Exercise series No.3

Note: questions marked * left to the students

Exercise 01

Using the Tyler-Lagrange formula, find a limited development of order $n \in \mathbb{N}^*$ at point x_0 , of the function f in each of the following cases.

a)
$$x_0 = 1$$
; $f(x) = \frac{1}{x}$, b) $x_0 = 0$; $f(x) = xe^{2x}$, c) $x_0 = 2$; $f(x) = \frac{x^2 - 2x - 1}{x^2 - 4x + 3}$
d)* $x_0 = 0$; $f(x) = \sin 2x$, e)* $x_0 = 3$; $f(x) = \ln \frac{x - 2}{5 - x}$.

<u>Exercise 02</u>

- 1) Using Tyler's formula, prove the following
- a) $\forall x \in \mathbb{R}_+: x \frac{x^2}{2} \le \ln(1+x) \le x \frac{x^2}{2} + \frac{x^3}{3}$, b) $\forall x \in \left[0, \frac{\pi}{2}\right]: x - \frac{x^3}{6} \le \sin x \le x - \frac{x^3}{6} + \frac{x^5}{120}$, d)* $\forall x \in \mathbb{R}_+: 1 + \frac{x}{3} - \frac{x^2}{9} \le \sqrt[3]{1+x} \le 1 + \frac{x}{3} - \frac{x^2}{9} + \frac{5}{81}x^3$.
- 2) Determine the local Extrema of f in each of the following cases.

a)*
$$f(x) = x^3 - 2ax^2 + a^2x (a > 0)$$
, b) $f(x) = x^2(a - x)^2 (a \in \mathbb{R})$.

Exercise 03

Find a limited Development of order *n* in a neighborhood of 0 for the functions *f* in each of the following cases

a)
$$n = 6$$
, $f(x) = \frac{x^2 + x - 1}{x^2 + 2}$, b) $n = 3$, $f(x) = e^x \sqrt{1 - x}$
c)* $n = 4$, $f(x) = \cos x \cdot \ln(1 + x)$, d) $n = 4$, $f(x) = \ln(x + \sqrt{\cos x})$
e)* $n = 3$, $f(x) = e^{\cos x}$ f) $n = 3$, $f(x) = (\cos x)^{\frac{1}{x}}$.

<u>Exercise 04</u>

Find a limited Development of order *n* in a neighborhood of x_0 for the functions *f* in each of the following cases

1°)
$$n = 4$$
, $x_0 = 1$, $f(x) = \frac{\ln x}{x^2}$
3°)* $n = 1$, $x_0 = \infty$, $f(x) = \sqrt{x^2 - 4x + 5}$
3°)* $n = 1$, $x_0 = \infty$, $f(x) = \sqrt{x^2 - 4x + 5}$
4°) $n = 1$, $x_0 = +\infty$, $f(x) = \sqrt[3]{x^3 + x^2}$.

5°)
$$n = 1$$
, $x_0 = +\infty$, $f(x) = x^2 \ln\left(\frac{xe^{\frac{1}{x}}+1}{x}\right)$ 6°)* $n = 1$, $x_0 = \infty$, $f(x) = x^2 \sin\frac{x-1}{x^2+1}$

2) In questions 3°, 4°, 5°, 6°, show that the graph (C_f) accepts a slanting asymptote that requires an equation, and then determine its relative position in the neighborhood of ∞ .

<u>Exercise 05</u>

Using limited development, calculate the following limits.

1°)
$$\lim_{x \to 0} \frac{x^2 \cos x - (e^x - 1)^2}{\sin^3 x}$$
 2°)
$$\lim_{x \to 0} \frac{x e^x - \sin x}{\ln(1 + x) + x \tan x - x}$$
 3°)
$$\lim_{x \to 1} \frac{\sqrt{2x - x^4} - \sqrt[3]{x}}{1 - \sqrt[4]{x^3}}$$

4°)*
$$\lim_{x \to 1} \frac{\sqrt[5]{2x - 1} - 1}{\sqrt[4]{x} - \sqrt{2 - x}}$$
 5°)
$$\lim_{x \to +\infty} x^{\frac{3}{2}} (\sqrt{x + 1} + \sqrt{x + 1} - 2\sqrt{x})$$

6°)
$$\lim_{x \to +\infty} x^5 \left(\operatorname{argsinh} \frac{1}{x} + \operatorname{arcsin} \frac{1}{x} - \frac{2}{x} \right).$$

<u>Exercise 06</u>

Deduce the equation of the tangent (*T*) to the curve (C_f) at the abscissa point x = 0, and determine the relative positions of (C_f) and (*T*).

1°)
$$f(x) = \begin{cases} \frac{1}{x} - \frac{1}{x^2} \arctan\left(x + \frac{8}{15}x^3\right), & x \neq 0\\ 0 & , & x = 0 \end{cases}$$
 2°)* $f(x) = \begin{cases} e^{\frac{1}{x}\ln\frac{\cosh x}{\cos x}}, & x \neq 0\\ 1 & , & x = 0 \end{cases}$
3°) $f(x) = \frac{1}{1 + \ln(x + \cos x)}$ 4°)* $f(x) = \begin{cases} \frac{\sqrt{1 + 2\sin x} - e^x}{\ln(1 + x + x^2) - x}, & x \neq 0\\ -\frac{2}{3}, & x = 0 \end{cases}$

Exercise 07

In each of the following cases, show that the curve (C_f) of the function f accepts asymptote (Δ) in the vicinity of ∞ , which requires an equation for it and examining the relative position of (C_f) and (Δ) .

1°)
$$f(x) = x^2 \sqrt{\frac{x-1}{x^3+2x}}$$
 2°)* $f(x) = x^2 ln\left(\frac{x+2}{x+1}\right)$ 3°) $f(x) = x^2 \sin\frac{x-2}{x^2+x+1}$
4°)* $f(x) = e^{\frac{1}{x}} \sqrt{x^2+2x}$.

<u>Exercise 8</u>

Let *f* be a function defined on \mathbb{R} by $f(x) = \begin{cases} (x+1)e^{\frac{-x}{2x^2+2}}, & x > 0\\ \sqrt{4x^2+x+1}\cos\frac{x}{x^2+1}, & x \le 0 \end{cases}$, and let (C_f) the graph representing the function *f*. We put $u(x) = (x+1)e^{\frac{-x}{2x^2+2}}$ and

$$u(x) = (x+1)e^{\frac{-x}{2x^2+2}}$$
 and $v(x) = \sqrt{4x^2 + x + 1}\cos\frac{x}{x^2+1}$

1) Find a limited Development of order 2 in a neighborhood of 0 for the functions u and v.

2) Using the previous limited developments, show that the function f is differentiable at the point $x_0 = 0$ and deduce the relative position of (C_f) and (Δ) . What do you conclude?

3) Find a limited Development of order 1 in a neighborhood of $+\infty$ for the function u and in a neighborhood of $-\infty$ for the function v.

4) Deduce that the graph (C_f) accepts two asymptotes in the neighborhood of $+\infty$ and $-\infty$, determining an equation for each, and then determining the relative position of each with respect to the curve (C_f) .