Chapter 1

Logic Notions

1.1 Notions

WDeﬁnition 1.1.1

— We call any relation P that is either true or false a "logical proposition".
— When the proposition is true, it is assigned the value 1.

— When the proposition is false, it is assigned the value 0.

— These values are called "Truth values of the proposition".

Q/‘Example 1.1.2
T

. "I am taller than you", is a proposition.

. "2+ 2 =4"is a proposition.

. "For all z € R; we have z2 > 0" is a proposition.

1

2

3. "2x 3 ="7T"1is a proposition.

4

5. "How are you today ?" is not a proposition.

Thus, to define a logical proposition, it suffices to give its truth values. Generally, these values are put into a
table called a "Truth table".

1.1.1 Logical Operations

> —
(///Deﬁnition 1.1.3 Negation : "P"

Given a logical proposition P, we call the negation of P the logical proposition P, which is false when P
is true and true when P is false, so we can represent it as follows :

P
1

Definition 1.1.4 Conjunction : "A"
| Let P and Q be two logical propositions, we call "conjunction" of P and Q the proposition "PAQ ", which




1.1. Notions CHAPITRE 1. LOGIC NOTIONS

is true when both P and @ are true and false otherwise. Its truth table :
Pl Q| PAQ
1 ]1 1
010 0
110 0
0|1 0
§ J
s N

Definition 1.1.5 Disjunction "V"

Let P and @ be two logical propositions, we call "disjunction" of P and @ the proposition "PV @ ", which
is true if either of the logical propositions P or @ is true. Its truth table :
P|lQ|PVQ
1 |1 1
010 0
110 1
0|1 1
\ J
e 2

Definition 1.1.6 Implication "="

Consider two logical propositions P and @, we denote "P = Q" the logical proposition that is false if P
is true and @ is false. The proposition P = Q reads "P implies @ ".

P P=Q

)—‘OOH@

1
0
1
0

= O ==

Given two logical propositions P and @, the truth table of PV Q is as follows :

P|P|Q|PVQ
101 1
01710 1
110 |0 0
011 1

We see that this table is identical to that of P = @, so we say that the proposition P = @ is equivalent

L] to the proposition PV Q : )

Definition 1.1.7 Equivalence "<"

We say that the two logical propositions P and @) are logically equivalent if they are true simultaneously
or false simultaneously, and we denote "P < @ ", its truth table is :
P|lQ|PeQ
1|1 1
010 1
110 0
0|1 0
N\ J
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1.1.2 DeMorgan’s Rules

fProposition 1.1.8

Let P and @ be two logical propositions, then :
1. PAQ& PVQ.
2. PVQ & PAQ.

g Proof

We establish the proof of these rules by giving the truth values of the corresponding logical propositions.
1.
PIQ|P|Q|PAQ|PAQ|PVQ|PVQ | PVQ | PAQ
1111010 1 0 1 0 0 0
010111 0 1 0 1 1 1
11110 |1 1 0 1 0 1 0
1100 |1 0 1 1 0 1 0
01110 0 1 1 0 1 0
1101010 0 1 1 0 0 0
01110 0 1 1 0 1 0
010111 0 1 0 1 1 1
2. _ _
PlQ|P |Q |PVQ|PVQ | PAQ
1|1 0 0 1 0 0
010 1 1 0 1 1
110 0 1 1 0 0
0|1 1 0 1 0 0

1.2 Quantifiers

1.2.1 Universal Quantifier V, or "for all"

A proposition P may depend on a parameter z. For example : "z2 > 1 " the assertion P(z) is true or false
depending on the value of .

Definition 1.2.1

Vx € E, P(z), is true when the propositions P(z) are true for all elements x in the set E. We read "For
all z belonging to E, P(x)".

/Example 1.2.2
1. V € [1;+00[; 22 > 1 is a true proposition.
2. Vz € R; 22 > 1 is a false proposition.
3. ¥n € N; n(n + 1) is divisible by 2 is true.

1.2.2 Existential Quantifier 4, or "there exists"

Definition 1.2.3

Jx € E; P(x), is true when we can find at least one z from E for which P(z) is true. We read "there exists
x belonging to E such that P(x) is true".
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O/‘Example 1.2.4
1. 3z e R; z(z — 1) < 0 is true.
2. In € N;jn? —n > n is true.
3. dz € R; 22 = —4 is false.

1.2.3 Negation of Quantifiers

e 2
WDeﬁnition 1.2.5
1. The negation of "Vx € E; P(z)" is '3z € F; P(x)".
For example, the negation of "Va € R; 22 > 1 " is the assertion "3z € R; 22 < 1".
2. The negation of '3z € E; P(x)" is "Vx € F; P(x)".
For example, the negation of "In € N; n2 —n > n'" is the assertion "Vn € N; n? —n < n'".
3. Negation of complex sentences : for example, the proposition "Va € E, 3y € E; P(z;y)"
its negation is 'dx € E, Vy € E; P(x;y)".
L For example, the negation of 'Vz e R, Iy e R,z +y >0"is "Iz e R, Vy e R, z +y < 0" )
s N

&Note 1.2.6

The order of quantifiers is very important. For example, the two logical sentences
Ve € R,y e Re +y >0,

and
Jz e R, Vy e Rz +y >0,

are different.

The first one is true, the second one is false. Indeed, the first sentence asserts that "For every real number
x, there exists a real number y (which may depend on ) such that z +y > 0" (for example, for a given
x we can take y = —x + 1). So, it is a true sentence. On the other hand, the second one reads : "There
exists a real number y, such that for every real number =, x +y > 0." This sentence is false, it cannot be

L the same y that works for all x. )

1.3 Types of Reasoning

W Definition 1.3.1 Direct Reasoning

| We want to show that the proposition "P = Q" is true. We assume that P is true and then show that @
is true.

/Example 1.3.2

Show that n
x
Vr,y eRY, z<y=z< 2y <y
:gProof
We have
T+y
xﬁy:x—i—ng—i—yé%ﬁgm—&—y:xST. (1.1)
Tty
yzr=ytys<ety=2zrty=y> ——. (1.2)
From (1.1) and (1.2) we have :
xSx;ySy
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So

is true.

Definition 1.3.3 Case by Case

If we want to verify a proposition P(x) for all z in a set E, we show the proposition P(x) for z € A C E,
and then for z ¢ A.

0/‘Example 1.3.4
| Show that:Vz e R; |z —1] <2?—z+41.

:g Proof

1. If
z>1, |lz—1l=z—-1
Then,
P —rt+l—jz—1l=2*-2+l-a+l=0-20+2=(z—1)>+1>0.
So
x2—1+12\171|.
2. If
z<lz—1=—(x—1).
Then,
P —r+l-|r—1=2-2+1—-(—z+D)=2?—2+14+2—-1=2%>0.
So
P —x4+1> |z —1].
Conclusion, in all cases
Ve, €lr—1/<a®—a2+1.

Definition 1.3.5 Contrapositive

Reasoning by "contraposition" is based on the following equivalence :

(P=0Q)= (Q=P).

So, if we want to show the assertion "P = @Q” we actually show that if @) is true. Then, P is true.

Q/‘Example 1.3.6

| Show that : ¥n € N; n? is even then n is even.

ﬁ Proof

We want to show that if n? is odd = n is odd.
¥ n is odd, then there exists k € N such that n = 2k+1 Then, n? = 4k®>+4k+1 = 2(2k2+2k)+1 = 2k +1.
So, n? is odd.
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WDeﬁnition 1.3.7 Absurd

Reasoning by "absurd" to show that "P = @" is based on the following principle : we assume both that
P is true and @ is false. We seek a contradiction. Thus if P is true then ) must be true and therefore
"P = Q" is true.

B/‘Example 1.3.8
Show that : Vz,y € RT. If,

zr Yy
l+y 14z
Then, z = y.
ngroof
Wi that — Y_ and z £
e assume tha = and x .
1+y 1+z Y
Since
r Yy
1+y 142
Then,
z(1+2z)=y(1+vy).
So
v+t =y+y*
Hence
z? — y2 =—-r+y.
So,
(z—y)(z+y) =—(z—y).
Since z # y. Then, x — y # 0 and so by dividing by = — y we get « +y = —1 this is a contradiction(the
sum of two positive numbers is positive). Conclusion, Vz,y € RT. If,
zr Yy
1+y 14z
Then, z =y.

Definition 1.3.9 Counterexample
| By counterexample to show that "V € E; P(z)” is false. It suffices to find z € E, such that P(z) is false.

Example 1.3.10

| Show that "every positive integer is the sum of three squares" is false.

:g Proof
| Let’s take a counterexample. Consider the integer n = 7, the squares less than 7 are 0; 1; 4 but 0+1+4 # 7.

Definition 1.3.11 Recurrence

The principle of "recurrence" allows us to show that a proposition P(n) depending on n, is true for all n
€ N. The proof by recurrence proceeds in three steps :

1. Initialization : we verify that P(0) is true.

2. Heredity : we assume n > 0 given with P(n) true. Then, we demonstrate that the proposition
P(n+ 1) at the next rank is true.
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L . 3. Conclusion : we recall that by the principle of recurrence P(n) is true for all n € N. J

B/‘Example 1.3.12
Show that

g Proof

1. Initialization : For n = 0, we have 0% = 0. So, P(0) is true.

2. Heredity : For n > 0, we assume that P(n) is true, i.e

6 )
is true, and we show that

n+1 n+1

+1D(n+2)2(n+1)+1) (n+1)(n+2)(2n+3)
1) 2= K2 =
Pln+ Z 6 Z 6 ’
is true.
P(n) is true so
- )(2n+1
Zk2:02+12+22+....+n2=n(n+ )6( ntl)
We have :
n+1
YK = 02412424 40’4 (n+ 1)
1)(2 1 1)(2 1
_ et i; "D | gy = MY )6(”+ )t (1),
 (n+1D)(n+2)+(2n+3)
= : ,
4+ 1) +2)(2n+3)
= o .

Hence P(n + 1) is true.

3. Conclusion,

¥neN, Zk2 _ n(n—|—1)6(2n+ 1).
k=0
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