SOLUTIONS TO EXERCISES SERIES NO 3

Exercise 1

Reminder 1

1.1 Taylor's formula with Lagrange remainder
For every two numbers x, x,0f the interval [a, b] where x # x, we have:

NAUED) (o)
f(x)=jZO A G x4 s G )™

Where c is a real number from ]x,, x[ (or [x, xo], ifx < x,).

a)Xo=1:f(X)=i-

1x2x3

1 1 1x2
PE@=f@==, [f@=-=, [f@=C0r=, [O)=C0—
Using proof by induction we prove that

vneN: fM(x) = (- 1)“ and vne€N: f™(1) = (-1)"nl

n+1

For all x in R} where x # 1 then

LEpI0)) (n+1)
£ = ]Zof ]j!(l) (x— 1)) +w(x _ pn

(n+1)!

n

( )n+1

=D WY G- D o - DM
j=0

where c is a real number between x and 1.

b)xo =0; f(x) = xe**

Using the Leibniz formula Vn € N: (wv)™ = ¥2_; Cy u™ P v®) we get

n
vn € N*: fMW(x) = z CP ()P (e2*)n=P) and fO(x) = xe?*
p=0

So

n
vn € N*: f™(x) = CA(x) @ ()™ + CL(x) D (e2*)V + Z CY (x) @ (e2x)n=P)
p=2

=0

= (x + n2" 1)e?x,



So
vn € N: fM(0)=n2""1 ; f(0)=0

For all x in R where x # 0 then

S FO(0) o fmEn( 2

VAT Tl
Jj=0

flx) =

n j—1 n\,2c
=Z ‘2 xj+(c+(n+1)2 Je ey
(- D! (n+ 1)!
]:

where c is a real number between x and 0.

c)xo=2; flx )_

Using the proof by induction we prove that

*a (n) =(—1)"n! ©) = _1 7t _2
vne N« fM(x) = (-1) n'((x—l)”+1+(x—3)”+1) and f0) =_——F+-—5+1

So
vn e N*: fM(Q2) =n!((-1)"—1) and f(2) = 1.

For all x in ]1,3[ where x # 2 then

LEpI0)) (n+1)
f(x)=zf](2) I O R

L SR Th

N . 1 1 .
=1+ ;((—1) -1 (x-2) + (D! <(c T o 3)n+2> (x —2)"+,

Since Y7, ((-1)" = 1) = { a =nZ:p ;pl

we get

1 4 1
(c—1Dn*2  (¢-3

FO) = 1-2(r=2) = 20r = 2)° =20 = 20+ -+ )n+2) @ -0,

where c is a real number between x and 2.

Exercise 2

3

2 2
a)VxER+:x—x7Sln(1+x)Sx—x?+x?

Using Taylor-Lagrange formula for f(x) =In(1+x) ,xo =0andn=2; n =3 we get



1 1
3 (c+1)3

2
Forn=2=In(1+x) =x— x? + x3 where x € R, and c is a real number between x and 0.

2 3
Forn=3=>ln(1+x)=x_x7+x?_l

x* where x € R, and k is a real number between x

4 (k+1)3
and 0.
. 1 1 4 1 3
[ R— < -

Since Vx,c, k € R, : 4(k+1)3x <0 and 3(c+1)3x > 0. we get
x? x? x3
Vx ERL:x —— < In(1 <xXxX——4+—
x X 2_n(+x)_x 2+3

3 3 5
b) Vx € [O,E]:x—x—SsinxSx—x—+x—.
2 6 6 120

Using Taylor-Lagrange formula for f(x) =sinx ,xg=0andn =3; n =5 we get

sinc
120

3
Forn=3=sinx =x — % + x* where x € [0, g] and c is a real number between x and 0.

. 3 5 in k .
Forn=5=sinx =x — % + 19670 - SEO x® where x € [0, g] and k is a real number between x and
0.
. in k i
Since Vx, ¢,k € [O,E]: — %6 <0 and T=x* > 0.we get
2 120 120
VE[On] x3<_ - x3+x5
X , Tl X —— S SINX S X —— —_—.
2 6 6 120

2) Determine the local Extrema of f in each of the following cases.

Reminder 2

2.1 Apply Tyler's formulas to find local extrema

If f is a function of class C" in the neighborhood of the point x,, such that:
F'(x0) =f"(x0) = f®(xy) == f@V(xy) =0and f™(x,) # 0. Then

f accepts a local maximum (local minimum, respectively) at x, if and only if n is
even and ™ (x,) < 0 (f™(x,) > 0, respectively).

a) f(x) = x3—2ax?+ a’x (a > 0).

Necessary condition:

ffx)=0& 3x*—4ax+a*=0x=a ; x=z
Sufficient condition:

f"(a ) =2a>0= f(a) = 0islocal minimum value of f.



a 4 . :
f (§ ) =-2a<0> f(a) = ﬁcﬁ is local maximum value of f .

Exercise 3

Reminder 3
3.1 Limited Development of order n in a neighborhood of 0
We say that f admits a limited Development of order n in a neighborhood of 0 if and only
if there exists a neighborhood v of 0 and constant numbers ay, a4, a,, ... ... ...., a, where
Vx€€v;x#0:f(x) = ag+ ayx + ayx? ... + a,x™ + x"e(x) with chi_r)r(l) e(x) =0.

3.2 Operation on Limited Development

Let f, g be two functions admitting limited developments to the same order n in the

neighborhood of 0. We denote their regulars parts as B, (x), Q,,(x), respectively. That is
fx) =B, (x) +x"e;(x) ;  g(x) =0Qn(x)+ x™ey(x).

Then, the functions f + g, fg, 5 (if}ci_r)r(l) g(x) #0), fog (if}ci_r)r(l)g(x) = 0), admitting limited

developments of order n in the neighborhood of 0 and we have:
1) f(x) + g(x) = B,(x) + Q,(x) + x™e3(x) with }Cirrtl) &(x) = 0.

2) f(x)g(x) = A, (x) + x™e,(x) with }Ci_r)r(l) g,(x) = 0.

Where A,,(x) is the polynomial we obtain by retaining in the multiplication P, (x)Q,, (x)

only the terms with degrees less than or equal to n.
3) % = B,(x) + x"&5(x) with lirré gs(x) = 0.

X—
Where B, (x) is the polynomial we obtain by Euclidean division of B, (x) by Q,,(x)
according to increasing powers of x keeping only terms with degrees less than or equal
to n.

4) fog(x) = C(x) + x™eg(x) with }Ci_r)r(l) gg(x) = 0.

Where C,,(x) is the polynomial we obtain by retaining in the composite B,0 Q,,(x) only
the terms with degrees less than or equal to n.

Find a limited Development of order n in a neighborhood of 0 for the functions f in each of the
following cases

x%4x-1
x242

ayn==6,f(x) =

Wehavex?+x—1=x2+x—1+0(x®) andx?+2 =x%+ 2+ o(x°®) because x? + x — 1 and
x? + 2 are polynomials.

By Euclidean dividing of —1 + x + x2 over 2 + x?, according to increasing powers of x, keeping only
terms with degrees less than or equal to 6, we get



—14+x+x* | 2+x*

1 1 3 1 3 1 3
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So

—1+x+x% 1+1 3 1 3 1
2+x2 2 2 4 4 8 8 16
b)n=3,f(x) =e*Vv1—x.
We have

1 1 1 1 1
e¥ = 1+x+zx2+6x3+o(x3) and V1 —x = 1—§x—§x2—ﬁx3+o(x3).

So

1, 1. 1 1 1
e* 1—x=<1+x+—x +-x )(1——x——x2——x3),
2 6 2 8 16

1 1 13
= oy 42 3 3
1+2x 3% ~1g* + o(x3).

dn=4,f(x)= ln(x + \/cosx).

We have



1 1 1 5 1 1
_ 2 3 4 4 4
v1+h—1+—2h——8h +_16h 12 8h +o0(h*) and cosx =1 2x +24x + o(x*).

So

x ++/cosx = x ++/1+ (cosx — 1)

+_1+1( ! +1 4) 1( ! +1 )2+0+0
S BRI G L A 7ol -l W T

[ 1/ 1 1 1/ 1 \°
x+ |1+ (——x +—x>—§(——x2> +0+4+0

2 2 24 2
1 1
=1 ——x%2—-— 4
+ x 4x 96x + o(x*).

We have also

1 1 1
In(1 — 424 43 _ 44 4y
n(l+t¢t)=t Zt +3t 4t + o(t*)

So

In(x + vcosx) = In (1 + (x +cosx — 1))

4 96 2 4 96 3 4 96 4 4 96
1 1 1 1 3\ 1 1 3\ 1

— N2 4 a2 - a2 _ - 4

_(x 4* 96x> 2<x 4x) + (x 4x) 7™

So

3 7 13
ln(x+\/cosx)—x——x +Ex — 5% *+o(xh).

Incosx

1 1
e)n =3, f(x) = (cosx)x. we have (cosx)xr =e x so

In cos x

= %ln(l + (cosx — 1))



1 1

—_ _ .3 3
=—5X -5 + o(x?).
So
1 Incos x i 1 1 3 1 1 1 3 | 1 1 3 3
Ccosmr=ex =1+ (-gx=p3x) 45 (-gr—557) +e(-3x-5¥)
_1+( 1 1 3>+1< 1 )2+1( 1 )3
= 2X T2 ) T2\ T2Y) T\ T2
-1+ (-3 152) +3(3%) +2(-3%)
- 2X 7120 )T\ T2Y) TelTX
So
(cosx)¥ = 1=+ 222 = o2 + o)
X = [ —_ —_ .
COS X Z.X 8.X 48x o\x
Exercise 4

Reminder 4
4.1 Limited Development of order n in a neighborhood of x,,
We say that f admits a limited Development of order n in a neighborhood of x, if and only if
the function F:h — F(h) = f(h + x,) admits a limited Development of order n in a
neighborhood of 0.And if

n
F(h) = z R+ hey () with Jim &, (h) = 0.

k=0
Then for all x € v — {x}

fx) = Z a,(x — x0)™ + (x — x¢)™e(x) with xlim (x) =0.

—-Xq
k=0
4.2 Limited Development of order n in a neighborhood of oo
We say that f admits a limited Development of order n in a neighborhood of +oco (—oo,
respectively ) if and only if the function F:h — F(h) = f(%) admits a limited Development of

order n in a neighborhood of 0.And if

n
F(h) = Z h* + h"e; (h) with lim & (h)y=0 <li£n g(h) = 0,respectively).
k=0 x—-0 x—0

Then

n
1 1 S : : 1
fx) = kz;)x—k + x—ne(x) with lim ex)=0 (xl_l)rpw e(x)=0, respectlvely) where e(x) = & (;)
4.3 Study of infinite branches of curves
To study the infinite branches and determine the asymptotic lines of the graph (¢;) of function
f in the neighborhood of +o0 ( —oo, respectively ), we develop the function f in the
neighborhood of +o0 ((—oo, respectively) to the smallest order n, where a, # 0 and n € N*.

1) Find a limited Development of order n in a neighborhood of x, for the functions f in each of the
following cases.



Inx
x2

1)yn=4, xo=1,f(x) ==

1,,.1,, 1
In(1+h) h-5h*+3h%—Zh*
F=flo+t ) =fA+N =G =~ Trmi e

By Euclidean dividing of h — %hz + §h3 — i h* over 1 + 2h + h?, according to increasing powers of x,

keeping only terms with degrees less than or equal to 4, we get

In(1 + h) 5 13, 77, .
m— —Eh +?h —Eh +O(h )
By putting h = x — 1 we get
Inx 5

x—2=x—1—E(x—1)2+1—33(x—1)3—%(x—1)4+0((x—1)4).
4Yn=1,x,=+oo,f(x) = VYx3 + x2.

+

1, 1 1
3\/1+h=—(1+—h——h2): h + o(h)

1
h h 3 9

W] =
O| =

F=£(3)= !

h

1
Substitution h = ~we get

F =Yt =g 4x -5 +o(3)

3 9x b

1
59n=1, xo =+, f(x) = x?Iln (xej:l).

F(k) :f<%) :%ln(h+e“).
We have
h+et= 1+2h+1h2+1h3.
2 6
So

F(h) = %ln(h+ eh) = %ln(l +(h+et—1))

2

_ 1 2h+1hz+1h3 1(2h+1h2+1h3)
"~ h2 2 6 2 2 6

+1(2h+1hz+1h3)3
3 2 6
_1 2h+1hz+1h3 1(2h+1h2)2+1(2h)3

"~ h2 2 6 2 2 3

1
h?

1 1 1 1 1
_h2 3 __ 2 n2 —2h3)
<2h+2h +6h 2((2h) +4h2h)+3( )



So

3 11
F(hy=——=-+—h h).
(W) =2=5+—h+o(h)

2
h

1
Substitution h = —we get

f(x)=2x—;+%+o<%>.

2) In questions, 4°, 5°, show that the graph (Cf) accepts a slanting asymptote that requires an
equation, and then determine its relative position in the neighborhood of co.

4°) f(x) = Vx3 + x2. We have f(x) =§+x—i+o(§).
So

xl—i>r-ll:loo [f(x) - (% + x)] = lim [—i+ s(x)] =0.

x-+0o |  9x

(Cf) accepts an asymptotic line (A) in a neighborhood of +o, which has an equation of the form

1
y—x+§.

in a neighborhood of +oo then f(x) — (é + x) = —é + %s(x) < 0so (Cf) is located under the
asymptotic line (A).

1

59) f(x) = x2In (xe +1> We have f(x) = 2x —= "’ + (ch)
So
=0.

11m [f(x) ( x—g)] = lim

xX—+0o

11 1
ox Tol\x

(Cf) accepts an asymptotic line (A) in a neighborhood of +o, which has an equation of the form

3
2x — -
2

o (2 3) 11 N 1
fx x ) = ex 0 <)
in a neighborhood of +oo then f(x) — G + x) = —é + %g(x) > 0so (Cf) is located above the

asymptotic line (A).

Exercise 5



Reminder 5
5. 1 Calculation of limits

When calculating the limit lim &

x—xq 9(x
to remove the indeterminacy we develop the functions f and g in the nelghborhood of x,
to the smallest orders m and n, respectively, where b,, # 0 and a,, # 0.

and if we obtain one of the indeterminate form or —‘

Using limited development, calculate the following limits.

x? cos x—(e*—1)2

1°) lim 2 . We have
x—)O sin® x
1 2
x%cosx — (e*—1)%? = x2(1) — (x + §x2> = —x3+4+ x3¢;(x) and sin3x = x3 + x3¢,(x).
So
- x%cosx —(e*—1)? —x3 4+ x3¢ () —1+&0
lim - = lim im—————— = —1.
X0 sin3 x 0 %3+ xBey(x)  x-0 14 gy(x)
Vox—x*-3/x 3/1+h—V1-2h—-6h2—4h3-h*%
3°) lim Weputx=h+1,s0o0F(h)=f(1+h) =
)x—>1 1-Va3 eputx =h+1,50 F(h) = f(1+h) V1+3h+3h2+h3-1

V1+h—yJ1-2h—6hR2—4h3—ht=Y1+h—+1-2h
1 4
=(1+§h>—(1—h)=§h+o(h).

We have also

3 3
V1+3h+3h2+h3—1=14+-h—1=>h+o(h).

A A
So
3 4 4
f2x —x* — 3% zh+ hey(h) zt+a 16
lim Yoo }llm 3 .= }llm —3 IR
e Tgh e g+ ()

3
5°) lim x2(Vx =1 +Vx+ 1 — 2vx).
X—+ 00

1 1 1 1 1
F(h) =f(ﬁ) =?(J1 —h+1+h-2) =?<—Zh2 +hzs(h)> = -7+,

Substitution h = iwe get

3 1 , .
xi(\/x—1+\/x+1—2\/x)=—Z+g(x) with lirP e(x)=0.
X—>4 00

So

10



3 1
lim x2(Vx —1+Vx+1—2vx) = -7

X—+o00

Exercise 6

Reminder 6
6.1 Study the relative position of the graph and the tangent line
To determine the relative position of the graph of a function f and its tangent line at the
point x,, we develop the function f in the neighborhood of x, to the smallest order n such
thata, # 0 and n > 2.
Deduce the equation of the tangent (T) to the curve (Cf) at the abscissa point x = 0, and determine

the relative positions of (C;) and (T).

1_1 8 .3
1) £ ) = { Sarctan (x +£x7), x %0
0 ,x=0

We have
1 1
arctanx = x — §x3 + gxs + o(x?).

So for x # 0 then

8 8 1 8 .\° 1
arctan (x +—x3> = (x +—x3> ——(x +—x3) +§(x)5

15 15 3 15
1 1
_ 2.3 _ .5 5
x+5x 3% + o(x>).
So
1 1 8 1 1
- L 3\ _= 2.3 3
2 x2arctan<x+15x> 5x+3x + o(x3).

Since f(0) = 0 = a, so f is differentiable at x, = 0, and therefore (Cf) accepts tangent line wich we denote

by (T). And the equation of (T) isy = — éx.

We have f(x) — (—éx) = %x3 +o(x3) =3 (é + s(x)).

If x is sufficiently close to 0, the sign of the difference f(x) — (— %x) is the same sign of§x3, hence
the following result:

For x < 0, (Cf) is located under the tangent and for x > 0, (C;) is located above the tangent.

We conclude that (C;) accepts an inflection point A,(0,0).

1
1+In(x+cosx)’

3°) f(x) =

11



f defined, continuous, and differentiable at O, so let us develop f at O to order 2.

We have
1 2 1 2
x+cosx=1+x—§x +0(x?) and ln(1+h)=h—§h + o0(h?)
So
1\ 1 1\
1n(1+h)=1+ln(1+(x+cosx—1))=1+(x—§x)—E(x—zx)
1 1
_ 2y _ 1
—1+(x Zx) 2(x)
1 1
_ 2y _ 12
—1+(x Zx) 2(x)
=14 x—x2

By Euclidean dividing of 1 over x — x2, according to increasing powers of x, keeping only terms
with degrees less than or equal to 2, we get

14 x —x?
1—x+ 2x?

1+ x—x
X+ x
—X— X

2x
2x
0

N NN N NP

So

1

fe) = 1+ In(x + cosx) -

1—x+2x%+ o(x?).

And (Cf) accepts tangent line wich we denote by (T). And the equation of (T) isy = 1 — x.
We have f(x) — (1 — x) = 2x* + o(x?) = x*(2 + e(x)).

If x is sufficiently close to 0, the sign of the difference f(x) — (1 — x) is the same sign of 2x?2, hence
the following result:

Forx < 0 orx > 0, (C) is located above the tangent.
Exercise 6

In each of the following cases, show that the curve (Cf) of the function f accepts asymptote (A) in

the vicinity of oo, which requires an equation for it and examining the relative position of (Cf) and

Q).

12



1) f(X) - xz\‘x;:;x
1

F = £ (5

1
T h?

)

Let us develop f at +oo to order 1.

F=£(3) =

(—h+1)h2_1
1+2h2  h

’(—h + 1)h?

h2 1+ 2h2

1—-h
1+2h%

1

h

1+ 1 h + 2h?
1+ 2h2

)

1
h

1

h

1 h + 2h?
14 2h2

By Euclidean dividing of 1 over x — x?2, according to increasing powers of x, keeping only terms

1-h

——1
+1+2h2

with degrees less than or equal to 2, we get

h + 2h?
_h
2h?
2h?
0

So

h + 2h?
1+ 2h?

We have V1 —h = 1—%h—%h2 + o(h?), so

) h+2h?
1+2h%

1
h

Substitution h = iwe get

1+ 2h?

h + 2h?

= h + 2h? + o(h?).

1

1 1
h(1 S (h+ 2R~ (h+ th)Z)

(1 _ % (h +2h%) — % (h)Z)

S

1 1 9
— —_h__h2 2
_h<1 2h 8h +o(h ))

13



() x L D sl 2 b i tim e(o) = 0
flx)=x 2_8x+0<x>_x 2 gx o) with Amelx) =0

(Cf) accepts an asymptotic line (A) in a neighborhood of +o, which has an equation of the form

1
y=x-—:.

9 1

flx)— (x—%) = —§+;s(x).

in a neighborhood of +oo then f(x) — (x - %) = —é + is(x) < 0so (Cf) is located under the

asymptotic line (A).

xX—2
x2+x+1

3°) f(x) = x%sin

let us develop f at oo to order 1.

(R = (1)_ 1 h(1-2h)
EAVY Il T g
We have
1 h(1—2h)
: — 4 _ 43 3 ML) a2 3 3
sin(t) =t 6t + o(t3) and 1T h T2 h — 3h? + 2h3 + o(h3).
So
1 h(1-2h)
FO) = zsin v e

1 1
= [(h — 3h? + 2h%) = 2 (h = 3h% + 2h3)3]

1 1
= [(h — 32 4+ 2R3) — g(h)?»]

_1 3+11h+ (h)
~h 6 " TO

Substitution h = iwe get

11 1 11 1
f(x)=x—3+—+o(—>=x—3+—++—s(x) with lim e(x) = 0.
6x X 6x X X—>00

(Cf) accepts an asymptotic line (A) in a neighborhood of o, which has an equation of the form y =

x — 3.

11
FO) = (r=3) =+ —e(@).

14



in a neighborhood of o then f(x) — (x —3) = % + +§s(x) > 0 so
in a neighborhood of +o (Cf) is located above the asymptotic line (4),

in a neighborhood of —o (Cf) is located under the asymptotic line (A).

Exercise 8 (Short answers )

Nulx)=1 +%x —sz + x%e(x) and v(x) =1 +%x +%x2 + x2¢e(x).

2) lim 29~ — jim (M) =1 lim 2971 — |im (w) =1
> > 2 < < 2

X X X X
x—0 x—0 x—0 x—0

So fis differentiable at 0 and the graph (Cf) accepts a tangent (T) at the point (0,1), and has an

equation of the form y = %x + 1.
x>0= f(x)—y= —gxz + x2¢(x) < 0 on a neighborhood of 0,
x<0= f(x)—y= —gxz + x2¢(x) > 0 on a neighborhood of 0.

Forx > 0, (Cf) is located under the tangent.
Forx <0, (Cf) is located above the tangent.

We conclude that (Cf) accepts an inflection point A(0,1).
1 31 1 .
Dulx) =x+ STsxT ;e(x) where xl_l)rpoo s(x)=0.
1 49 1 1, . ’ _
v(x) = - 2x + prpoin st (x) where xlﬁlr_n00 '(x)=0.

4) (Cf) accepts an asymptotic line (A) in a neighborhood of +oo, which has an equation of the form

y=x+ %, and an asymptotic line (A") in a neighborhood of —oo, which has an equation of the form

1
y——Zx—Z.

in a neighborhood of +oo then f(x) — (x + %) =— %% + %s(x) < 0so (Cf) is located under the
asymptotic line (A).

in a neighborhood of —oo then f(x) — (—i — Zx) =¥y %s'(x) < 0so (Cf) is located under the

64 x
asymptotic line (A").

15



