
Chapter 2
Sets and Applications

2.1 Sets

A set is a collection of elements, for example {0, 1}, N,
1. The empty set is a set containing no elements, denoted ∅.
2. We write x ∈ E if x is an element of E, and x /∈ E otherwise.

Definition 2.1.1

2.1.1 Operations on Sets

If every element of F is an element of E. In other words : ∀x ∈ F , x ∈ E. F is called a subset of E (or a
part of E).

Definition 2.1.2 Inclusion F ⊂ E

E = F ⇔ E ⊂ F and F ⊂ E.

Definition 2.1.3 Equality

We denote by P (E) the power set of E. For example, if E = {1, 2, 3}. Then,

P (E) = {∅, E, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}}.

If card(E) = n, then card(P (E)) = 2n.

Definition 2.1.4 Power Set of E

Let A and B be two subsets of a set E. We denote :
1. The difference of A and B as the set :

A \B = {x ∈ A/x /∈ B}.

2. The symmetric difference of A and B as the set :

A∆B = (A ∪B) \ (A ∩B).

Definition 2.1.5 Difference and Symmetric Difference
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Let A ⊂ E. Then, the complement of A in E is denoted ∁EA, which is defined by :

∁EA = {x ∈ E/x /∈ A}.

It is also denoted E \A or Ac, or A.

Definition 2.1.6 Complement of a Set

1. The intersection of A and B, denoted A ∩B, is the set of elements belonging to both A and B.
2. The union of A and B, denoted A ∪B, is the set of elements belonging to either A or B.
Formally, we have :

A ∩B = {x/(x ∈ A) ∧ (x ∈ B)}.

A ∪B = {x/(x ∈ A) ∨ (x ∈ B)}.

Definition 2.1.7 Intersection and Union

The Cartesian product of sets A and B is the set of pairs (x; y) where x ∈ A and y ∈ B.

A×B = {(x; y)/x ∈ A and y ∈ B}.

If card(A) = n, card(B) = m. Then, card(A×B) = nm.

Definition 2.1.8 Cartesian Product

Let A, B, C be subsets of E. Then,
1. A ∩B = B ∩A, A ∪B = B ∪A ;
2. A ∩ (B ∩ C) = (A ∩B) ∩ C, A ∪ (B ∪ C) = (A ∪B) ∪ C ;
3. A ∩ ∅ = ∅, A ∩A = A, A ∪ ∅ = A, A ∪A = A ;
4. A ∩B = A ⇔ A ⊂ B,
5. A ∪B = B ⇔ A ⊂ B ;
6. A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C) ;
7. A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C) ;
8. ∁E(∁EA) = A ;
9. ∁E(A ∩B) = ∁EA ∪ ∁EB ;

10. ∁E(A ∪B) = ∁EA ∩ ∁EB ;
11. A ⊂ B ⇔ ∁EB ⊂ ∁EA.

Proposition 2.1.9

8) Let x ∈ E. Then,
x ∈ ∁E(∁EA) ⇔ x /∈ ∁EA ⇔ x ∈ A.

Thus,
∁E(∁EA) = A = A.

9) Let x ∈ E. Then,

x ∈ ∁E(A ∩B) ⇔ x /∈ (A ∩B) ⇔ (x /∈ A) ∨ (x /∈ B) ⇔ (x ∈ ∁EA) ∨ (x ∈ ∁EB) ⇔ x ∈ (∁EA ∪ ∁EB).

Thus,
∁E(A ∩B) = ∁EA ∪ ∁EB.

Similarly, we prove property (10).
11) A ⊂ B ⇔ ∀x ∈ E, ((x ∈ A) ⇒ (x ∈ B)) ⇔ ∀x ∈ E, ((x /∈ B) ⇒ (x /∈ A)) (Contrapositive of the

Proof
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implication)
⇔ ∀x ∈ E, (x ∈ ∁EB) ⇒ (x ∈ ∁EA) ⇔ ∁EB ⊂ ∁EA,

thus
A ⊂ B ⇔ ∁EB ⊂ ∁EA.

2.2 Applications

A mapping or a function f : E → F is a relation that associates with each element x ∈ E a unique
element of F denoted f(x).

1. f and g are two mappings. f = g if and only if for all x ∈ E, f(x) = g(x).
2. The graph of the mapping f : E → F is the set denoted Gf defined by

Gf = {(x, f(x)) ∈ E × F / x ∈ E} .

3. The composition of two mappings f and g such that f : E → F and g : F → G is the mapping
g ◦ f : E → G defined by :

(g ◦ f)(x) = g(f(x)).

Definition 2.2.1

Let f :]0,+1[→]0,+1[ and g :]0,+1[→ R be defined as

f(x) = 1
x
,

and
g(x) = x− 1

x+ 1 ,

respectively :

g ◦ f : ]0,+1[→ R
x 7→ g(f(x)),

g(f(x)) = g

(
1
x

)
,

=

1
x

− 1
1
x

+ 1
,

= 1 − x

1 + x
,

= −g(x)

Example 2.2.2

The composition of two mappings is not always defined. For example, g ◦ f is defined if the codomain of
f is the same as the domain of g.

Note 2.2.3

2.2.1 Direct Image, Inverse Image
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1. Let A ⊂ E, and f : E → F be a mapping, the direct image of A under f is the set

f(A) = {f(x)/x ∈ A} ⊂ F,

i.e.,

y ∈ f(A) ⇔ ∃x ∈ A, y = f(x).

2. Let B ⊂ F , and f : E → F be a mapping, the inverse image of B under f is the set

f−1(B) = {x ∈ E/f(x) ∈ B} ⊂ E,

i.e.,
x ∈ f−1(B) ⇔ f(x) ∈ B.

Definition 2.2.4

Let
f : R → R
x 7→ f(x) = x2.

Then,

f({2}) = {4} .

f([−1, 3]) = {f(x)/x ∈ [−1, 3]} = [0, 9].

f([−1, 0] ∪ [1, 3]) = [0; 9].

f−1({2}) = { x ∈ R / f(x) ∈ {2}} =
{

−
√

2,
√

2
}
.

Example 2.2.5

1. f(A) is a subset of F , f−1(B) is a subset of E.
2. The notation f−1(B) does not imply that f is bijective, the inverse image exists for any function.
3. The direct image of a singleton f({x}) = {f(x)} is a singleton, whereas the inverse image of a

singleton f−1({y}) depends on f , it can be a singleton, a set with multiple elements, or even E if
f is a constant function.

Note 2.2.6

Let f : E → F be a mapping, A, A′ subsets of E, and B, B′ subsets of F .
1. A ⊂ A′ ⇒ f(A) ⊂ f(A′).
2. B ⊂ B′ ⇒ f−1(B) ⊂ f−1(B′).
3. f(A ∩A′) ⊂ f(A) ∩f(A′).
4. f(A ∪A′) = f(A) ∪f(A′).
5. f−1(B ∩B′) = f−1(B) ∩ f−1(B′).
6. f−1(B ∪B′) = f−1(B) ∪ f−1(B′).
7. A ⊂ f−1(f(A)).
8. f(f−1(B)) ⊂ B.

Proposition 2.2.7
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1) Suppose y ∈ f(A). Then ∃x ∈ A such that y = f(x). Since

A ⊂ A′, x ∈ A′.

Then,
y ∈ f(A′).

Which implies
f(A) ⊂ f(A′).

2) Let x ∈ f−1(B). Then, f(x) ∈ B. Since

B ⊂ B′, f(x) ∈ B′.

Hence
x ∈ f−1(B′).

So,
f−1(B) ⊂ f−1(B

′
).

3) Suppose y ∈ f(A ∩A′). Then, there exists

x ∈ (A ∩A′)

such that y = f(x). Since
x ∈ A, y = f(x) ∈ f(A),

and similarly
x ∈ A′,

implies
y ∈ f(A′).

Thus,
y ∈ f(A) ∩ f(A

′
).

So,
f(A ∩A′) ⊂ f(A) ∩ f(A

′
).

4) Suppose
y ∈ (A ∪A′)∃x ∈ A ∪A′,

such that
y = f(x).

If x ∈ A, then y ∈ f(A) and if
x ∈ A′.

Then,
y ∈ f(A

′
),

in both cases
y ∈ f(A) ∪ f(A

′
).

Hence,
f(A ∪A′) ⊂ f(A) ∪ f(A

′
).

Conversely, if
y ∈ f(A) ∪ f(A

′
).

Then, if y ∈ f(A) there exists x ∈ A such that

y = f(x),

Proof

Algebra 1 Y. SOULA 22



2.2. Applications CHAPITRE 2. SETS AND APPLICATIONS

or if
y ∈ f(A′).

Then, there exists
x ∈ A′,

such that
y = f(x),

in both cases
y ∈ f(A ∪A′).

Therefore,
f(A) ∪ f(A

′
) ⊂ f(A ∪A′).

By mutual inclusion, we have equality.
5) Proven similarly to (3).
6) Proven similarly to (5).
7) Suppose x ∈ A. Let B = f(A). Then f(x) ∈ B. So,

x ∈ f−1(B) = f−1(f(A)).

Hence A ⊂ f−1(f(A)).
8) Suppose y ∈ f(f−1(B)). Let A = f−1(B). Then y ∈ f(A) implies

∃x ∈ A, y = f(x).

Since,
x ∈ A = f−1(B).

We have f(x) ∈ B, thus y ∈ B. Which implies

f(f−1(B)) ⊂ B.

1. Let y ∈ F , any element x ∈ E such that f(x) = y is called an antecedent of y.
2. In terms of inverse image, the set of antecedents of y is f−1({y}).

Definition 2.2.8 Antecedent

2.2.2 Injection, surjection, bijection

Let f : E → F be a function :
1. f is injective if every element of the codomain has at most one pre-image under f .
2. f is surjective if every element of the codomain has at least one pre-image under f .
3. f is bijective if every element of the codomain has exactly one pre-image under f .

Definition 2.2.9

This definition can be reformulated as

1. f is injective if for every y ∈ F , the equation f(x) = y has at most one solution in E.
2. f is surjective if for every y ∈ F , the equation f(x) = y has at least one solution in E.
3. f is bijective if for every y ∈ F , the equation f(x) = y has exactly one solution in E.

Alternatively, f is bijective if it is injective and surjective.

Definition 2.2.10
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Let f : E → F be a function, the following statements are equivalent :
1. f is injective ⇔ ∀x1, x2 ∈ E, f(x1) = f(x2) ⇒ x1 = x2.
2. f is injective ⇔ ∀x1, x2 ∈ E, x1 ̸= x2 ⇒ f(x1) ̸= f(x2)
3. f is surjective ⇔ ∀y ∈ F ; ∃x ∈ E, y = f(x).
4. f is surjective ⇔ f(E) = F

5. f is bijective ⇔ ∀y ∈ F ; ∃!x ∈ E, y = f(x). The symbol ! denotes uniqueness, i.e., there exists a
unique solution for the equation f(x) = y.

Proposition 2.2.11

Let the functions

f1 : N → R

x 7→ f1(x) = 1
1 + x

.

f2 : R+ → R
x 7→ f2(x) = x2.

f3 : R → R+

x 7→ f3(x) = x2.

Are the functions f1, f2, f3 injective, surjective, bijective ?

Example 2.2.12

1)

f1 : N → R

x 7→ f1(x) = 1
1 + x

.

1.
∀x1, x2 ∈ N, f1(x1) = f1(x2) ⇒ 1

1 + x1
= 1

1 + x2
⇒ x1 = x2.

So f1 is injective.
2.

∀y ∈ R,
1

1 + x
= y ⇒ x = 1 − y

y
.

For example for y = 5, we get
x = −4

5 /∈ N.

So, f1 is not surjective. Therefore, f1 is not bijective.
2)

f2 : R+ → R,
x 7→ f2(x) = x2.

1.
∀x1, x2 ∈ R+, f2(x1) = f2(x2) ⇒ x2

1 = x2
2 ⇒ x1 = ±x2 ⇒ x1 = x2,

(because x1, x2 ∈ R+). So f2 is injective.
2.

∀y ∈ R, x2 = y ⇒ x = ±√
y.

Proof
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If y ≥ 0. Then, for
y ∈ R− ∄x ∈ R+.

Hence, f2 is not surjective.
Therefore, f2 is not bijective.

3)

f3 : R → R+

x 7→ f3(x) = x2.

1.
∀x1, x2 ∈ R, f3(x1) = f3(x2) ⇒ x2

1 = x2
2 ⇒ x1 = ±x2.

∃2,−2 ∈ R, 2 ̸= −2.

But 22 = (−2)2. So, f3 is not injective.
2.

∀y ∈ R+, x2 = y ⇒ x = ±√
y.

If y ≥ 0. Then,
∀y ∈ R+,∃x ∈ R, y = f3(x).

Hence f3 is surjective.
Therefore, f3 is not bijective.

Let f : E → F and g : F → G, then
1. f injective and g injective ⇒ g ◦ f injective,
2. f surjective and g surjective ⇒ g ◦ f surjective,
3. g ◦ f injective ⇒ f injective,
4. g ◦ f surjective ⇒ g surjective.

Proposition 2.2.13

1. Let x1, x2 ∈ E. Then
x1 ̸= x2 ⇒ f(x1) ̸= f(x2),

because f is injective.
⇒ g(f(x1)) ̸= g(f(x2)),

because g is injective
⇒ g ◦ f(x1) ̸= g ◦ f(x2),

which shows that g ◦ f is injective.
2. Let z ∈ G. Since g is surjective, there exists y ∈ F such that z = g(y). We have y ∈ F and f is

surjective. Then, there exists x ∈ E such that y = f(x). Hence z = g(f(x)) and we conclude that :

∀z ∈ G, ∃x ∈ E, z = g ◦ f(x).

It shows that g ◦ f is surjective.
3.

∀x1, x2 ∈ E, f(x1) = f(x2) ⇒ g(f(x1)) = g(f(x2)).

Because g is a function.
⇒ (g ◦ f)(x1) = (g ◦ f)(x2).

⇒ x1 = x2.

Because g ◦ f is injective, hence f is injective.

Proof
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4. Let z ∈ G. Then, g ◦ f surjective

⇒ ∃x ∈ E, g ◦ f(x) = z.

⇒ ∃x ∈ E, g(f(x)) = z.

⇒ ∃y = f(x) ∈ F, g(y) = z.

Thus,
∀z ∈ G∃y ∈ F, g(y) = z.

Which shows that g is surjective.

2.2.3 Inverse function

An application f : E → F is bijective if and only if there exists a unique function g : F → E such that

f ◦ g = IdF and g ◦ f = IdE .

We say that f is invertible and g, denoted f−1, is called the “inverse function” or “reciprocal function”
of f .

Proposition 2.2.14

1. Suppose there exists a function g : F → E such that f ◦ g = IdF and g ◦ f = IdE .
Let’s show that f is bijective.
(a) Let y ∈ F . Since

f ◦ g = IdF .

Then,
f ◦ g(y) = y.

Thus there exists
x = g(y) ∈ E,

such that f(x) = y, showing that f is surjective.
(b) Let x1, x2 ∈ E. Since g ◦ f = IdE . Then,

g ◦ f(x1) = x1,

and
g ◦ f(x2) = x2.

Hence,
f(x1) = f(x2) ⇒ g(f(x1)) = g(f(x2)).

Because g is a function.
⇒ (g ◦ f)(x1) = (g ◦ f)(x2).

⇒ x1 = x2,

showing that f is injective. From (1) and (2), we deduce that f is bijective.
2. Suppose f is bijective. Let’s construct the unique function g : F → E, such that f ◦ g = IdF and
g ◦ f = IdE .
Since f is bijective, then for every y ∈ F , there exists a unique x ∈ E such that y = f(x).
Thus, to every element y ∈ F , we associate a unique element x ∈ E, denoted by g(x), such that
f(x) = y. We define an application as follows :

g : F → E
y 7→ g(y) = x

Let’s show that
f ◦ g = IdF , and g ◦ f = IdE .

Proof
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(a) Let y ∈ F . Then g(y) = x, with f(x) = y. So,

f ◦ g(y) = f(g(y)) = f(x) = y.

Showing that :
f ◦ g = IdF .

(b) Let x ∈ E. Then for y = f(x) we have g(y) = x. Thus,

g ◦ f(x) = g(f(x)) = g(y) = x.

Which shows that :
g ◦ f = IdE .

(c) Let’s show the uniqueness of g. Let g1 : F → E satisfying the two previous properties. Then,
for every y ∈ F , there exists x ∈ E such that y = f(x). Thus

g1(y) = g1(f(x)) = g1 ◦ f(x) = IdE(x) = g ◦ f(x) = g(f(x)) = g(y),

which shows that g1 = g.

f : R →]0,+∞[ defined by
f(x) = exp(x) = ex,

is bijective. its inverse function is g :]0,+∞[→ R defined by g(y) = ln(y). We indeed have

eln(y) = y,∀ y ∈]0,+∞[, and ln(ex) = x, ∀x ∈ R.

Example 2.2.15

Let f : E → F and g : F → G be bijective applications. The function g ◦ f is bijective and its inverse is :

(g ◦ f)−1 = f−1 ◦ g−1.

Proposition 2.2.16

According to proposition 2.5, there exists u : F → E such that u ◦ f = IdE and f ◦ u = IdF .
There, also exists v : G → F such that v ◦ g = IdF and g ◦ v = IdG.
Then (g ◦ f) ◦ (u ◦ v) = g ◦ (f ◦ u) ◦ v = g ◦ IdF ◦ v = g ◦ v = IdE .
Also, (u ◦ v) ◦ (g ◦ f) = u ◦ (v ◦ g) ◦ f = u ◦ IdF ◦ f = u ◦ f = IdE .
So g ◦ f is bijective and its inverse is u ◦ v.
Since u is the inverse of f and v is the inverse of g, then : u ◦ v = f−1 ◦ g−1.

Proof

2.2.4 Extension and Restriction

Let f : E → F be an application, let A ⊂ E ; B ⊂ F such that f(A) ⊂ B. We call the restriction of f to
A as the starting set and B as the arrival set and we denote f |A → B the application from A to B which
associates. This function has the same rule of calculation as f , only the domain and codomain change.

Definition 2.2.17

When we restrict only the domain (B = F ), we use the notation f/A.
Note 2.2.18
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Let f and g be functions, we say that f is an extension of g if g is a restriction of f .
Definition 2.2.19

1. Let f : R → R and g : R+ → R+, defined as :

x 7→ f(x) = x2,

x 7→ g(x) = x2.

That is, g is the restriction of f to R+,

g = f/R+ → R+.

Note that g is increasing and bijective, but f is not.
2. Let g : R∗ → R and f : R → R, defined as :

x 7→ g(x) = sin x
x

,

x 7→ f(x) =
{ sin x

x
, if x ̸= 0

1, if x = 0

The function f is an extension of g,
g = f/R∗ .

Moreover, we can show that f is continuous on R ; and we say that f is the extension by continuity
of g.

Example 2.2.20
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