition 2.3. Scalar Multiplication Let A = [a;;] be an m x n matrix and
¢ a scalar. The preduct of the scalar ¢ with the matrix A, denoted by ¢4, is
defined by the formula

cA = [eas;).

Recall that the default scalars are real numbers, but they could also be complex numbers.

Example Let

310
A= [—2(]1] and e=3.

Find €4, 04, and —1A.

Solution. Here we see that
310 3-33-13-0 930
“A=3[-201] = [3--23-03-1] = [-503}’

_ [ 310] Jfooo
”A_”[-zm}_{unn]

while

and
camon[ 232]-[2752) -4

I1.3 Matrix Multiplication
If A has dimensions n X m and B has dimensions m X [, the matrix product C = A X B is defined as a
matrix of size n X [, where:
m
Cij = Z Ak by j
k=1
Note: The condition for the existence of the matrix product A X B is that the number of columns in A

equals the number of rows in B.
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.._--—-—91‘1—" By “l
L~

N
( !
\ finy  pz nm J |L_ Cnl Cnz Cnl )
Exa mple . Compute, if possible, the products AB of the following pairs
of matrices A, B.
(12 1 -2 12 3 2 0]
@ 331 01l W il 3] ena o)

) BN 4 i R B

Solution. First check conformability for multiplication. In part (a) A is
2 x 3 and B is 3 x 2. Stack these dimensions alongside each other and sce
that the 3's matech; now “cancel” the matching middle 3’s to obtain that the
dimension of the product is 2x 8 8 x 2 = 2 x 2. For example, multiply the
first row of A by the second column of B to obtain the (1, 2)th entry of the
product matrix:

-2
1,21 1| =0-(=2)+2-1+1-1]=[1].
1

Similarly, the full product calculation looks like this:

12 1 g'i [ 1-442.04+1-2 1-(=2)+2-1+1-1
23-1] |, 4| [2:443:0+(=1)-22-(-2)+3-1+(-1)-1

_[6 1
— 62"
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A size check of part (b) reveals a mismatch between the column number
of the first matrix (3) and the row number (2) of the second matrix. Thus,
these matrices are not conformable for multiplication in the specified order.

Henee, the product
12 3| |2
23-1]|3
is undefined.
In part (c) a size check shows that the product has size 2x 1 Ix2=2x2.

The calculation gives
0 0-10-2 00
o r21=[51072] = [5a):

For part (d) the size check shows gives 1x 2 2 x 1 =1 x 1. Hence, the
product exists and is 1 x 1. The calculation gives

[12] [g] —[1-042-0]=10].

Matrix Multiplication Not Commutative or Cancellative

Something very interesting comes out of parts (¢) and (d). Notice that AL
and B A are not the same matrices—never mind that their entries are all 0°'s—
the important point is that these matrices are not even the same size! Thus, a
very familiar law of arithmetie, the commutativity of multiplication, has just
fallen by the wayside.

Things work well in {e), where the size check gives 2x 2 2x3=2x3
as the size of the product. As a matter of fact, this is a rather interesting
calculation:

10] [12 1] [1-140-21-240-31-140-(-1)] _[12 1
01f [23-1] |0-1+41-20-24+1-30-1+1-(=1)| [23-1]"

Notice that we end up with the second matrix in the product. This is similar

to the arithmetic fact that 1.2 = x for a real number z. So the matrix on the

left acted like a multiplicative identity. We'll see that this is no accident.
Finally, for the ealculation in (f), notice that

1-1+1--11-1+1--1| (00
1-14+1-=11-14+1-=1| |00]|°
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There’s something very curious here, too. Notice that two nonzero matrices
of the same size multiplied together to give a zero matrix. This kind of thing
never happens in ordinary arithmetic, where the cancellation law assures that
ifa-b=0then a=0o0r b=0. O

The calculation in (e) inspires some more notation. The left-hand matrix of
this product has a very important property. It acts like a “1” for matrix multi-
plication. So it deserves its own name. A matrix of the form

- Identity Matrix

[10... ©
01 0...0
-I'F.t= E -_. =[§'ij]
0... 10
00 ... 01]

is called an n x n identity matriz.

The (i,7)th entry of I, is designated by the Kronecker symbol
8;j, which is 1 if = j and 0 otherwise. If n is clear
from context, we simmply write [ in place of I;,.

So we see in the previous example that the left-hand matrix of part (e) is

10
[DI]ZIE'

Kronecker Symbol

I11. Determinant
The determinant of a square matrix A is a scalar, denoted det(A), and is defined as:

11 A12 - A1p

ar1 App ... A

An1 An2 - Qnn
II1.1 Minor

For a square matrix A of order n, if we remove the i — th row and the j — th column, the determinant of

the resulting matrix of order n — 1 is called the minor associated with the element a;; of matrix A,

denoted as m;;.

a1 Aq2 Aq3
A = |0z1 Ay Az3 myq = |a22 a23| DMy, = |a21 a23|
11 Qzp 33 ’ 12 azq a3z

31 A3 433
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II1.2 Determinant Calculation

Definition 2.20. Determinant The determinant of a square n X n matrix
A = [a;j] is the scalar quantity det A defined recursively as follows: If n = 1
then det A = ay: otherwise, we suppose that determinants are defined for all
square matrices of size less than n and specify that

det A = Z rlkl{—l}k+lJFl_!rk1'[:,"‘l}
k=1

= r1,11;"‘.1'11[z1.;| - ugl_-’lfgllifl}l +--- 4+ {—Un-l_lunl_-’lfnl[AL

where M;;(A) is the determinant of the (n — 1) x (n — 1) matrix obtained
from A by deleting the ith row and jth column of A.

Caution: The determinant of a matrix 4 is viewed as a scalar number, not a matrix.

Example . Use the definition to compute the determinants of the follow-

ing matrices.
21 0
(a) [—4] (b) [E 3] (c) [1 1 —1]

o1 2

Solution. (a) From the first part of the definition we have det[—4] = —4.
For (b) we set A = [H b] = [a“ H121| and use the formula of the defini-

[ (.E Loq (loo
tion to obtain that

det I:c: 3] = a1 M1 I::.-"l} — 1o Moy I:A} = ¢ det [tf] — edet [f.l] = ¢l — b

This caleulation gives a handy formula for the determinant of a 2 x 2 matrix.
For (e¢) use the definition to obtain that

21 0
det |11 —1 =2dct[1 -1]—1dct |i1ﬂj|+ﬂdct|il D}
01 2 1 2 12 1 —1

=2(1-2—1-(=1))—=1(1-2—=1-0)+0(1-(—1) —1-0)
=2-3—1-240-(—1)
= 4.

IV. Inverse Matrix

The inverse of a matrix A, denoted A™1, is defined as the matrix such that:

AL A = A.A™' = I wherel is the identity matrix.
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Definition . Invertible Matrix Let A be a square matrix. Then a (two-
sided) inverse for A is a square matrix B of the same size as A such that
AB =T = BA. If such a B exists, then the matrix A is said to be nvertible.

2 -1
} is an inverse for A = { } .

11
Show that B = [l 9 11

Solution. All we have to do is check the definition. But remember that there are two multiplications to
confirm. (We’ll show later that this isn’t necessary, but right now we are working strictly from the

definition.) We have:
[ 2-1][11] [2-1-1-1 2-1-1-2] [10]_
AB = [—1 1] [12J - [—1-1+1-1—1-1+1-2] - [OIJ =1
and similarly.
1) 217 (124t (=D)1-(=1)+1-1] _[10] _
BA_[lQ] [—1 1]‘[1-2+2-(—1)1-(—1)+2-1 =lo1] =%
Therefore, the definition for inverse is satisfied, so that A and B work as inverses to each other.

Of course not every square matrix is invertible: Consider, e.g., zero matrices. However it is sometimes

not entirely obvious why a matrix should not be invertible
IV.1 Laws of Inverses

Here are some of the basic laws of inverse calculations.

Laws of Matrix Inverses

Let A, B,C be matrices of the appropriate sizes so that the following
multiplications make sense, I a suitably sized identity matrix, and ¢ a nonzero
scalar. Then

(1) (Uniqueness) If the matrix A is invertible, then it has only one inverse,
which is denoted by A~1L.

(2) (Double Inverse) If A is invertible, then (A_l)_l = A

(3) (2/3 Rule) If any two of the three matrices A, B, and AB are invertible,
then so is the third, and moreover, (AB)~! = B~1 AL

(4) If A is invertible and ¢ # 0, then (cA)~! = (1/c)A~L.

(5) (Inverse/Transpose) If A is invertible, then (AT)™! = (A~ 1)T and
(A*)—l — (Afl)*_

(6) (Cancellation) Suppose A is invertible. If AB = AC or BA = CA, then
B =_C.

(7) (Rank) If A is invertible, then rank A = n and the reduced row echelon
form of A is I,,.
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Note IV.1. Observe that the 2/3 Rule reverses order when taking the inverse of a product. This should
remind you of the operation of transposing a product. A common mistake is to forget to reverse the order.
Secondly, notice that the cancellation law restores something that appeared to be lost when we first
discussed matrices. Yes, we can cancel a common factor from both sides of an equation, but (1) the factor

must be on the same side and (2) the factor must be an invertible matrix.

Verification of Laws: Suppose that both B and C work as inverses to the matrix 4. We will show that

these matrices must be identical. The associative and identity laws of matrices yield
B=BI=B(AC) = (BA)C=1IC=C.

Henceforth, we shall write A for the unique (two-sided) inverse of the square matrix A, provided of
course that there a Matrix Inverse Notation is an inverse at all (remember that existence of inverses is

not a sure thing). The double inverse law is a matter of examining the definition of inverse:
A4 =1=4"4

shows that A is an inverse matrix for 4. Hence, (A™1)~! = A. Now suppose that A and B are both

invertible and of the same size. Using
the laws of matrix arithmetic, we see that
AB(B'A47) =ABB) AT =AIA=447"=1
and that
(B'A") AB=B'(A'4A)B=B'IB=B'B=1

In other words, the matrix B"'4"! works as an inverse for the matrix 4B, which is what we wanted to

show. We leave the remaining cases of the 2/3 Rule as an exercise.
Suppose that ¢ is nonzero and perform the calculation:
(cA)(1/c) A =(c/c) AA =1 -1=1

A similar calculation on the other side shows that (c4)! = (1/c) A'. Next, apply the transpose operator

to the definition of inverse and use the law of transpose products to obtain that

ADHLAT=1T=7=AT.(A )T
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This shows that the definition of inverse is satisfied for (A=1)Trelative to AT , that is, that
(A"HT=(A"1)T, which is the inverse/transpose law. The same argument works with conjugate

transpose in place of transpose.

Next, if 4 is invertible and AB = AC, then multiply both sides of this equation on the left by A™! to obtain
that

A‘I(AB) = (A‘IA) B=B=A4" AO) =4 C=C
which is the cancellation that we want

We can now extend the power notation to negative exponents. Let 4 be an invertible matrix and k a

positive integer. Then we write Negative Matrix Power
A* =441 4
where the product is taken over k terms.

The laws of exponents that we saw earlier can now be expressed for arbitrary integers, provided that A
is invertible. Here is an example of how we can use the various laws of arithmetic and inverses to carry

out an inverse calculation.

1 2 0
Example. Let: A =0 1 1‘. Show that (I - A)* = 0 and use this to find 47\,
0 0 1

Solution. First we calculate that
100 120 0-2 0
(I-A)=|o10|-o11|=]0 0-1
001 001 0 0 0
and check that

[0—2 0 0-2 0 0—-2 0
(I-A3=100 —1 00 —1 0 0-1
(00 O 00 O 0 0 O

(002 0-2 0 000
= (000 0 0—-1|=1|(000].
1000 0 0 0 000

Next, we do some symbolic algebra, using the laws of matrix arithmetic:

0=(T-AP =(T-4) (P-241 + 4°) =1- 34 + 34° - 4°.
Subtract all terms involving A from both sides to obtain that

34-34>+ A2 =A4-31-34>+A>=A4(BI-34+4>) =1
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Since 4 (31 - 34 + A%) = (31 - 34 + A%)A4, we see from definition of inverse that

1-2 2
A =3r-34+A4%2=10 1-1
0 0 1

Notice that in the preceding example we were careful not to leave a “3” behind when we factored out 4

from 3A4. The reason is that 3+34+4° makes no sense as a sum, since one term is a scalar and the other

two are matrices.

The inverse of a matrix 4 can be calculated as:

A1 Adj(4)

~ det (A)

where Adj(A) is the transpose of the cofactor matrix S.

The cofactor matrix S of a square matrix A is obtained by multiplying the minors by the sign matrix (or

cofactor matrix). It is written as:

S11 S12° S
5= S21 52:2 = Son where §;;. is the cofactor of a;;.
Snl Snz Snn

Inverse Algorithm
Given an n x n matrix A, to compute A~':

(1) Form the superaugmented matrix A = [4 | ,,].
(2) Reduce the first n columns of A to reduced row echelon form by per-
forming elementary operations on the matrix A resulting in the matrix

(R | B].
(3) If R = I,, then set A~! = B; otherwise, A is singular and A~! does not
exist.
Example . Use the inverse algorithm to compute the inverse of Exam-

ple
120
A= ]1011}.
001

Solution. Notice that this matrix is already upper triangular. Therefore,
as in Gaussian elimination, it is a bit more efficient to start with the bottom
pivot and clear out entries above in reverse order. So we compute

120100 12010 0 1001 -2 2
[A|I5]= |011010| Bas(—1) 01001 —1 | E12(—2)|0100 1-1].
001001 00100 1 0010 0 1

We conclude that A is indeed invertible and

1—-2 2
A t'=1]|0 1-1].
0o 0 1

Dr.Zakaria BAHRI



[ |
Mathématiques pour les Sciences de I’Ingénieur 3éme Année M CPC/TI

V. Rank of a Matrix
The rank of a matrix A, denoted r(A4) or rg(A), is the maximum number of linearly independent rows

(or columns).

rg(A) < Inf(n,m)

VI. Trace of a Matrix

The trace of a square matrix A, denoted tr(A), is the sum of the elements on its main diagonal:

n

tr (A) = Z ai;

i=1

VII. Elementary Matrix Transformations
VII.1 Definitions
An elementary matrix transformation refers to one of the following operations on the rows (or

columns) of a matrix:

1. Swapping two rows (or columns)

2. Multiplying a row (or column) by a scalar

3. Adding d times one row (or column) to another row (or column), where i # [ and d is a scalar.
VII.2 Perlis Elementary Operations
Let I be the identity matrix. The following matrices are elementary matrices of Perlis:

o Ej; : Identity matrix I with the i — th and j — th rows swapped.

e E;(d): Identity matrix I with the i — th row multiplied by d.

o Ej;;(d): Identity matrix / with d times the 1j — th row added to the i — th row.
The inverses of these matrices are:

« Ej=E;
o E(d)7'=E(1/d)
o Ey(d)™' = E(—d).

VIIL.3 Elementary Transformations
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Elementary transformations on a matrix A can be reduced to the pre-multiplication of A by one of the

Perlis elementary matrices:
o Ay =E;j-Aswapsthei—thandj — th rows.
e A, = E;(d)-A multiplies the i — th row of A by d.

e A3=E;(—d).-A adds d times the [ — th row of A to the i — th row.
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