Prepared by: Dr. Lemya Mekarssi.

Level: 2nd Year Bachelor of Business Sciences

Chapter 3: Linear Programming: Graphical Method

To solve linear programming problems, several different methods are used, following successive steps and starting from the initial solution to the optimal solution. The most important of these methods is graphical method.

The graphical method

Any LP with only two variables can be solved graphically. We always label the variables x_1 and x_2 and the coordinate axes the x_1 and x_2 axes. The steps of graphical method for solving an LPP are as follows:

- 1. Plot the graph corresponding to the given constraints.
- 2. Determine the region for each given constraint.
- 3. Determine the feasible region.
- 4. Determine corner/extreme points.
- 5. Examine corner/extreme points.1.

1. The graphical method in the case of maximization:

The following example explains steps of graphical method in the case of maximization.

Solution:

a. Draw the coordinate axes corresponding to the variables of the problem and the graphical representation of all constraints

- Converting the inequalities forming the constraints of the problem into equations as follows:

 $4X_1+2X_2=60$ $2X_1+4X_2=48$

- To draw the two straight lines, it is enough to find two points for each line as follows:

1 st straight line: 4X ₁ +2X ₂ = 60		2 nd straight line 2: 2X ₁ +4X ₂ = 48			
	X 1	\mathbf{X}_2		X ₁	\mathbf{X}_2
point 1	0	30	point 1	0	12
point 2	15	0	point 2	24	0
	150Afterdrawingtheline,weshadetheregionthatachievesinequalitysolutionsforfirstconstraint,whichareallthepointsunderstraight			After du line, we region th the solutions second which a points straight l	rawing the shade the at achieves inequality for the constraint, re all the under the ine
	The feasible region is the area common to the two lines				

OPERATIONS RESEARCH

and includes the points (A B C D), which allows us to determine the optimal solution, which is point C

The **feasible region** is the shaded area in the polygon represented by the points (A B C D), and therefore any point within this area represents a possible solution to the problem. The best solution is represented by the three points B, C, and D (except for the point of principle A, which represents the point of origin). The best solution is one of these four points.

C. Determining the optimal solution: Determining the optimal solution from among the four corner points is done in one of the following ways:

- The method of evaluating all corner points;

- Method of drawing the objective function:

C.1 Evaluate the corner points:

Since c is the point of intersection of the two lines, we solve the sentence of the two equations as follows:

 $\begin{array}{l} 4x_{1}+2x_{2}=60\\ 2x_{1}+4x_{2}=48\\ 2x_{1}+x_{2}=30\\ x_{1}+2x_{2}=24\\ 2(24-2x_{2})+x_{2}=30\\ 48-4x_{2}+x_{2}=30\\ \end{array}$

 $X_1 = 12, x_2 = 6$

To confirm this, we make up in the mathematical model:

- **point A (0, 0):** Z= 0, 0<60, 0<48, (0, 0) = (0, 0)

- **point B** (0, 12): Z= 72, 24<60, 48≤48, (0, 0)≥ (0, 12)

- **point D** (15, 0): Z= 120, 60≤60, 30<48, (0, 15)≥(0, 0)

-point C (12, 6): Z= 132, 60=60, 48=48, (12, 6)≥(0, 0)

Feasible solutions to the LP:

corner			Z
points	X_1	X_2	
А	0	0	0
В	0	12	72
С	12	6	132
D	15	0	120

Through these possible solutions, we notice that the value of the objective function Z rose from zero to the value 132, which is the largest value, that is, at the point C, it achieves the optimal solution. In other words, the optimal production plan is to produce 12 unit of X1 and 6 unit of X_2 to achieve the optimum value 132 unit under the production capacities available.

C.2 draw the objective function

The same solution reached in the previous method can be reached in an easier way by drawing the objective function. To create the line representing the objective function, the objective function can be given any value, let it be 24 units, that is:

Straight line Δ : Z=8X ₁₊ 6X ₂ = 24				
	\mathbf{X}_{1}	\mathbf{X}_2		
point 1	0	4		
point 2	3	0		
The straight line passing through				
the binary $(3, 4)$ is the carrying				
line of the objective function				
when it is equal to 24.				
We move this line parallel to the				
formed vertices of the polygon				
of possible solutions, where it				
seems from the drawing that the				
point C is the ideal point because				
it is the last point reached by the				
line Δ				

2. The data method in case of minimizing:

Solve the following linear program using the graphical method:

a. Draw the coordinate axes corresponding to the variables of the problem and the graphical representation of all constraints

- Converting the inequalities forming the constraints of the problem into equations as follows:

$$3X_1+X_2=6$$

 $X_1+2X_2=6$

- To draw the two straight lines, it is enough to find two points for each line as follows:

1st straight line : 3X ₁ +X ₂ = 6		2nd straight line: X ₁ +2X ₂ = 6			
	\mathbf{X}_{1}	\mathbf{X}_2		\mathbf{X}_{1}	\mathbf{X}_{2}
point 1	0	6	point 1	0	3
point 2	2	0	point 2	6	0
	After drav	wing the		After dra	wing the
	line, we s	shade the		line, we	shade the
	region that	achieves		region	that
	the	inequality		achieves	the
	solutions for	or the first		inequality	v solutions
	constraint,	which are		for the	second
	all the poi	nts above		constraint	, which
	the straight	line.		are all t	he points
				above th	e straight
				line	
	The feasible region is the area common to the two				
	lines and ir	cludes the	points (B C	D), which	allows us
	to determin	e the optim	al solution,	which is po	oint C.

B.1 Evaluate the corner points:

Since c is the point of intersection of the two lines, we solve the sentence of the two equations as follows:

$$\begin{bmatrix}
3x_1 + x_2 = 6 \\
x_1 + 2x_2 = 6
\end{bmatrix}$$

 $x_1 = 6 - 2x_2$

$$3_{(6-2x_2)+x_2=6}$$
 18-6 x₂+ x₂= 6
X₂= 12/5= 2.4, X₁=1.2

Feasible solutions to the LP:

Corner			Ζ
points	\mathbf{X}_1	X_2	
В	0	6	30
С	1.2	2.4	18
D	6	0	30

Through these possible solutions, we note that the smallest value of the objective function Z is 18, which was achieved at the point of intersection C, which represents the optimal solution.

B.2 draw the objective function

To create the line representing the objective function, the objective function can be given any value, let it be 5, that is:

straight line Δ : Z=5X ₁ +5X ₂ = 5				
	X1			
point 1	0	1		
point 2	1	0		
The straight line passing through				
the binary $(1, 1)$ is the carrying line				
of the objective function when it is				
equal to 5.				
We move this line parallel to the				
formed vertices of the polygon of				
possible solutions, where it seems				
from the drawing that the point C is				
the optimal point because it is the				
first point reached by the line Δ				

OPERATIONS RESEARCH

