First year

TD 01

Exercise 1

Consider the following four statements :

- (a) $\exists x \in \mathbb{R}, \forall y \in \mathbb{R}, x + y > 0.$
- (b) $\forall x \in \mathbb{R}, \exists y \in \mathbb{R}, x + y > 0.$
- (c) $\forall x \in \mathbb{R}, \forall y \in \mathbb{R}, x+y > 0.$
- (d) $\exists x \in \mathbb{R}, \forall y \in \mathbb{R}, y^2 > x.$
- 1. Are the statements a, b, c, d true or false? Provide their negations.
- 2. Let P, Q, and R be three statements. Verify by creating a truth table :
 - (a) $P \land (Q \lor R) \Leftrightarrow (P \land Q) \lor (P \land R)$,
 - (b) $\overline{(P \Rightarrow Q)} \Leftrightarrow P \land \overline{Q}.$

[•]Exercise 2

- Let f function of \mathbb{R} in \mathbb{R} . Translate the following expressions into quantifier terms :
- 1. f is bounded above. 2. f is bounded.
- 3. f is even.
- 5. f is periodic.

- 4. f never equals zero.6. f is increasing.
- 7. f is not the zero function.
- 8. f attains all values in \mathbb{N} .

Exercise 3

Let $f : \mathbb{R} \to \mathbb{R}$. What is the difference in meaning between the two proposed statements?

- 1. $\forall x \in \mathbb{R}, \exists y \in \mathbb{R}, y = f(x)$ and $\exists y \in \mathbb{R}, \forall x \in \mathbb{R}, y = f(x)$.
- 2. $\forall y \in \mathbb{R}, \exists x \in \mathbb{R}, y = f(x)$ and $\exists x \in \mathbb{R}, \forall y \in \mathbb{R}, y = f(x)$.
- 3. $\forall x \in \mathbb{R}, \exists M \in \mathbb{R}, f(x) \leq M$ and $\exists M \in \mathbb{R}, \forall x \in \mathbb{R}, f(x) \leq M$.

Exercise 4

Show by recurrence that :

1. $\forall n \in \mathbb{N}^{\star} : 1^3 + 2^3 + \dots + n^3 = \frac{n^2(n+1)^2}{4}$ 2. $\forall n \in \mathbb{N}, 4^n + 6n - 1$ is a multiple of 9.

Èé Exercise 5

By the absurd show that : $\forall n \in \mathbb{N}, n^2 \text{ even} \Rightarrow n \text{ is even.}$

-`@-Exercise 6

By contrapositive, show that

1. If $(n^2 - 1)$ is not divisible by 8 then n is even.

2. $\forall \varepsilon > 0, |x| \le \varepsilon \Rightarrow x = 0.$