Chapter 2
Sets and Applications

2.1 Sets

Definition 2.1.1
A set is a collection of elements, for example {0, 1}, N,
1. The empty set is a set containing no elements, denoted §.

2. We write x € E if z is an element of E, and = ¢ E otherwise.

2.1.1 Operations on Sets

( )

WDeﬁnition 2.1.2 Inclusion F C F
| If every element of F' is an element of E. In other words : Vo € F', x € E. F is called a subset of E (or a

part of F). )
— N
WDeﬁnition 2.1.3 Equality
\I F=F<FECFand FCE. )
e N
WDeﬁnition 2.1.4 Power Set of FE
We denote by P(FE) the power set of E. For example, if E = {1,2,3}. Then,
P(E) = {@, E, {1} {2}3 {3}7 {17 2}7 {17 3}7 {27 3}}
If card(E) = n, then card(P(E)) = 2™. )
e 2
Definition 2.1.5 Difference and Symmetric Difference
Let A and B be two subsets of a set E. We denote :
1. The difference of A and B as the set :
A\B={x € A/xz ¢ B}.
2. The symmetric difference of A and B as the set :
L AAB=(AUB)\ (ANB). )
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-
WDeﬁnition 2.1.6 Complement of a Set
Let A C E. Then, the complement of A in E is denoted (g A, which is defined by :

CpA={zc Ejx¢ A}

It is also denoted E \ A or A¢, or A.

Definition 2.1.7 Intersection and Union
1. The intersection of A and B, denoted A N B, is the set of elements belonging to both A and B.

2. The union of A and B, denoted A U B, is the set of elements belonging to either A or B.
Formally, we have :
ANB={z/(x € A) A (z € B)}.

AUB={z/(x € A)V (x € B)}.

WDeﬁnition 2.1.8 Cartesian Product
The Cartesian product of sets A and B is the set of pairs (z;y) where x € A and y € B.

Ax B={(x;y)/x € Aand y € B}.

If card(A) = n, card(B) = m. Then, card(A x B) = nm.

( )

fProposition 2.1.9
| Let A, B, C be subsets of E. Then,

1. ANB=BNA, AUB=BUA,;

2. AN(BNC)=(ANnB)NC,AU(BUC)=(AUB)UC;
3. AN0=0,ANA=A, AUD=A, AUA=A;
4. ANB=A< ACB,

5. AUB=B< ACB;

6. AN(BUC)=(ANB)U(ANC);

7. AU(BNC)=(AUB)N(AUCQ);

8. Cp(CpA)=A;

9. Cg(AnB)=C0gAUCEB;

10. Cg(AUB) =CrANCgB;

11. Ac B 0B cCgA.

g Proof

8) Let « € E. Then,
v €lp(CpAd) ©r¢CpAeac A

Thus, -
Cp(Crd) =4 = A.

9) Let « € E. Then,
rclp(AnB)er¢ (ANB)e (¢ A V(¢ B) e (relpd)Vv(zeclpgB) e xc (CpAulpB).

Thus,
BE(AO B) = CEA ] CEB

Similarly, we prove property (10).
11) ACB&VeeE(zr€A) = (xeB) @Vere E ((x ¢ B)= (z ¢ A)) (Contrapositive of the
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implication)
evVre B, (xelpB)= (re€lpA) ©CgB c(CpA,

thus
ACB@CEBCEEA.

2.2 Applications

P
WDeﬁnition 2.2.1

A mapping or a function f : E — F is a relation that associates with each element z € E a unique
element of F' denoted f(z).

1. f and g are two mappings. f = g if and only if for all z € E, f(x) = g(x).
2. The graph of the mapping f : E — F' is the set denoted Gy defined by

Gr={(z,f(z)) e EXF |z € E}.

3. The composition of two mappings f and g such that f : E — F and g : FF — G is the mapping
go f: E — G defined by :
(g0 f)(x) =g(f(x)).

Example 2.2.2

Let f:]0,+1[—]0,+1[ and g :]0, +1[— R be defined as
1
f(I) = ;7
and 1
T —
g(z) = 1
respectively :
gof:]0,+1[— R
z = g(f(2)),
(Fa) =g
glJjx)) =g z )
Ly
_z
L
x
11—z
S 1l+a’
=—g(z)
[N\Note 2.2.3

| The composition of two mappings is not always defined. For example, g o f is defined if the codomain of
f is the same as the domain of g.

2.2.1 Direct Image, Inverse Image
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(WDeﬁnition 2.24 )
1. Let AC E, and f: F — F be a mapping, the direct image of A under f is the set
f(A) ={f(z)/z € A} C F,
i.e.,
ye€ f(A) e e Ay=f(z)
2. Let BC F,and f: E — F be a mapping, the inverse image of B under f is the set
/7Y (B)={r € E/f(x) € B} CE,
ie.,
L r e f7YB) & f(x) € B. )
/Example 2.2.5
Let
f:R—>R
T flx) =22
Then,
f{2}) ={4}.
f(=1,3)) = {f(z)/= € [-1,3]} = [0,9].
f([=1,0]U[L,3]) = [0;9].
2 ={weR / f@)e 2 ={-Vv2 v2}.
~

~
[N\Note 2.2.6

1. f(A) is a subset of ', f~(B) is a subset of E.

2. The notation f~!(B) does not imply that f is bijective, the inverse image exists for any function.

3. The direct image of a singleton f({z}) = {f(z)} is a singleton, whereas the inverse image of a
singleton f~!({y}) depends on f, it can be a singleton, a set with multiple elements, or even E if

L f is a constant function. )

p

?Proposition 2.2.7

| Let f:E — F be a mapping, A, A’ subsets of E, and B, B’ subsets of F.
1. AC A" = f(A) C f(A).

BC B = f~YB) c f(B).

FANA) C f(A) Nf(A).

FAUA') = f(A) UF(A).

JBAB) = BN B,

FBUB) = fUB)U B,

AC FfA).

7(f1(B)) € B.

—_—~ o~

® NS o W
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:g Proof

1) Suppose y € f(A). Then Jx € A such that y = f(x). Since

Ac A,z cA.
Then,
y € f(A").
Which implies
f(A) C f(A).

2) Let x € f~1(B). Then, f(z) € B. Since
BC B, f(z)eB.

Hence
z € f~Y(B).

So, ,
fHB) C fH(B).
3) Suppose y € f(AN A’). Then, there exists
re(AnA")

such that y = f(x). Since
zeAy=f(z)e f(A),

and similarly

ze A,
implies
y € f(A).
Thus, )
ye flA)NfA).
So, )
fLAANA) C f(A) N f(A).
4) Suppose
ye(AUA)Iz e AUA,
such that
y = f().
If x € A, then y € f(A) and if
xe A
Then, )
y e fl4),

in both cases
y € [(A)Uf(4).
Hence,
JAUA) C F(AUF(A),
Conversely, if )
ye f(AUFA).
Then, if y € f(A) there exists z € A such that

y = f(z),
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or if

y e f(A").
Then, there exists

x e A,

such that

y = f(),
in both cases

ye f(AUA).

Therefore,

FAUFA) C f(AUA).

By mutual inclusion, we have equality.

5) Proven similarly to (3).

6) Proven similarly to (5).

7) Suppose © € A. Let B = f(A). Then f(z) € B. So,

x € fTH(B) = fH(f(4).

Hence A C f=1(f(A)).
8) Suppose y € f(f~1(B)). Let A= f~1(B). Then y € f(A) implies

dre A, y=f(x).

Since,

reA=f1(B).
We have f(x) € B, thus y € B. Which implies

F(f7H(B) € B.

Definition 2.2.8 Antecedent
| 1. Let y € F, any element € E such that f(x) =y is called an antecedent of y.

2. In terms of inverse image, the set of antecedents of y is f~({y}).

2.2.2 Injection, surjection, bijection

(W Definition 2.2.9 )
Let f: E — F be a function :

1. f is injective if every element of the codomain has at most one pre-image under f.

2. f is surjective if every element of the codomain has at least one pre-image under f.

3. f is bijective if every element of the codomain has exactly one pre-image under f. )
This definition can be reformulated as
s N
WDeﬁnition 2.2.10

1. f is injective if for every y € F, the equation f(x) = y has at most one solution in E.

2. f is surjective if for every y € F, the equation f(x) = y has at least one solution in FE.

3. f is bijective if for every y € F, the equation f(x) =y has exactly one solution in E.
L Alternatively, f is bijective if it is injective and surjective. )
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( )

fProposition 2.2.11
Let f: E — F be a function, the following statements are equivalent :
1. f is injective & Va1, 2 € E, f(x1) = f(x2) = x1 = x2.
2. f is injective & Vaq, 29 € E, 11 # 22 = f(x1) # f(22)
3. f is surjective & Vy € F; Iz € E, y = f(x).
4. f is surjective & f(E)=F
5

. [ is bijective & Vy € F'; oz € E, y = f(z). The symbol! denotes uniqueness, i.e., there exists a

L unique solution for the equation f(x) = y. )

Example 2.2.12

Let the functions
f]_ : N =R

r = fi(z) = :

14+ 2

fQZ Rt —=R
r = folz) = 2°

f3: R —RT
2

x = f3(z) =a*.

Are the functions fi, fa, f3 injective, surjective, bijective 7

j Proof

1)
f1 : N - R
1
> = .
o h@) 1+
1. 1
V s S N, = — = = = .
T1, T fi(z1) = fi(z2) T2 — 132, = %t =2
So f1 is injective.
2. ] 1
-y
VyeR, —=y=>z=—=".
y it s
For example for y = 5, we get
—4
=—¢N.
z=— ¢
So, f1 is not surjective. Therefore, f; is not bijective.
2)
fQ . Rt — R,
r = folz) = 2%
1.
Vay,we € RY, fo(w1) = folwe) = 2] = 23 = 01 = +a9 = 11 = 29,
(because 1,72 € RT). So fs is injective.
2.
VyeR, 2*=y=2z==+/.
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3)

If y > 0. Then, for
y €R™ fz e RT.

Hence, f5 is not surjective.
Therefore, fo is not bijective.

fg: R —R*
r = fa3(z) =22

Vl‘l,l‘g S R, f3(3?1) = f3(332) = JZ‘% = JZ% = ] = £x9.
32,2 €R,2# 2.
But 22 = (—2)2. So, f3 is not injective.

VyER+,m2:y:>$:i\/§.

If y > 0. Then,
Vy € RT3z € R,y = f3(x).

Hence f3 is surjective.

Therefore, f3 is not bijective.

s N
fProposition 2.2.13
1 Let f: F— Fand g: F — G, then
1. f injective and g injective = g o f injective,
2. f surjective and g surjective = g o f surjective,
3. go f injective = f injective,
L 4. go f surjective = g surjective. )

f! Proof

1.

Let x1,29 € E. Then
T # 12 = f(21) # f(22),

because f is injective.

= g9(f(x1)) # 9(f(2)),

because g is injective
= go f(z1) # go fx2),

which shows that g o f is injective.

Let z € G. Since g is surjective, there exists y € F such that z = g(y). We have y € F and f is
surjective. Then, there exists € E such that y = f(z). Hence z = ¢g(f(x)) and we conclude that :

V2ze@G, dx €E,z=go f(x).

It shows that g o f is surjective.

Vo, mp € B, f(z1) = f(z2) = 9(f(21)) = 9(f (22))-
Because g is a function.
= (go f)(@1) = (go f)(x2).
= T = Ta.

Because g o f is injective, hence f is injective.
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4. Let z € G. Then, g o f surjective
=3dx € E, gof(x)=-=z
= dx € E, g(f(z)) ==z

= Jy=flx)eF, gy ==

Thus,
Ve GIyeF, gy ==z

Which shows that g is surjective.

2.2.3 Inverse function

-
fProposition 2.2.14
An application f: E — F is bijective if and only if there exists a unique function g : F — FE such that

fog=I1dr and go f=Idg.

We say that f is invertible and g, denoted f~1, is called the “inverse function” or “reciprocal function”

of f.

ﬁ Proof

1. Suppose there exists a function g : F — E such that fog=1dp and go f = Idg.
Let’s show that f is bijective.
(a) Let y € F. Since

J

f g = IdF
Then,

fogly) =y.
Thus there exists

z=g(y) € E,

such that f(x) =y, showing that f is surjective.
(b) Let z1,29 € E. Since go f = Idg. Then,

go f(z1) = 1,
and

go f(x2) = .
Hence,

flar) = f(22) = g(f (1)) = g(f (x2)).
Because g is a function.
= (go f)(z1) = (g o f)(x2).
= T1 = T2,

showing that f is injective. From (1) and (2), we deduce that f is bijective.

2. Suppose f is bijective. Let’s construct the unique function g : F — FE, such that f o g = Idr and
go f=Idg.
Since f is bijective, then for every y € F, there exists a unique z € E such that y = f(x).
Thus, to every element y € F', we associate a unique element x € E, denoted by g(z), such that
f(z) = y. We define an application as follows :

g:F—-F
yr—gly) =z

Let’s show that

fog=Idp, and go f=Idg.
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(a) Let y € F. Then g(y) = =z, with f(z) =y. So,

fogly) = flgly) = f(x) =y.

Showing that :
f cg = IdF

(b) Let € E. Then for y = f(x) we have g(y) = «. Thus,
go f(x) =g(f(z)) = g(y) = .

‘Which shows that :
go f=Idg.

(c) Let’s show the uniqueness of g. Let g, : F — F satisfying the two previous properties. Then,
for every y € F, there exists ¢ € F such that y = f(x). Thus

91(y) = q1(f(@)) = g1 0 f(z) =ldp(x) = go f(z) = g(f()) = g(v),

which shows that g1 = g.

0/‘Example 2.2.15
f: R —=]0, +o0[ defined by
f(z) = exp(z) = €,
is bijective. its inverse function is g :]0, +oo[— R defined by ¢(y) = In(y). We indeed have

W) — y, ¥V y €]0, 400, and In(e®) = z,Vr € R.

fProposition 2.2.16

' Let f+E— Fand g:F — G be bijective applications. The function g o f is bijective and its inverse is :

(gof)y™t=f"tog™"

fg Proof

According to proposition 2.5, there exists u : FF — E such that uo f =Idg and fou = Idp.
There, also exists v : G — F such that vo g =1Idg and gov = Idg.

Then (go f)o(uov)=go(fou)ov=goldpov=gov=1dg.

Also, (uowv)o(gof)=uo(vog)of=uoldpof=uof=Idg.

So g o f is bijective and its inverse is u o v.

Since u is the inverse of f and v is the inverse of g, then : uov = f~1og™!.

2.2.4 Extension and Restriction

(/fDeﬁnition 2.2.17

Let f: E — F be an application, let A C E'; B C F such that f(A) C B. We call the restriction of f to
A as the starting set and B as the arrival set and we denote f|4 — B the application from A to B which
associates. This function has the same rule of calculation as f, only the domain and codomain change.

&Note 2.2.18

| When we restrict only the domain (B = F), we use the notation f/4.
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Definition 2.2.19

| Let f and g be functions, we say that f is an extension of g if g is a restriction of f.

c/‘Example 2.2.20
1. Let f: R — Rand g: RT — R, defined as :

z s f(x) = 22,

z s g(x) = 22

That is, g is the restriction of f to R,
g = f/R+ —RT.
Note that g is increasing and bijective, but f is not.
2. Let g : R* - R and f : R — R, defined as :

sin x

T g(x) = —

sinx

v flz) = - ,ifx#0
1, ifz=0

The function f is an extension of g,

g=f/r

Moreover, we can show that f is continuous on R ; and we say that f is the extension by continuity
of g.
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