SOLUTIONS TO EXERCISES SERIES NO 3

Exercise 1

Reminder 1 1.1 Taylor's formula with Lagrange remainder For every two numbers x, x_0 of the interval [a, b] where $x \neq x_0$ we have: $f(x) = \sum_{j=0}^{n} \frac{f^{(j)}(x_0)}{j!} (x - x_0)^j + \frac{f^{(n+1)}(c)}{(n+1)!} (x - x_0)^{n+1}.$ Where c is a real number from $]x_0, x[$ (or $[x, x_0], ifx < x_0)$.

a) $x_0 = 1$; $f(x) = \frac{1}{x}$.

$$f^{0}(x) = f(x) = \frac{1}{x}$$
, $f'(x) = -\frac{1}{x^{2}}$, $f''(x) = (-1)^{2} \frac{1 \times 2}{x^{3}}$, $f^{(3)}(x) = (-1)^{3} \frac{1 \times 2 \times 3}{x^{4}}$

Using proof by induction we prove that

$$\forall n \in \mathbb{N}: f^{(n)}(x) = (-1)^n \frac{n!}{x^{n+1}}$$
 and $\forall n \in \mathbb{N}: f^{(n)}(1) = (-1)^n n!.$

For all *x* in \mathbb{R}^*_+ where $x \neq 1$ then

$$f(x) = \sum_{j=0}^{n} \frac{f^{(j)}(1)}{j!} (x-1)^{j} + \frac{f^{(n+1)}(c)}{(n+1)!} (x-1)^{n+1},$$
$$= \sum_{j=0}^{n} (-1)^{j} (x-1)^{j} + \frac{(-1)^{n+1}}{c^{n+2}} (x-1)^{n+1},$$

where c is a real number between x and 1.

b) $x_0 = 0$; $f(x) = xe^{2x}$.

Using the Leibniz formula $\forall n \in \mathbb{N}$: $(uv)^{(n)} = \sum_{p=0}^{n} C_n^p u^{(n-p)} v^{(p)}$ we get

$$\forall n \in \mathbb{N}^*: f^{(n)}(x) = \sum_{p=0}^n C_n^p (x)^{(p)} (e^{2x})^{(n-p)} \text{ and } f^{(0)}(x) = xe^{2x}$$

$$\forall n \in \mathbb{N}^*: f^{(n)}(x) = C_n^0(x)^{(0)}(e^{2x})^{(n)} + C_n^1(x)^{(1)}(e^{2x})^{(n-1)} + \underbrace{\sum_{p=2}^n C_n^p(x)^{(p)}(e^{2x})^{(n-p)}}_{=0}$$

$$\forall n \in \mathbb{N}^*$$
: $f^{(n)}(0) = n2^{n-1}$; $f(0) = 0$

For all *x* in \mathbb{R} where $x \neq 0$ then

$$f(x) = \sum_{j=0}^{n} \frac{f^{(j)}(0)}{j!} x^{j} + \frac{f^{(n+1)}(c)}{(n+1)!} x^{n+1}$$
$$= \sum_{j=1}^{n} \frac{2^{j-1}}{(j-1)!} x^{j} + \frac{(c+(n+1)2^{n})e^{2c}}{(n+1)!} x^{n+1},$$

where c is a real number between x and 0.

c)
$$x_0 = 2$$
; $f(x) = \frac{x^2 - 2x - 1}{x^2 - 4x + 3}$. We have $\frac{x^2 - 2x - 1}{x^2 - 4x + 3} = \frac{1}{x - 1} + \frac{1}{x - 3} + 1$.

Using the proof by induction we prove that

$$\forall n \in \mathbb{N}^*$$
: $f^{(n)}(x) = (-1)^n n! \left(\frac{1}{(x-1)^{n+1}} + \frac{1}{(x-3)^{n+1}} \right)$ and $f^{(0)}(x) = \frac{1}{x-1} + \frac{1}{x-3} + 1$.

So

$$\forall n \in \mathbb{N}^*$$
: $f^{(n)}(2) = n! ((-1)^n - 1)$ and $f(2) = 1$.

For all *x* in]1,3[where $x \neq 2$ then

$$f(x) = \sum_{j=0}^{n} \frac{f^{(j)}(2)}{j!} x^{j} + \frac{f^{(n+1)}(c)}{(n+1)!} x^{n+1}$$

= $1 + \sum_{j=1}^{n} ((-1)^{n} - 1) (x - 2)^{j} + (-1)^{n+1} \left(\frac{1}{(c-1)^{n+2}} + \frac{1}{(c-3)^{n+2}}\right) (x - 2)^{n+1}.$

Since $\sum_{j=1}^{n} ((-1)^{n} - 1) = \begin{cases} -2 \ ; \ n = 2p + 1 \\ 0 \ ; \ n = 2p \end{cases}$ we get

$$f(x) = 1 - 2(x - 2) - 2(x - 2)^3 - 2(x - 2)^5 + \dots + \left(\frac{1}{(c - 1)^{n+2}} + \frac{1}{(c - 3)^{n+2}}\right)(2 - x)^{n+1},$$

where c is a real number between x and 2.

Exercise 2

a) $\forall x \in \mathbb{R}_+: x - \frac{x^2}{2} \le \ln(1+x) \le x - \frac{x^2}{2} + \frac{x^3}{3}.$

Using Taylor-Lagrange formula for $f(x) = \ln(1 + x)$, $x_0 = 0$ and n = 2; n = 3 we get

For $n = 2 \Longrightarrow \ln(1+x) = x - \frac{x^2}{2} + \frac{1}{3} \frac{1}{(c+1)^3} x^3$ where $x \in \mathbb{R}_+$ and c is a real number between x and 0. For $n = 3 \Longrightarrow \ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{1}{4} \frac{1}{(k+1)^3} x^4$ where $x \in \mathbb{R}_+$ and k is a real number between x and 0.

Since $\forall x, c, k \in \mathbb{R}_+$: $-\frac{1}{4} \frac{1}{(k+1)^3} x^4 \le 0$ and $\frac{1}{3} \frac{1}{(c+1)^3} x^3 \ge 0$. we get

$$\forall x \in \mathbb{R}_+: x - \frac{x^2}{2} \le \ln(1+x) \le x - \frac{x^2}{2} + \frac{x^3}{3}.$$

b) $\forall x \in \left[0, \frac{\pi}{2}\right] : x - \frac{x^3}{6} \le \sin x \le x - \frac{x^3}{6} + \frac{x^5}{120}.$

Using Taylor-Lagrange formula for $f(x) = \sin x$, $x_0 = 0$ and n = 3; n = 5 we get

For $n = 3 \Rightarrow \sin x = x - \frac{x^3}{6} + \frac{\sin c}{120}x^4$ where $x \in \left[0, \frac{\pi}{2}\right]$ and c is a real number between x and 0. For $n = 5 \Rightarrow \sin x = x - \frac{x^3}{6} + \frac{x^5}{120} - \frac{\sin k}{120}x^6$ where $x \in \left[0, \frac{\pi}{2}\right]$ and k is a real number between x and

Since $\forall x, c, k \in \left[0, \frac{\pi}{2}\right]: -\frac{\sin k}{120} x^6 \le 0$ and $\frac{\sin c}{120} x^4 \ge 0$. we get $\forall x \in \left[0, \frac{\pi}{2}\right]: x - \frac{x^3}{6} \le \sin x \le x - \frac{x^3}{6} + \frac{x^5}{120}.$

2) Determine the local Extrema of f in each of the following cases.

Reminder 2

2.1 Apply Tyler's formulas to find local extrema If *f* is a function of class C^n in the neighborhood of the point x_0 such that: $f'(x_0) = f''(x_0) = f^{(3)}(x_0) = \dots = f^{(n-1)}(x_0) = 0$ and $f^{(n)}(x_0) \neq 0$. Then *f* accepts a local maximum (local minimum, respectively) at x_0 if and only if *n* is even and $f^{(n)}(x_0) < 0$ ($f^{(n)}(x_0) > 0$, respectively).

a)
$$f(x) = x^3 - 2ax^2 + a^2x (a > 0)$$
.

Necessary condition:

$$f'(x) = 0 \Leftrightarrow 3x^2 - 4ax + a^2 = 0 \Leftrightarrow x = a \ ; \ x = \frac{a}{3}$$

Sufficient condition:

 $f''(a) = 2a > 0 \Rightarrow f(a) = 0$ is local minimum value of f.

$$f''\left(\frac{a}{3}\right) = -2a < 0 \Rightarrow f(a) = \frac{4}{27}a^3$$
 is local maximum value of f .

Exercise 3

Reminder 3

3.1 Limited Development of order *n* in a neighborhood of **0**

We say that f admits a limited Development of order n in a neighborhood of 0 if and only if there exists a neighborhood v of 0 and constant numbers $a_0, a_1, a_2, \dots, a_n$ where

$$\forall x \in v ; x \neq 0: f(x) = a_0 + a_1 x + a_2 x^2 \dots + a_n x^n + x^n \varepsilon(x) \text{ with } \lim_{x \to 0} \varepsilon(x) = 0.$$

3.2 Operation on Limited Development

Let f, g be two functions admitting limited developments to the same order n in the neighborhood of 0. We denote their regulars parts as $P_n(x), Q_n(x)$, respectively. That is $f(x) = P_n(x) + x^n \varepsilon_1(x)$; $g(x) = Q_n(x) + x^n \varepsilon_2(x)$. Then, the functions $f + g, fg, \frac{f}{g}$ (if $\lim_{x \to 0} g(x) \neq 0$), fog (if $\lim_{x \to 0} g(x) = 0$), admitting limited developments of order n in the neighborhood of 0 and we have: 1) $f(x) + g(x) = P_n(x) + Q_n(x) + x^n \varepsilon_3(x)$ with $\lim_{x \to 0} \varepsilon_3(x) = 0$. 2) $f(x)g(x) = A_n(x) + x^n \varepsilon_4(x)$ with $\lim_{x \to 0} \varepsilon_4(x) = 0$. Where $A_n(x)$ is the polynomial we obtain by retaining in the multiplication $P_n(x)Q_n(x)$ only the terms with degrees less than or equal to n. 3) $\frac{f(x)}{g(x)} = B_n(x) + x^n \varepsilon_5(x)$ with $\lim_{x \to 0} \varepsilon_5(x) = 0$. Where $B_n(x)$ is the polynomial we obtain by Euclidean division of $P_n(x)$ by $Q_n(x)$ according to increasing powers of x keeping only terms with degrees less than or equal to n. 4) $fog(x) = C(x) + x^n \varepsilon_6(x)$ with $\lim_{x \to 0} \varepsilon_6(x) = 0$. Where $C_n(x)$ is the polynomial we obtain by retaining in the composite $P_n o Q_n(x)$ only the terms with degrees less than or equal to n.

Find a limited Development of order n in a neighborhood of 0 for the functions f in each of the following cases

a) n = 6, $f(x) = \frac{x^2 + x - 1}{x^2 + 2}$.

We have $x^2 + x - 1 = x^2 + x - 1 + o(x^6)$ and $x^2 + 2 = x^2 + 2 + o(x^6)$ because $x^2 + x - 1$ and $x^2 + 2$ are polynomials.

By Euclidean dividing of $-1 + x + x^2$ over $2 + x^2$, according to increasing powers of x, keeping only terms with degrees less than or equal to 6, we get

$$\begin{array}{c}
-1+x+x^{2} \\
-1-\frac{1}{2}x^{2} \\
\hline
-1-\frac{1}{2}x^{2} \\
\hline
-\frac{1}{2}+\frac{1}{2}x+\frac{3}{4}x^{2}-\frac{1}{4}x^{3}-\frac{3}{8}x^{4}+\frac{1}{8}x^{5}+\frac{3}{16}x^{6} \\
\hline
\frac{1}{2}+\frac{1}{2}x+\frac{3}{4}x^{2}-\frac{1}{4}x^{3}-\frac{3}{8}x^{4}+\frac{1}{8}x^{5}+\frac{3}{16}x^{6} \\
\hline
\frac{3}{2}x^{2}-\frac{1}{2}x^{3} \\
\hline
\frac{3}{2}x^{2}-\frac{1}{2}x^{3} \\
\hline
\frac{3}{2}x^{2}+\frac{3}{4}x^{4} \\
\hline
-\frac{1}{2}x^{3}-\frac{3}{4}x^{4} \\
\hline
-\frac{1}{2}x^{3}-\frac{1}{4}x^{5} \\
\hline
\frac{-\frac{3}{4}x^{4}-\frac{3}{8}x^{6} \\
\hline
\frac{1}{4}x^{5}+\frac{3}{8}x^{6} \\
\hline
\frac{3}{8}x^{6} \\
\hline
0
\end{array}$$

$$\frac{-1+x+x^2}{2+x^2} = -\frac{1}{2} + \frac{1}{2}x + \frac{3}{4}x^2 - \frac{1}{4}x^3 - \frac{3}{8}x^4 + \frac{1}{8}x^5 + \frac{3}{16}x^6 + o(x^6).$$

b) n = 3, $f(x) = e^x \sqrt{1 - x}$.

We have

$$e^{x} = 1 + x + \frac{1}{2}x^{2} + \frac{1}{6}x^{3} + o(x^{3})$$
 and $\sqrt{1 - x} = 1 - \frac{1}{2}x - \frac{1}{8}x^{2} - \frac{1}{16}x^{3} + o(x^{3}).$

So

$$e^{x}\sqrt{1-x} = \left(1+x+\frac{1}{2}x^{2}+\frac{1}{6}x^{3}\right)\left(1-\frac{1}{2}x-\frac{1}{8}x^{2}-\frac{1}{16}x^{3}\right),$$
$$= 1+\frac{1}{2}x-\frac{1}{8}x^{2}-\frac{13}{48}x^{3}+o(x^{3}).$$

d) n = 4, $f(x) = \ln(x + \sqrt{\cos x})$.

We have

$$\sqrt{1+h} = 1 + \frac{1}{2}h - \frac{1}{8}h^2 + \frac{1}{16}h^3 - \frac{5}{128}h^4 + o(h^4)$$
 and $\cos x = 1 - \frac{1}{2}x^2 + \frac{1}{24}x^4 + o(x^4)$.

$$\begin{aligned} x + \sqrt{\cos x} &= x + \sqrt{1 + (\cos x - 1)} \\ &= x + \left[1 + \frac{1}{2} \left(-\frac{1}{2} x^2 + \frac{1}{24} x^4 \right) - \frac{1}{8} \left(-\frac{1}{2} x^2 + \frac{1}{24} x^4 \right)^2 + 0 + 0 \right] \\ &= x + \left[1 + \frac{1}{2} \left(-\frac{1}{2} x^2 + \frac{1}{24} x^4 \right) - \frac{1}{8} \left(-\frac{1}{2} x^2 \right)^2 + 0 + 0 \right] \\ &= 1 + x - \frac{1}{4} x^2 - \frac{1}{96} x^4 + o(x^4). \end{aligned}$$

We have also

$$\ln(1+t) = t - \frac{1}{2}t^2 + \frac{1}{3}t^3 - \frac{1}{4}t^4 + o(t^4).$$

So

$$\ln(x + \sqrt{\cos x}) = \ln\left(1 + \left(x + \sqrt{\cos x} - 1\right)\right)$$

$$= \left(x - \frac{1}{4}x^2 - \frac{1}{96}x^4\right) - \frac{1}{2}\left(x - \frac{1}{4}x^2 - \frac{1}{96}x^4\right)^2 + \frac{1}{3}\left(x - \frac{1}{4}x^2 - \frac{1}{96}x^4\right)^3 - \frac{1}{4}\left(x - \frac{1}{4}x^2 - \frac{1}{96}x^4\right)^4$$

$$= \left(x - \frac{1}{4}x^2 - \frac{1}{96}x^4\right) - \frac{1}{2}\left(x - \frac{1}{4}x^2\right)^2 + \frac{1}{3}\left(x - \frac{1}{4}x^2\right)^3 - \frac{1}{4}(x)^4$$

$$= \left(x - \frac{1}{4}x^2 - \frac{1}{96}x^4\right) - \frac{1}{2}\left(x^2 - 2x\left(-\frac{1}{4}x^2\right) + \left(-\frac{1}{4}x^2\right)^2\right) + \frac{1}{3}\left(x^3 + 3x^2\left(-\frac{1}{4}x^2\right)\right) - \frac{1}{4}(x)^4.$$

$$\ln(x + \sqrt{\cos x}) = x - \frac{3}{4}x^{2} + \frac{7}{12}x^{3} - \frac{13}{24}x^{4} + o(x^{4}).$$

e) $n = 3$, $f(x) = (\cos x)^{\frac{1}{x}}$, we have $(\cos x)^{\frac{1}{x}} = e^{\frac{\ln \cos x}{x}}$ so
 $\frac{\ln \cos x}{x} = \frac{1}{x}\ln(1 + (\cos x - 1))$
 $= \frac{1}{x} \left[\left(-\frac{1}{2}x^{2} + \frac{1}{24}x^{4} \right) - \frac{1}{2} \left(-\frac{1}{2}x^{2} + \frac{1}{24}x^{4} \right)^{2} + 0 \right]$
 $= \frac{1}{x} \left[\left(-\frac{1}{2}x^{2} + \frac{1}{24}x^{4} \right) - \frac{1}{2} \left(-\frac{1}{2}x^{2} \right)^{2} + 0 \right]$

$$= -\frac{1}{2}x - \frac{1}{12}x^3 + o(x^3).$$

$$(\cos x)^{\frac{1}{x}} = e^{\frac{\ln \cos x}{x}} = 1 + \left(-\frac{1}{2}x - \frac{1}{12}x^3\right) + \frac{1}{2}\left(-\frac{1}{2}x - \frac{1}{12}x^3\right)^2 + \frac{1}{6}\left(-\frac{1}{2}x - \frac{1}{12}x^3\right)^3$$
$$= 1 + \left(-\frac{1}{2}x - \frac{1}{12}x^3\right) + \frac{1}{2}\left(-\frac{1}{2}x\right)^2 + \frac{1}{6}\left(-\frac{1}{2}x\right)^3$$
$$= 1 + \left(-\frac{1}{2}x - \frac{1}{12}x^3\right) + \frac{1}{2}\left(-\frac{1}{2}x\right)^2 + \frac{1}{6}\left(-\frac{1}{2}x\right)^3$$

So

$$(\cos x)^{\frac{1}{x}} = 1 - \frac{1}{2}x + \frac{1}{8}x^2 - \frac{5}{48}x^3 + o(x^3).$$

Exercise 4

Reminder 4

4.1 Limited Development of order *n* in a neighborhood of x_0

We say that *f* admits a limited Development of order *n* in a neighborhood of x_0 if and only if the function $F: h \rightarrow F(h) = f(h + x_0)$ admits a limited Development of order *n* in a neighborhood of 0.And if

$$F(h) = \sum_{k=0}^{n} h^{k} + h^{n} \varepsilon_{1}(h) \text{ with } \lim_{h \to 0} \varepsilon_{1}(h) = 0.$$

Then for all $x \in v - \{x_0\}$

$$f(x) = \sum_{k=0}^{n} a_n (x - x_0)^n + (x - x_0)^n \varepsilon(x) \text{ with } \lim_{x \to x_0} \varepsilon(x) = 0.$$

4.2 Limited Development of order *n* in a neighborhood of ∞

We say that f admits a limited Development of order n in a neighborhood of $+\infty$ ($-\infty$, respectively) if and only if the function $F: h \to F(h) = f(\frac{1}{h})$ admits a limited Development of order n in a neighborhood of 0.And if

$$F(h) = \sum_{k=0}^{n} h^{k} + h^{n} \varepsilon_{1}(h) \text{ with } \lim_{\substack{x \to 0 \\ x \to 0}} \varepsilon_{1}(h) = 0 \left(\lim_{\substack{x \to 0 \\ x \to 0}} \varepsilon_{1}(h) = 0 \text{ , respectively} \right).$$

Then

$$f(x) = \sum_{k=0}^{n} \frac{1}{x^{k}} + \frac{1}{x^{n}} \varepsilon(x) \text{ with } \lim_{x \to +\infty} \varepsilon(x) = 0 \text{ (}\lim_{x \to -\infty} \varepsilon(x) = 0 \text{, respectively) where } \varepsilon(x) = \varepsilon_1 \left(\frac{1}{x}\right).$$

4.3 Study of infinite branches of curves

To study the infinite branches and determine the asymptotic lines of the graph (C_f) of function f in the neighborhood of $+\infty$ ($-\infty$, respectively), we develop the function f in the

neighborhood of $+\infty$ ($-\infty$, respectively) to the smallest order *n*, where $a_n \neq 0$ and $n \in \mathbb{N}^*$.

1) Find a limited Development of order n in a neighborhood of x_0 for the functions f in each of the following cases.

1°) n = 4, $x_0 = 1$, $f(x) = \frac{\ln x}{x^2}$.

$$F(h) = f(x_0 + h) = f(1 + h) = \frac{\ln(1 + h)}{(1 + h)^2} = \frac{h - \frac{1}{2}h^2 + \frac{1}{3}h^3 - \frac{1}{4}h^4}{1 + 2h + h^2}$$

By Euclidean dividing of $h - \frac{1}{2}h^2 + \frac{1}{3}h^3 - \frac{1}{4}h^4$ over $1 + 2h + h^2$, according to increasing powers of x, keeping only terms with degrees less than or equal to 4, we get

$$\frac{\ln(1+h)}{(1+h)^2} = h - \frac{5}{2}h^2 + \frac{13}{3}h^3 - \frac{77}{12}h^4 + o(h^4).$$

By putting h = x - 1 we get

$$\frac{\ln x}{x^2} = x - 1 - \frac{5}{2}(x - 1)^2 + \frac{13}{3}(x - 1)^3 - \frac{77}{12}(x - 1)^4 + o((x - 1)^4).$$

4°)
$$n = 1$$
, $x_0 = +\infty$, $f(x) = \sqrt[3]{x^3 + x^2}$.

$$F(h) = f\left(\frac{1}{h}\right) = \frac{1}{h}\sqrt[3]{1 + h} = \frac{1}{h}\left(1 + \frac{1}{3}h - \frac{1}{9}h^2\right) = \frac{1}{h} + \frac{1}{3} - \frac{1}{9}h + o(h)$$

Substitution $h = \frac{1}{x}$ we get

$$f(x) = \sqrt[3]{x^3 + x^2} = \frac{1}{3} + x - \frac{1}{9}\frac{1}{x} + o\left(\frac{1}{x}\right)$$

5°) $n = 1$, $x_0 = +\infty$, $f(x) = x^2 \ln\left(\frac{xe^{\frac{1}{x}}+1}{x}\right)$.
 $F(h) = f\left(\frac{1}{h}\right) = \frac{1}{h^2}\ln(h + e^h)$.

We have

$$h + e^{h} = 1 + 2h + \frac{1}{2}h^{2} + \frac{1}{6}h^{3}.$$

$$F(h) = \frac{1}{h^2} \ln(h + e^h) = \frac{1}{h^2} \ln\left(1 + (h + e^h - 1)\right)$$

$$= \frac{1}{h^2} \left(2h + \frac{1}{2}h^2 + \frac{1}{6}h^3 - \frac{1}{2}\left(2h + \frac{1}{2}h^2 + \frac{1}{6}h^3\right)^2 + \frac{1}{3}\left(2h + \frac{1}{2}h^2 + \frac{1}{6}h^3\right)^3\right)$$

$$= \frac{1}{h^2} \left(2h + \frac{1}{2}h^2 + \frac{1}{6}h^3 - \frac{1}{2}\left(2h + \frac{1}{2}h^2\right)^2 + \frac{1}{3}(2h)^3\right)$$

$$= \frac{1}{h^2} \left(2h + \frac{1}{2}h^2 + \frac{1}{6}h^3 - \frac{1}{2}\left((2h)^2 + 4h\frac{1}{2}h^2\right) + \frac{1}{3}(2h)^3\right)$$

$$F(h) = \frac{2}{h} - \frac{3}{2} + \frac{11}{6}h + o(h)$$

Substitution $h = \frac{1}{x}$ we get

$$f(x) = 2x - \frac{3}{2} + \frac{11}{6x} + o\left(\frac{1}{x}\right).$$

2) In questions, 4°, 5°, show that the graph (C_f) accepts a slanting asymptote that requires an equation, and then determine its relative position in the neighborhood of ∞ .

4°)
$$f(x) = \sqrt[3]{x^3 + x^2}$$
. We have $f(x) = \frac{1}{3} + x - \frac{1}{9x} + o\left(\frac{1}{x}\right)$.

So

$$\lim_{x \to +\infty} \left[f(x) - \left(\frac{1}{3} + x\right) \right] = \lim_{x \to +\infty} \left[-\frac{1}{9x} + \frac{1}{x} \varepsilon(x) \right] = 0.$$

 (C_f) accepts an asymptotic line (Δ) in a neighborhood of $+\infty$, which has an equation of the form $y = x + \frac{1}{3}$.

$$f(x) - \left(\frac{1}{3} + x\right) = -\frac{1}{9x} + \frac{1}{x}\varepsilon(x)$$

in a neighborhood of $+\infty$ then $f(x) - (\frac{1}{3} + x) = -\frac{1}{9x} + \frac{1}{x}\varepsilon(x) < 0$ so (C_f) is located under the asymptotic line (Δ).

5°)
$$f(x) = x^2 \ln\left(\frac{xe^{\frac{1}{x}}+1}{x}\right)$$
. We have $f(x) = 2x - \frac{3}{2} + \frac{11}{6x} + o\left(\frac{1}{x}\right)$.

So

$$\lim_{x \to +\infty} \left[f(x) - \left(2x - \frac{3}{2}\right) \right] = \lim_{x \to +\infty} \left[\frac{11}{6x} + o\left(\frac{1}{x}\right) \right] = 0.$$

 (C_f) accepts an asymptotic line (Δ) in a neighborhood of $+\infty$, which has an equation of the form $2x - \frac{3}{2}$.

$$f(x) - \left(2x - \frac{3}{2}\right) = \frac{11}{6x} + o\left(\frac{1}{x}\right)$$

in a neighborhood of $+\infty$ then $f(x) - (\frac{1}{3} + x) = -\frac{1}{9x} + \frac{1}{x}\varepsilon(x) > 0$ so (C_f) is located above the asymptotic line (Δ).

Exercise 5

Reminder 5

5.1 Calculation of limits

When calculating the limit $\lim_{x \to x_0} \frac{f(x)}{g(x)}$ and if we obtain one of the indeterminate form $\frac{0}{0}$ or $\frac{\infty}{\infty}$, to remove the indeterminacy we develop the functions f and g in the neighborhood of x_0 to the smallest orders *m* and *n*, respectively, where $b_n \neq 0$ and $a_n \neq 0$. Using limited development, calculate the following limits.

1°)
$$\lim_{x \to 0} \frac{x^2 \cos x - (e^x - 1)^2}{\sin^3 x}$$
. We have
$$x^2 \cos x - (e^x - 1)^2 = x^2(1) - \left(x + \frac{1}{2}x^2\right)^2 = -x^3 + x^3\varepsilon_1(x) \text{ and } \sin^3 x = x^3 + x^3\varepsilon_0(x).$$

So

$$\lim_{x \to 0} \frac{x^2 \cos x - (e^x - 1)^2}{\sin^3 x} = \lim_{x \to 0} \frac{-x^3 + x^3 \varepsilon_1(x)}{x^3 + x^3 \varepsilon_0(x)} = \lim_{x \to 0} \frac{-1 + \varepsilon_1(x)}{1 + \varepsilon_0(x)} = -1.$$
3°)
$$\lim_{x \to 1} \frac{\sqrt{2x - x^4} - \sqrt[3]{x}}{1 - \sqrt[4]{x^3}}.$$
 We put $x = h + 1$, so $F(h) = f(1 + h) = \frac{\sqrt[3]{1 + h} - \sqrt{1 - 2h - 6h^2 - 4h^3 - h^4}}{\sqrt[4]{1 + 3h + 3h^2 + h^3 - 1}}.$

$$\sqrt[3]{1 + h} - \sqrt{1 - 2h - 6h^2 - 4h^3 - h^4} = \sqrt[3]{1 + h} - \sqrt{1 - 2h}$$

$$= \left(1 + \frac{1}{3}h\right) - (1 - h) = \frac{4}{3}h + o(h).$$

We have also

$$\sqrt[4]{1+3h+3h^2+h^3} - 1 = 1 + \frac{3}{4}h - 1 = \frac{3}{4}h + o(h).$$

So

$$\lim_{x \to 1} \frac{\sqrt{2x - x^4} - \sqrt[3]{x}}{1 - \sqrt[4]{x^3}} = \lim_{h \to 0} \frac{\frac{4}{3}h + h\varepsilon_1(h)}{\frac{3}{4}h + h\varepsilon_0(h)} = \lim_{h \to 0} \frac{\frac{4}{3} + \varepsilon_1(h)}{\frac{3}{4} + \varepsilon_0(h)} = \frac{16}{9}.$$

5°) $\lim_{x \to +\infty} x^{\frac{3}{2}} (\sqrt{x-1} + \sqrt{x+1} - 2\sqrt{x}).$

$$F(h) = f\left(\frac{1}{h}\right) = \frac{1}{h^2} \left(\sqrt{1-h} + \sqrt{1+h} - 2\right) = \frac{1}{h^2} \left(-\frac{1}{4}h^2 + h^2\varepsilon(h)\right) = -\frac{1}{4} + \varepsilon(h).$$

Substitution $h = \frac{1}{x}$ we get

$$x^{\frac{3}{2}}\left(\sqrt{x-1}+\sqrt{x+1}-2\sqrt{x}\right)=-\frac{1}{4}+\varepsilon'(x) \text{ with } \lim_{x\to+\infty}\varepsilon'(x)=0.$$

$$\lim_{x \to +\infty} x^{\frac{3}{2}} (\sqrt{x-1} + \sqrt{x+1} - 2\sqrt{x}) = -\frac{1}{4}.$$

Exercise 6

Reminder 6

6.1 Study the relative position of the graph and the tangent line

To determine the relative position of the graph of a function f and its tangent line at the point x_0 , we develop the function f in the neighborhood of x_0 to the smallest order n such that $a_n \neq 0$ and $n \geq 2$.

Deduce the equation of the tangent (*T*) to the curve (C_f) at the abscissa point x = 0, and determine the relative positions of (C_f) and (*T*).

1°)
$$f(x) = \begin{cases} \frac{1}{x} - \frac{1}{x^2} \arctan\left(x + \frac{8}{15}x^3\right), & x \neq 0\\ 0, & x = 0 \end{cases}$$

We have

$$\arctan x = x - \frac{1}{3}x^3 + \frac{1}{5}x^5 + o(x^5).$$

So for $x \neq 0$ then

$$\arctan\left(x + \frac{8}{15}x^3\right) = \left(x + \frac{8}{15}x^3\right) - \frac{1}{3}\left(x + \frac{8}{15}x^3\right)^3 + \frac{1}{5}(x)^5$$
$$= x + \frac{1}{5}x^3 - \frac{1}{3}x^5 + o(x^5).$$

So

$$\frac{1}{x} - \frac{1}{x^2}\arctan\left(x + \frac{8}{15}x^3\right) = -\frac{1}{5}x + \frac{1}{3}x^3 + o(x^3).$$

Since $f(0) = 0 = a_0$ so f is differentiable at $x_0 = 0$, and therefore (C_f) accepts tangent line wich we denote by (*T*). And the equation of (*T*) is $y = -\frac{1}{5}x$.

We have
$$f(x) - \left(-\frac{1}{5}x\right) = \frac{1}{3}x^3 + o(x^3) = x^3\left(\frac{1}{3} + \varepsilon(x)\right)$$

If x is sufficiently close to 0, the sign of the difference $f(x) - \left(-\frac{1}{5}x\right)$ is the same sign of $\frac{1}{3}x^3$, hence the following result:

For x < 0, (C_f) is located under the tangent and for x > 0, (C_f) is located above the tangent.

We conclude that (C_f) accepts an inflection point $A_0(0,0)$.

3°) $f(x) = \frac{1}{1 + \ln(x + \cos x)}$.

f defined, continuous, and differentiable at 0, so let us develop f at 0 to order 2.

We have

$$x + \cos x = 1 + x - \frac{1}{2}x^2 + o(x^2)$$
 and $\ln(1+h) = h - \frac{1}{2}h^2 + o(h^2)$

2

So

$$\ln(1+h) = 1 + \ln\left(1 + (x + \cos x - 1)\right) = 1 + \left(x - \frac{1}{2}x^2\right) - \frac{1}{2}\left(x - \frac{1}{2}x^2\right)$$
$$= 1 + \left(x - \frac{1}{2}x^2\right) - \frac{1}{2}(x)^2$$
$$= 1 + \left(x - \frac{1}{2}x^2\right) - \frac{1}{2}(x)^2$$
$$= 1 + x - x^2.$$

By Euclidean dividing of 1 over $x - x^2$, according to increasing powers of x, keeping only terms with degrees less than or equal to 2, we get

So

$$f(x) = \frac{1}{1 + \ln(x + \cos x)} = 1 - x + 2x^2 + o(x^2).$$

And (C_f) accepts tangent line wich we denote by (*T*). And the equation of (*T*) is y = 1 - x.

We have $f(x) - (1 - x) = 2x^2 + o(x^2) = x^2(2 + \varepsilon(x)).$

If x is sufficiently close to 0, the sign of the difference f(x) - (1 - x) is the same sign of $2x^2$, hence the following result:

For x < 0 or x > 0, (C_f) is located above the tangent.

Exercise 6

In each of the following cases, show that the curve (C_f) of the function f accepts asymptote (Δ) in the vicinity of ∞ , which requires an equation for it and examining the relative position of (C_f) and (Δ) .

1°)
$$f(x) = x^2 \sqrt{\frac{x-1}{x^3+2x}}$$
.
 $F(h) = f\left(\frac{1}{h}\right) = \frac{1}{h^2} \sqrt{\frac{(-h+1)h^2}{1+2h^2}} = \frac{1}{h} \sqrt{1 + \frac{1-h}{1+2h^2} - 1} = \frac{1}{h} \sqrt{1 - \frac{h+2h^2}{1+2h^2}}$

Let us develop f at $+\infty$ to order 1.

$$F(h) = f\left(\frac{1}{h}\right) = \frac{1}{h^2} \sqrt{\frac{(-h+1)h^2}{1+2h^2}}$$
$$= \frac{1}{h} \sqrt{1 + \frac{1-h}{1+2h^2} - 1}$$
$$= \frac{1}{h} \sqrt{1 - \frac{h+2h^2}{1+2h^2}}$$

By Euclidean dividing of 1 over $x - x^2$, according to increasing powers of x, keeping only terms with degrees less than or equal to 2, we get

$$\begin{array}{c|cccc}
h + 2h^2 & 1 + 2h^2 \\
h & h + 2h^2 \\
\hline
2h^2 \\
\hline
0
\end{array}$$

So

$$\frac{h+2h^2}{1+2h^2} = h + 2h^2 + o(h^2).$$

We have
$$\sqrt{1-h} = 1 - \frac{1}{2}h - \frac{1}{8}h^2 + o(h^2)$$
, so

$$\frac{1}{h}\sqrt{1 - \frac{h+2h^2}{1+2h^2}} = \frac{1}{h}\left(1 - \frac{1}{2}(h+2h^2) - \frac{1}{8}(h+2h^2)^2\right)$$

$$= \frac{1}{h}\left(1 - \frac{1}{2}(h+2h^2) - \frac{1}{8}(h)^2\right)$$

$$= \frac{1}{h}\left(1 - \frac{1}{2}h - \frac{9}{8}h^2 + o(h^2)\right)$$

$$= \frac{1}{h} - \frac{1}{2} - \frac{9}{8}h + o(h).$$

Substitution $h = \frac{1}{x}$ we get

$$f(x) = x - \frac{1}{2} - \frac{9}{8x} + o\left(\frac{1}{x}\right) = x - \frac{1}{2} - \frac{9}{8x} + \frac{1}{x}\varepsilon(x) \quad \text{with} \quad \lim_{x \to +\infty} \varepsilon(x) = 0$$

 (C_f) accepts an asymptotic line (Δ) in a neighborhood of $+\infty$, which has an equation of the form $y = x - \frac{1}{2}$.

$$f(x) - \left(x - \frac{1}{2}\right) = -\frac{9}{8x} + \frac{1}{x}\varepsilon(x).$$

in a neighborhood of $+\infty$ then $f(x) - (x - \frac{1}{2}) = -\frac{9}{8x} + \frac{1}{x}\varepsilon(x) < 0$ so (C_f) is located under the asymptotic line (Δ).

3°)
$$f(x) = x^2 \sin \frac{x-2}{x^2+x+1}$$

let us develop f at ∞ to order 1.

$$F(h) = f\left(\frac{1}{h}\right) = \frac{1}{h^2} \sin \frac{h(1-2h)}{1+h+h^2}$$

We have

$$\sin(t) = t - \frac{1}{6}t^3 + o(t^3)$$
 and $\frac{h(1-2h)}{1+h+h^2} = h - 3h^2 + 2h^3 + o(h^3).$

So

$$F(h) = \frac{1}{h^2} \sin \frac{h(1-2h)}{1+h+h^2}$$

= $\frac{1}{h^2} \Big[(h-3h^2+2h^3) - \frac{1}{6}(h-3h^2+2h^3)^3 \Big]$
= $\frac{1}{h^2} \Big[(h-3h^2+2h^3) - \frac{1}{6}(h)^3 \Big]$
= $\frac{1}{h} - 3 + \frac{11}{6}h + o(h)$

Substitution $h = \frac{1}{x}$ we get

$$f(x) = x - 3 + \frac{11}{6x} + o\left(\frac{1}{x}\right) = x - 3 + \frac{11}{6x} + \frac{1}{x}\varepsilon(x) \quad \text{with} \quad \lim_{x \to \infty} \varepsilon(x) = 0.$$

 (C_f) accepts an asymptotic line (Δ) in a neighborhood of ∞ , which has an equation of the form y = x - 3.

$$f(x) - (x - 3) = \frac{11}{6x} + \frac{1}{x}\varepsilon(x).$$

in a neighborhood of ∞ then $f(x) - (x - 3) = \frac{11}{6x} + \frac{1}{x}\varepsilon(x) > 0$ so

in a neighborhood of $+\infty (C_f)$ is located above the asymptotic line (Δ), in a neighborhood of $-\infty (C_f)$ is located under the asymptotic line (Δ).

Exercise 8 (Short answers)

1)
$$u(x) = 1 + \frac{1}{2}x - \frac{3}{8}x^2 + x^2\varepsilon(x)$$
 and $v(x) = 1 + \frac{1}{2}x + \frac{11}{8}x^2 + x^2\varepsilon(x)$.
2) $\lim_{x \to 0} \frac{f(x)-1}{x} = \lim_{x \to 0} \left(\frac{u(x)-1}{x}\right) = \frac{1}{2}$, $\lim_{x \to 0} \frac{f(x)-1}{x} = \lim_{x \to 0} \left(\frac{v(x)-1}{x}\right) = \frac{1}{2}$.

So f is differentiable at 0 and the graph (C_f) accepts a tangent (T) at the point (0,1), and has an equation of the form $y = \frac{1}{2}x + 1$.

$$x > 0 \implies f(x) - y = -\frac{3}{8}x^2 + x^2\varepsilon(x) < 0 \text{ on a neighborhood of } 0,$$
$$x < 0 \implies f(x) - y = -\frac{3}{8}x^2 + x^2\varepsilon(x) > 0 \text{ on a neighborhood of } 0.$$

For x > 0, (C_f) is located under the tangent. For x < 0, (C_f) is located above the tangent.

We conclude that (C_f) accepts an inflection point A(0,1).

3)
$$u(x) = x + \frac{1}{2} - \frac{3}{8} \frac{1}{x} + \frac{1}{x} \varepsilon(x)$$
 where $\lim_{x \to +\infty} \varepsilon(x) = 0$.
 $v(x) = -\frac{1}{4} - 2x + \frac{49}{64} \frac{1}{x} + \frac{1}{x} \varepsilon'(x)$ where $\lim_{x \to -\infty} \varepsilon'(x) = 0$.

4) (C_f) accepts an asymptotic line (Δ) in a neighborhood of $+\infty$, which has an equation of the form $y = x + \frac{1}{2}$, and an asymptotic line (Δ') in a neighborhood of $-\infty$, which has an equation of the form $y = -2x - \frac{1}{4}$.

in a neighborhood of $+\infty$ then $f(x) - (x + \frac{1}{2}) = -\frac{3}{8}\frac{1}{x} + \frac{1}{x}\varepsilon(x) < 0$ so (C_f) is located under the asymptotic line (Δ).

in a neighborhood of $-\infty$ then $f(x) - \left(-\frac{1}{4} - 2x\right) = \frac{49}{64x} + \frac{1}{x}\varepsilon'(x) < 0$ so (C_f) is located under the asymptotic line (Δ').