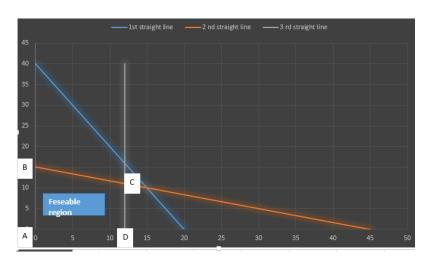
OPERATIONS RESEARCH

Prepared by: Dr. Lemya Mekarssi.

Level: 2nd Year Bachelor of Business Sciences

Solution of Series


Exercise 1

1. Formulation of mathematical model of LP

$\begin{array}{c} \text{Max } Z{=}300X_{1{+}}250X_{2} \\ 2X_{1}{+}X_{2}{\leq}40 \end{array}$
$X_1 + 3X_2 \le 45$
$X_1 \leq 12$
$X_1 \ge 0, X_2 \ge 0$

2. Draw the graph by finding out the x_1 and x_2 intercepts

1 st straight	1^{st} straight line: $2X_1+X_2=40$		2 nd straight 1	$3X_2 = 45$	3^{rd} straight line 2: X ₁ =12							
	X ₁	\mathbf{X}_2		X ₁	\mathbf{X}_2		X ₁	X_2				
point 1	0	40	point 1	0	15	point 1	12	0				
point 2	20	0	point 2	45	0	point 2	12	40				
	The feasible region is the area common to the three lines and includes the points (A B C D),											
	which all	which allows us to determine the optimal solution, which is point C										

3. The Corners and Feasible Solution:

corner			Z
points	X_1	X_2	\$
А	0	0	0
В	0	15	3750
С	12	11	6350 (optimal)
D	12	0	3600

Interpret the result. Accordingly, the highlighted result in the table above implies that 12 units of Model A and 11 units of Model B TV sets should be produced so that the total profit will be \$6350.


Exercise 2

1. Formulation of mathematical model of LP

$\begin{array}{c} \text{Min } Z{=}25X_{1{+}}30X_{2} \\ 20X_{1}{+}15X_{2}{\geq}100 \end{array}$
$2X_1 + 3X_2 \ge 15$
$X_1 \ge 0, X_2 \ge 0$

2. Draw the graph by finding out the x_1 and x_2 intercepts

1 st straight lin	e: $20X_1 + 15$	$5X_2 = 100$	2^{nd} straight line 2: $2X_1+3X_2=15$							
	\mathbf{X}_{1}	\mathbf{X}_2		\mathbf{X}_{1}	\mathbf{X}_2					
point 1	0	20/3	point 1	0	5					
point 2	5	0	point 2	7.5	0					
	The feasible region is the area common to the two lines and includes the points (A B C), which allows us to determine the optimal solution, which is point C									

3. The Corners and Feasible Solution:

corner			Z
points	X_1	X_2	\$
А	0	20/3	200
В	2.5	3.33	162.5(optimal)
С	7.5	0	187.5

Since our objective is to minimize cost, the minimum amount (162.5) will be selected.

 $X_1 = 2.5, X_2 = 3.33$ and Min Z= 162.5

Exercise 3

1. Converting the linear program to the standard form:

 $\begin{array}{l} Max: Z=1X_1+X_2+4X_3+2X_4+1X_5\\ 4X_1+X_2+1.5X_3+2.5X_4+0X_5+1S_1+0S_2+0S_3=150\\ 2X_1+3X_2+1X_3+2X_4+7X_5+0S_1+1S_2+0S_3=180\\ 0X_1+2X_2+2X_3+0X_4+2X_5+0S_1+0S_2+1S_3=120\\ X_1, X_2, X_3, X_4, X_5, S_1, S_2, S_3 \geq 0 \end{array}$

(1	1	4	2	1	0	0	0	Bi	B _i /a _{ij}	
Сь	$\mathbf{X}_{\mathbf{j}}$	X ₁	X ₂	X ₃	X_4	X5	S ₁	S_2	S ₃	(solution)		
0	S_1	4	1	1.5	2.5	0	1	0	0	150	300	
0	S_2	2	3	1	2	7	0	1	0	180	180	Outgoing
0	S ₃	0	2	<mark>2</mark> ∢	0	2	0	0	1	120-	60	_ row
$Z = \sum_{j=1}^{n} z_{j}$	$_{=1}C_jX_j$	0	0	0	$\setminus 0$	0	0	0	0	Z	=0	
Cj	-Z _j	1	1	4	2	1	0	0	0			
				Incoming column		Pivot element	Ī					

2. Initial Simplex Table

-It is noted that the values of the last line include positive values, which indicates that the solution is not optimal and can be improved.

The incoming variable is: X_3 and the outgoing variable is S_3

(1	1	4	2	1	0	0	0	Bi	B _i /a _{ij}	
Cb	X _j	X ₁	\mathbf{X}_2	X ₃	X_4	X5	S ₁	S_2	S ₃	(solution)	, , , , , , , , , , , , , , , , , , ,	
												Outgoing
0	S_1	4	0.5-	0	<mark>5/2</mark> <	-3/2	1	0	-1/4	60	24	
0	S_2	2	2	0	2	$\setminus 6$	0	1	-1/2	120	60	row
4	X ₃	0	1	1	0	1	0	0	1/2	60	/	
$Z = \sum_{j=1}^{n} z_{j=1}^{n}$	$=_1 C_j X_j$	0	4	4	0	4	0	0	2	Z=	240	
Cj	-Z _j	1	-3	0	2	-3	0	0	-2			
. .			6.4		Incoming column	┛┕	Pivo	ent			- 4 41 - 4	

Second Simplex Table

-It is noted that the values of the last line include one positive value, which indicates that the solution is not optimal and can be improved.

The incoming variable is: X_4 and the outgoing variable is S_1

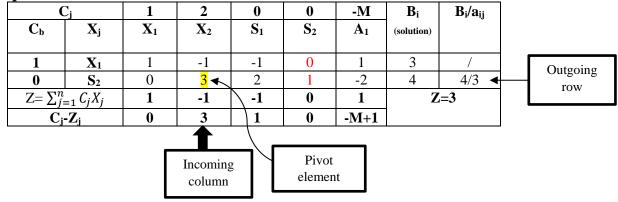
Optimal Simplex Table


(C _j 1		1	4	2	1	0	0	0	Bi
Cb	Xj	X ₁	X ₂	X ₃	X ₄	X 5	S_1	S_2	S ₃	(solution)
2	X4	8/5	-1/5	0	1	-3/5	2/5	0	-1/10	24
0	S ₂	-6/5	12/5	0	0	36/5	-4/5	1	1/10	72
4	X3	0	1	1	0	1	0	0	1/2	60
$Z = \sum_{j=1}^{n} z_{j=1}^{n}$	$=_1 C_j X_j$	16/5	18/5	4	2	14/5	4/5	0	7/5	Z=288
Cj	-Z _j	-11/5	-13/5	0	0	-9/5	-4/5	0	-7/5	

It is clear from the values of the last line that some values are negative and some are equal to zero and therefore the optimal solution has been reached and the third basic table is the optimal table. **Exercise 4**

1. Converting the linear program to the standard form:

$\begin{array}{l} \text{Min: } \mathbf{Z} = \mathbf{X}_{1+} \mathbf{2}\mathbf{X} \ _{2} + \mathbf{0}\mathbf{S}_{1} + \mathbf{0}\mathbf{S}_{2} - \mathbf{M}\mathbf{A}_{1} \\ \mathbf{X}_{1} - \mathbf{X}_{2} - \mathbf{1}\mathbf{S}_{1} + \mathbf{0}\mathbf{S}_{2} + \mathbf{1}\mathbf{A}_{1} = \mathbf{3} \\ \mathbf{2}\mathbf{X}_{1} + \mathbf{X}_{2} + \mathbf{0}\mathbf{S}_{1+} \mathbf{1}\mathbf{S}_{2} + \mathbf{0}\mathbf{A}_{1} = \mathbf{10} \\ \mathbf{X}_{1} \ge \mathbf{0}, \ \mathbf{X}_{2} \ge \mathbf{0}, \ \mathbf{S}_{1} \ge \mathbf{0}, \ \mathbf{S}_{2} \ge \mathbf{0}, \ \mathbf{A}_{1} \ge \mathbf{0} \end{array}$


2. Initial Simplex Table

-It is noted that the values of the last line include positive values, which indicates that the solution is not optimal and can be improved.

The incoming variable is: X_1 and the outgoing variable is A_1

Second Simplex Table

-It is noted that the values of the last line include positive values, which indicates that the solution is not optimal and can be improved.

The incoming variable is: X_2 and the outgoing variable is S_2

Optimal Simplex Table

Cj		1	2	0	0	-M	Bi	
Cb	Xj	X ₁	X_2	S ₁	S_2	A ₁	(solution)	
1	X ₁	1	0	-1/3	1/3	1/3	13/3	
2	\mathbf{X}_2	0	1	2/3	1/3	-2/3	4/3	
$Z = \sum_{j=1}^{n} C_j X_j$		1	2	1	1	-1	Z	=7
Cj	-Z _j	0	0	-1	1	-M+1		

Since none of the net-evaluation is positive, the optimum solution is attained and is given by Max. Z=7 at $x_1 = 13/3$ and $x_2 = 4/3$.

Exercise 5

The original primal can be written in the standard primal form as: Max. $Z^* = -3x1 + 2x2 - 4x3$ Subject to the constraints: $-3x1 - 5x2 - 4x3 \le -7$ $-6x1 - x2 - 3x3 \le -4$ $7x1 - 2x2 - x3 \le 10$ $-x1 + 2x2 - 5x3 \le -3$ $-4x1 - 7x2 + 2x3 \le -2$ $-x1, x2, x3 \ge 0$ **Dual primal becomes** - Min. $Z^* = -7y1 - 4y2 + 10y3 - 3y4 - 2y5$ Subject to the constraints $-3y1 - 6y2 + 7y3 - y4 - 4y5 \ge -3$ $-5y1 - y2 - 2y3 + 2y4 - 7y5 \ge 2$ $4y1 - 3y2 - 3y3 - 5y4 + 2y5 \ge -4$

y1, y2, y3, y4, y5 \ge 0

Exercise 6:

Since the variable x3 is unrestricted in sign, the given LPP can be transform into standard primal form by substituting x3 = x3' - x3'' where $x3' \ge 0$, $x3'' \ge 0$

Standard primal becomes:

Max. $Z^* = -2x1 - 3x2 - 4(x3' - x3'')$ Subject to the constrain $-2x1 - 3x2 - 5(x3' - x3'') \le -2$ $3x1 + x2 + 7(x3' - x3'') \le 3$ $-3x1 - x2 - 7(x3' - x3'') \le -3$ $x1 + 4x2 + 6(x3' - x3'') \le 5$ $-x1, x2, x3', x3'' \ge 0$

Required dual is

 $\begin{array}{l} \text{Min. } Z^* = -2y1 + 3(y2\ '-y2\ '') + 5y3\\ \text{Subject to the constraints}\\ -2y1 + 5(y2\ '-y2\ '') + y3 \geq -2\\ -3y1 + (y2\ '-y2\ '') + 4y3 \geq -3\\ -5y1 + 7(y2\ '-y2\ '') + 6y3 \geq -4\\ 5y1 - 7(y2\ '-y2\ '') - 6y3 \geq 4\\ y1, y2\ ', y2\ '', y3 \geq 0 \end{array}$

Again, we write

Min. $Z^* = -2y1 + 3y2 + 5y3$ Subject to the constraints $-2y1 + 5y2 + y3 \ge -2$ $-3y1 + y2 + 4y3 \ge -3$

$$5y1 - 7y2 - 6y3 = 4$$

 $y_1, y_2 \ge 0$ and y3 is unrestricted.

Exercise 7:

Min. $Z^* = 5y1 - y2 + 5y3$ Subject to the constraints $y1 + y2 \ge 3$ $5y1 + y2 \ge 1$ $3y1 - y3 \ge 1$ $4y1 + y3 \ge -1$ $y1, y3 \ge 0$ and y2 is unrestricted.

Exercise 8 :

1. Solve the IPP as an ordinary LPP by ignoring the restriction of integer values

 $\begin{array}{c} Max:Z\!\!=\!\!X_1\!\!+\!\!X_2\!\!+\!0S_1\!\!+\!\!0S_2\\ 3X_1\!\!+\!\!2X_2\!\!+\!\!1S_1\!\!+\!\!0S_{2=}\!5 \end{array}$

$$X_2 + 0S_1 + 1S_2 = 2$$

$$X_1, X_2, S_1, S_2 \ge 0$$
, and are integers

Initial Simplex Table

(Cj		1	0	0	Bi	B _i /a _{ij}
Сь	Xj	X ₁	\mathbf{X}_2	S_1	S_2	(solution)	
0	S_1	<mark>3</mark>	2	1	0	5	5/3
0	S_2	0	1	0	1	2	/
$Z = \sum_{j=1}^{n} z_{j}$	$\sum_{j=1}^{n} C_j X_j \qquad 0$		0	0	0	Z=0	
C _j -Z _j		1	1	0	0		

Second Simplex Table

(Cj		1	0	0	Bi	B _i /a _{ij}
Cb	Xj	X ₁	\mathbf{X}_{2}	S_1	S_2	(solution)	
1	\mathbf{X}_1	1	2/3	1/3	0	5/3	5/2
0	S_2	0	1	0	1	2	2
$Z = \sum_{j=1}^{n} $	$Z = \sum_{j=1}^{n} C_j X_j$		2/3	1/3	0	Z=5/3	
C	C _j -Z _j		<mark>2/3</mark>	-1/3	0		

Third Simplex Table

(1	1	0	0	Bi
Cb	Xj	X ₁	\mathbf{X}_{2}	S_1	S_2	(solution)
1	\mathbf{X}_{1}	1	0	1/3	-2/3	1/3
1	\mathbf{X}_2	0	1	0	1	2
$Z = \sum_{j=1}^{n} $	$=1 C_j X_j$	1	1	1/3	1/3	Z=7/3
Cj	-Z _j	0	0	-1/3	-1/3	

2. Test the integrality of the optimum solution. The solution is $x_1 = 1/3$, $x_2=2$ and Z=7/3. Since $x_1 = 1/3$ is non-integer solution so that the current feasible solution is not optimal integer solution.

3. Select the source row. \Rightarrow The row corresponding to non-integer solution.

 $x_1 + 1/3s_1 - 2/3s_2 = 1/3$

4. Find the new constraint (Gomorian constraint) from the source row.

 $x_1 + 1/3s_1 \text{-} 2/3s_2 = 1/3$

 $(1+0) x_1 + (0+1/3) s_1 + (-1+1/3) s_2 = 0+1/3$, and eliminate the integer part

 $1/3s_1+1/3s_2 \ge 1/3$,

 $-1/3s_1\text{-}1/3s_2 \leq -1/3$

 $-1/3s_1-1/3s_2+G_1=-1/3 \Rightarrow$ Gomorian constraint and G is Gomorian slack.

5. Add the new (Gomorian) constraint at the bottom of the simplex table obtained in step 1 and find the new feasible solution.

	Cj	1	1	0	0	0	Bi
Сь	BV	\mathbf{X}_{1}	\mathbf{X}_2	S_1	S_2	G ₁	(solution)
1	X1	1	0	1/3	-2/3	0	1/3
1	X_2	0	1	0	1	0	2
0	G ₁	0	0	-1/3	1/3	1	-1/3
$Z = \sum_{j=1}^{n} $	$C_{j=1}C_jX_j$	1	1	1/3	1/3	0	Z=7/3
C	j-Zj	0	0	-1/3	-1/3	0	

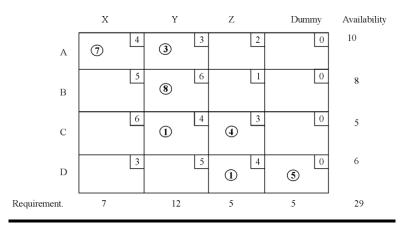
 \Rightarrow The solution is not feasible because the solution (G₁=-1/3) is -ve. Therefore, G₁ will leave the base.

• Select the new constraint as a pivot row. In order to select the entering variable, use :

$$\operatorname{Max}\left(\frac{\Delta}{a_{ij}},a_{ij}\leq \mathbf{0}\right)$$

• Therefore, $\operatorname{Max}\left(\frac{\Delta}{a_{ij}}, a_{ij} \le 0\right) = \operatorname{Max}\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right) = (-1, -1)$

Choose arbitrarily (Let s₁ is chosen as entering variable)


OPERATIONS RESEARCH

(C _j	1	1	0	0	0	Bi
Cb	BV	\mathbf{X}_1	\mathbf{X}_2	S_1	S_2	G ₁	(solution)
1	V.	1	0	0	1	1	0
1	\mathbf{X}_1 \mathbf{X}_2	0	1	0	-1	0	2
0	<u>S1</u>	0	0	1	1	-3	1
$Z = \sum_{j=1}^{n} z_{j}$	$=_1 C_j X_j$	1	1	0	0	1	Z=2
	-Z _j	0	0	0	0	-1	

Since all $\Delta_j \ge 0$ and all $X_{bi} \ge 0$ and are integers, the current feasible solution is optimal integer solution. Therefore, the solution is $x_1=0$, $x_2=2$ and Z=2

Exercise 9:

Here Σ b is greater than Σ d hence we have to open a dummy column whose requirement constraint is 6, so that total of availability will be equal to the total demand. Now let get the basic feasible solution by three different methods and see the advantages and disadvantages of these methods. After this let us give optimality test for the obtained basic feasible solutions.

For cell AX the availability constraint is 10 and the requirement constraint is 7. Hence 7 is smaller than 10, allocate 7 to cell AX. Next 10 - 7 = 3, this is allocated to cell AY to satisfy availability requirement. Proceed in the same way to complete the allocations. Then count the allocations, if it is equals to m + n - 1, then the solution is basic feasible solution. The solution, we got have 7 allocations which is = 4 + 4 - 1 = 7. Hence the solution is basic feasible solution.

Allocations are:

From	То	Units in tons	Cost in DA
А	Х	7	$7 \times 4 = 28$
А	Y	3	$3 \times 3 = 9$
В	Y	8	$8 \times 6 = 48$
С	Y	1	$1 \times 4 = 4$
С	Z	4	$4 \times 3 = 12$
D	Z	1	$1 \times 4 = 4$
D	Dummy	5	$5 \times 0 = 0$
	Total in DA		105

Exercise	10:

D. Centres	D_1	D_2	D3	D_4	Av.
Plant	•				
P ₁	195	30	50	122	7
P2	70	30	40 ⑦	60 ³	10
P ₃	40	108	60	2010	18
Requirement	5	8	7	15	35

Now we perform optimality test by applying the MODI method. First of all, we write the cost matrix for only allocated cells:

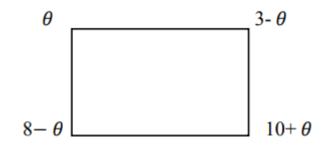
19			12	u1
		40	60	u ₂
	10		20	u ₃
v ₁	V ₂	V 3	V4	

Let us denote the row numbers by u_1 , u_2 , u_3 , and column numbers by v_1 , v_2 , v_3 , and v_4 such that

 $u_1 + v_1 = 19$, $u_1 + v_4 = 12$, $u_2 + v_3 = 40$, $u_2 + v_4 = 60$, $u_3 + v_2 = 10$, $u_3 + v_4 = 20$.

Taking $u_1=0$, we have $v_1 = 19$ and $v_4 = 12$ from the first two equations. Putting the value of v_4 in the fourth equation, we have $u_2 = 48$.

Similarly, we find $u_3 = 8$, $v_2 = 2$ and $v_3 = -8$


Using these values, we fill the vacant cells of the above table using $C_{ij} = u_i + v_j$ and put dots in the already filled cells so that these cells are not considered again.

	v ₁ =19	$v_2 = 2$	v ₃ = -8	v ₄ =12
u1= 0	•	2	-8	•
$u_2 = 48$	67	50	•	•
u ₃ = 8	27	•	0	•

Now, subtracting these values from the corresponding values of the original cost matrix, we have the net evaluations, i.e., $\Delta_{ij} = C_{ij} - (u_i + v_j)$

•	30-2=28	50- (-8)= 58	•
70-67=3	30-50= -20	•	•
40-27=13	•	60-0= 60	•

Since Note that the cell $(P_{2,2})$ has the most negative opportunity cost (net change in cost). Therefore, the transportation cost can be reduced by making allocation to this unoccupied cell. This means that if one unit is shifted to this unoccupied cell through the closed loop formed, beginning from this cell and using allocated cells, DA20 can be saved. We form the loop beginning from this cell, i.e., the cell $(P_{2,2})$ (see Figure below). We shift θ units to this unoccupied cell through the loop and add and subtract θ from the cells at the other corners of the loop which are assigned '+' and '-' signs. So, we get :

The maximum number of the units that can be allocated to the cell (P_2 , D_2) through this loop is given by the minimum of the solution of the equation 3- $\theta = 0$ and 8- $\theta = 0$, i.e.,

=3

$$\theta = \min[the no. of units i(P_2,D_4) = 3]$$

the no. of units in $(P_{2,2}) = 8$

So, with the improved allocations, the table now becomes:

195	30	50	122
70	303	407	60
40	105	60	2013

Thus, the total cost of transportation for this set

=19×5+12×2+30×3+40×7+10×5+20×13

= 95+24+90+280+50+260 = 799

Now, let us apply the optimality test to the improved solution. Proceeding in the same way as in the first iteration, first of all, we write the cost matrix for only allocated cells:

19			12	u 1
	30	40		u ₂
	10		20	U 3
V 1	V 2	V 3	V 4	

Let us denote the row numbers by u₁, u₂, u₃ and column numbers by v₁, v₂, v₃, and v₄ such that

 $u_1 + v_1 = 19,$ $u_1 + v_4 = 12,$ $u_2 + v_3 = 40,$

 $u_2 + v_2 = 30$, $u_3 + v_2 = 10$, $u_3 + v_4 = 20$.

Taking $u_1=0$, we have $v_1 = 19$ and $v_4 = 12$ from the first two equations.

Putting the value of v_4 in the fourth equation, we have $u_3 = 8$.

Similarly, $u_2 = 8$, $v_2 = 2$ and $v_3 = 12$

Using these values, we fill all the vacant (unoccupied) cells of the table using $C_{ij} = u_i + v_j$ for each unoccupied cell and put dots in the already filled cells so that these cells are not considered again.

	v1=19	$v_2 = 2$	$v_3 = 12$	v4=12
u1= 0	•	2	-8	•
$u_2 = 28$	47	•	•	40
u ₃ = 8	27	•	20	•

Now, subtracting these values from the corresponding values of the original cost matrix, we have the net evaluations, i.e., $\Delta_{ij} = C_{ij} - (u_i + v_j)$

•	28	38	•
23	•	•	20
13	•	40	•

Since none of the net evaluation is negative, this solution is optimal. Thus, the total minimum transportation cost is Da 799 and the maximum saving = (1000-799) = 201.