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3 Taylor's Formulas, Limited Development

3.1 Taylor's Formulas
3.1.1 Taylor's formula with Lagrange remainder
Theorem 3.1

Let f : [a,b] — R be a function of class C™ on the interval [a, b] and f™ is
differentiatiable over the interval ]a, b|[ then:

For every two numbers x, x,of the interval [a, b] where x # x, we have:

L I0)) (n+1)
fx) = Zf (!xO) (x — x0)/ + Fe) (x — xo)™*™.
j=0

j (n+ 1)!

Where c is a real number from ]x,, x[ (or [x, xo], ifx < x,). The remainder R,, =

F+D (¢ (x —

(n+1)! xo)"*! called Lagrange remainder.

Proof

Let us define the functions g and ¢ on the interval [a, b] by

90 = 0 - ]Zf D=,
and
o) =g(t) - (xog_(%(t — )™
We have
g =0; glxy) = f(x) — ifm(x“) (x— xo)  and g'(t) = —f(n+—1,)(t)
=

j!
We have too

@(x) = @(xo) =0

(x— )™



By applying Rolle's theorem to the function ¢ in the interval [x, x] (or [x, x,], ifx < x)
we get:

there is a real number c in ]x,, x[ (or ]x, x,[, ifx < x,) where

' (c)=0
or
g'©)—(n+ 1)(%9_(%@ — =
or
(n+1)
S Al GO S AP 1C2) S
(xp — x)™+1
or
(n+1)
gl =L e
So

AUC _ [0 "
f(x)—jzo e x)) = G )

Finally we obtain

n

0) (n+1)
F =Y e ay a L e g

j=0
3.1.2 Taylor's formula with Young's remainder

Definition 3.1

Let f and g be functions defined in the neighborhood v of the point x, where

Vx € v — {xo}: g(x) # 0, we say that f is negligible before g when x — x, and we write
f = o(g), if the following is true: lim @ _ o,

x—-xq 9(X)
Definition 3.2

FU0©) ()

D Xo). The Taylor's- Lagrange formula is rewritten in the

By putting (x) =

form:



"L e0) (o

flx) = zf (l 0) (x — x0)) + (x — x)" €(x) where lim &(x) = 0.
]=0 ]. X—Xo

The remainder R,, = (x — x,)™ €(x), is called Young remainder.

And by putting R,, = (x — x,)"e(x) = o((x — x,)™), the previous formula is rewritten
into the form:

= £
Fo = Y T e ) ol = 2o
Jj=0

n

Note: We mention that R,, = o((x — x,)™) means that lim B _ .
x—xg (x— x0)"

3.1.3 McLaurin’s formula with Young's remainder

By taking x, = 0 in Taylor's-Young's formula, we get:

LI6))
flx) = Zf jl(o)xj + o(x™),
=0

called McLaurin’s- Young's formula.
Examples 3.1
1) Let f(x) = e*; x, = 0 we have f € C®(R); Vk € N*: f®)(x) = e* and

vk € N*: fO(0) = 1.

So
n
f(k)(()) x2  x3 x4 X"
flx) = Z i x*+R,(x)=1 +x+§+§+ﬂ""+ﬁ+Rn(x)’
k=0
where
n+1
*R,(x) = (3:1++1)! e withc €]0,x[orc € ]x,0[ In Taylor's- Lagrange formula.

*Ro(x) = x"e(x) = 0(x™) with lim &(x) = 0.In Taylor's - Young's formula.
X—Xg
2) Let f(x) = 1Tlx;x,x0 € |1, +oo[ we have f € C*(]1,+[ ) and

k!
(1_x0)k+1'

vk € N: fO(x,) =

So



n (k) n
flx) = kzﬂfk—(,x(’)xk + Rn(x,%0) = kZOmTlo)mxk + Rn(x,x0)

1 x—x (= x)? (x—x)® (- x)"
_1—x0+(1—x0)2 (1 —x)3 (1—x0)4+ '+(1—x0)"

+ R, (x,x;).
Where

(n+1) _ n+1
*R,(x,x0) = f(Tlglc) (x — x)™1 = % with ¢ € Jxq, x[ or ¢ € ]x, x,[ In Taylor's-

Lagrange formula.

*Ro(x,x0) = (x — xg)™e(x,x5) = 0((x — x,)™) with xll)rgrclo e(x,x,) = 0.In Taylor's -

Young's formula.

For example if x, = 3, then

(="

f(X)=—l+l o

2 4

(x—3)—%(x—3)2+1i6(x—3)3+---.+ (x— 3)"+R,(x).

(x — 3)"*1

(1 — c)n+2 with ¢ € ]3,x[orc € ]x,3[ (Or|c —3] < [x —3]),

Rn(x) =

or

R,(x) = (x — 3)"e(x) = 0((x — 3)") with }Cl_r)ré e(x)=0

3.1.4 Apply Tyler's formulas to find local extrema

Theorem 3.3

Let f be a function of class C™" in the neighborhood of the point x, such that:
F'(x0)=f"(x0) = f®(xp) == f@V(xy) =0and f™(x,) # 0. Then

f accepts a local maximum (local minimum, respectively) at x, if and only if n is even
and £ ™ (xo) < 0 (f™(x,y) > 0, respectively).

Proof

Applying the Tyler-Lagrange formula and taking into account the hypothesis on the
derivatives we get:

f™ (o)

n!

flx) = f(xo) +

(x — xo)™ where cis areal number between x, and x.
Assume that f™(x,) < 0.
Since f(”) is continuous at x, there exists a real number § > 0 such that:

5



Vx € Jxg — 8,x0 + 8[: F™(x) < 0= f™(c) < 0 (Because c confined between x, , x).

™(e)
n!

If n is even, then (x — x0)™ < 0.SoVx € Jxg — §,x0 + 6[: f(x) < fxp).

So f(x,) is local maximum.
In the same way the proofis performed if f™ (x,) > 0.
If n is odd, then the sign of the difference f(x) — f(x,) changes at x,,.
Example 3.2
Let f(x) = §x5 - ix“.
Necessary condition:
ffx)=0e=x=0x=1
Sufficient condition:
' (0)=F"(0)=f®0)=0and f¥0)=-6<0 = £(0) =0 islocal maximum
value of f.

Similarly we have

f'l)=0and f"(1)=1>0 > f(1) = —% is local minimum value of f.

3.2 Limited Development

3.2.1 Limited Development of order n in a neighborhood of 0
Definition 3.3

Let f be a function defined in a neighborhood of 0 - with the possible exception of 0 - we
say that f admits a limited Development of order n in a neighborhood of 0 if and only if
there exists a neighborhood v of 0 and constant numbers a,, a;, a,, ... ... ...., a, where

Vx€Ev;x#0: f(x) = ag+ a;x + ax?....... + a,x™ + x"e(x) with lirr(l) e(x) =0.
X—

Or

n
Vx ev;x#0:f(x) = Z apx® + x"e(x) with lir‘% s(x) =0.
X—
k=0

The polynomial ag + a;x + ax? ... ... .. + a,x™, is called the regular part and we denote it by
B, (x).



The term x™e(x) (or o(x™) ) is called the remainder or the complementary term, and it is
symbolized by R,, (x).

Theorem 3.4 (uniqueness)

If a function f admits a limited Development of order n in the neighborhood of 0, then
this Development is unique.

Proof

Assume that for all x € v — {0}:

fx) = ag+a;x+ axx?...... + a,x™ + x"¢&; (x) with lin(l) g(x) =0,
xX—
and
f(x) = bg+ bix+ byx?...... + bpx™ + x" e, (x) with lirr(l) &(x) = 0.
x—

So we have for all x € v — {0}:
ao —bo + (a; —b)x + (ap — by)x? ........ + (an — bp)x™ + x™(e1(x) — £,(x)) = 0.

Taking the limit at 0 we obtain

ag— by =0.
So we have for all x € v — {0}:
(ay —bx + (ap — by)x? ........ + (an — bp)x™ + x™(g5(x) — &, (x)) = 0,
or
(a; — b))+ (ay — by)x .. + (an — b)x™ 1 + x" 1 (g5(x) — &, (%)) = 0.
Taking the limit again at 0 we obtain
(a; —by) = 0.

By continuing the operation, we obtain for all x € v — {0}

(an —by) + (52 (x) — & (x)) =0,

from where
(@n = by) = lim (&, () — £,()) = 0
So
a, = b, and & (x) = &,(x).
Theorem 3.5



If a function f admits a limited Development of order n (n = 1) in the neighborhood of 0
and if f(0) = a, then f is differentiable at 0 and we have f'(0) = a;.

Proof

If we have f(0) = a, we can write

fG) - £(0)

= At X e +apx™ ™t +x" ey (x) with  lim g, (x) = 0,
= O x—0
o)
. f)—=f(0) . )
}CI—E%T - }cl—{rtl)(al F X + apx” e 181(36)) = a,.
Theorem 3.6

If f is of class C™ in the neighborhood of 0, then f admits a limited development to the
neighborhood of 0, which is obtained in the McLaurin’s- Young's formula, i.e.:

Do)
fx) = Zf j'( )xf + o(x™).
j=0 7’

Proof

The theorem results from the application of the Maclaurin-Young formula and the
uniqueness of limited development.

Theorem 3.7

If an even (respectively odd) function admits an limited development to the
neighborhood of 0, then its regular part is even (respectively odd).

Proof

Let f be an even function admitting a limited Development of order n in the
neighborhood of 0 by the form: f(x) = ag + a;x + a,x? ... ...... +a,x™ +
x"e(x) with lirr(l) e(x) =0.

x—

So

Vx€ev;x #0: f(—x) = f(x),

n

Vx Ev;x # 0: Z(—l)kakxk + (—=x)"e(—x) = Z arx® + x"e(x).

k=0 k=0

According to the theorem 3.4 we obtain:

vk €{0,1,2,....... ,n}ya, = (=D*a, and e(x) = (=1)"e(—x).



So, if k is even number, then a; = 0.
In the same way, the proofis done if f is odd.
Corollary 3.1
The limited development of f is therefore writes:
fx) = ag+ ax?+ ... + aypx® 4+ 0(x?™) If f is even.
fx) = a; + azx?+ ... + Appp1 X2+ 0(x2™*1) If £ is odd.
Remark 3.1

The order of the limited development is determined by the degree of the remainder
o(x™) and not the degree of the regular part.

Example 3.3

fx)=1- %x + 3x% + §x3 + 0(x°) Is a limited development of order 5.

gx)=1- %x + 3x2 + §x3 — 1—73x4 + 2x5 + 0(x3) Is a limited development of order 3.
Since —%x‘* +2x°> = o(x®) wegetg(x) =1 —%x + 3x% + §x3 +o(x?)

3.2.2 Operation on Limited Development

Theorem 3.8

Let f, g be two functions admitting limited developments to the same order n in the
neighborhood of 0. We denote their regulars parts as B, (x), Q,,(x), respectively. That is

fx) =B, (x) +x"e;(x) ;  g(x) =0Q(x)+ x™ey(x).

Then, the functions f + g, fg, L (iflim g(x) # 0), fog (if lim g(x) = 0), admitting
g 0 0
X— X—

limited developments of order n in the neighborhood of 0 and we have:

1) f(x) + g(x) = B,(x) + Q,,(x) + x™e3(x) with }Ci_r;r(l) g5(x) = 0.
2) f(x)g(x) = A,(x) + x™e,(x) with }Ci_r:r(l) g(x) = 0.

Where A,,(x) is the polynomial we obtain by retaining in the multiplication B, (x)Q,, (x)
only the terms with degrees less than or equal to n.

M — n 1 i =
3) pr B, (x) + x™es(x) with }CI_I;% es(x) = 0.



Where B, (x) is the polynomial we obtain by Euclidean division of B, (x) by Q,,(x)
according to increasing powers of x keeping only terms with degrees less than or equal
ton.

4) fog(x) = C(x) + x™eg(x) with }CI_I)% gg(x) = 0.

Where C,,(x) is the polynomial we obtain by retaining in the composite B,0 Q,(x) only
the terms with degrees less than or equal to n.

Proof

Let us prove the third and fourth cases because the first and second cases are deduced
by direct calculation.

a) Prove the third cases

We first recall with the following proposition

Proposition 3.1 (DIVISION BY INCREASING POWER ORDER)

Letn,m,p € N* with n # 0, and A4, B two polynomials. We write them

A(x) = ag + a;x + ax? .. ... + apxP and B(x) = by + byx + byx? ... + by x™.

We assume that b, # 0. Then there exist a unique pair (Q, R) of polynomials such that
{A(x) = B(x)Q(x) + x™*1R(x)
deg(Q) <n '

Let us now return to proving the third case in Theorem 3.6. we've got.
f(x) = B(x) + x™e; (%),
g(x) = Qn(x) + x"e;(x).
The division according to the increasing powers to the order n of B,(x) by Q,,(x) gives

{Pn(x) = Qn(x¥)B,(x) + x™R(x)
deg(B,) <n '

From where
f(x) —x"e (x) = B (x)
= Qn(x¥)B,(x) + x™R(x)
= (g(x) = x™&,(1)) By (x) + x™ R (x).
So

f() = g(x)Bn(x) + x™ (&1 (x) — £, (x)B, (x) + xR(x)),

10



fO) B.(x) + x (e1(x) — £2(x)B,(x) + xR(x))
g(x)

glx) "
Or

f&) = B,(x) + x"e(x) with e(x) = (8100 — £2(0B, () + XR(X)).
g(x) g(x)

Since lim g(x) # 0 then lim e(x) = 0.
x—0 x—0

Finally we obtain

f@
g(x)

b) Prove the fourth cases

= B,(x) + x"e(x); deg(B,) < n with lirré e(x) = 0.
X—

To prove the fourth case we need the following proposition.
Proposition 3.2

Let f be a functions admits limited development to the order n in the neighborhood of 0
where f(x) = B,(x) + x"&(x) with lirré e(x) = 0 wheren € N*.Then forall k €
X—

{1,2,3,......... ,n}: fE(x) = PF(x) + x™e;(x) with lirré & (x) =0.
X—

Proof of proposition 3.2 ( Proof by induction)
Fork = 1: f1(x) = B}(x) + x™¢,(x) is true ( It suffices to take &; = &).
Assume that:
fR(x) = PF(x) + x™e,(x),
and we prove that:
Ferr o) = Bt () + x™ez ().

Indeed
FEH1) = FEO0f () = (BEGO + 2780 ) (B () + x7e(x)
= (K@) +x7&,(x) ) (P (@) + x"e(x))
= Pl (x) + X" B (1), (x) + x"PE(1)e(x) + x%ey (x)e(x)
= P + 27 (B ()&, () + PE()e() + x"e, (0)e(x) ).

By putting 5(x) = P,(x)&,(x) + P¥(x)e(x) + x™&,(x)e(x), then lin(l) g(x) = 0.
x—

11



We return to proof the fourth cases

We have

n
f(x) = B,(x) + x"&;(x) where B,(x) = Z bx* and liH(l) g(x) =0,
k=0 *
and since lin(l) g(x) =0, then
X
n
g(x) = 0,(x) + x"e,(x) where Q,, (x) = Z @x* = xR, (x) and lim e (x) = 0
xX—

k=1
So

fog(x) = Py(Qn () + x™e,(x)) + (Qn(x) + x™e,(x)) " &1 (Qn () + x5 (x))
= Pn(Qn (x) + x"s, (x)) + (an (x) + x"e, (x))n81 (an (x) + x"s, (x))
=P, (Qn (x) + x"e, (x)) + x"(Rn (x) + x" e, (x))n81 (an (x) + x"e, (x)).

Since lirré(an (x) + x"¢, (x)) = 0, then we put
X—

(Rn (x) + x" g, (x))nel (an (x) + x"e, (x)) = £5(x) with }Ci_r)r(l) g(x) =0
So

fog(x) = Pn(Qn(x) + xngz(x)) + x™e3(x)

= by + Z by (Qn(x) + x”sz(x))k + x"e3(x)
k=1

n
= by + z bk(Q’g (x) + x”s4(x)) + x™e5(x) (According to proposition 3.2)
k=1

n n
= by + z b QK (x) + x™e,(x) Z by + x"e3(x)
k=1 k=1

= by + ) BOE@ + x| &) ) by +2(0)
k=1 k=1

= B,00Q,(x) + x"&s(x) with lir% es(x) = 0.
X—

Let C,,(x) be a polynomial we obtain by retaining in the composite B,0 Q,,(x) only the
terms with degrees less than or equal to n.

12



Finally we obtain

fog(x) = Cp(x) + x™eg(x); deg(C,) < n with ling ge(x) = 0.
x—
Examples 3.4

Df(x)=In(1+x)=x —%xz + §x3 + x3&,(x) with lin(1) &5x)=0
R —— X
Pp(x)
gx)=e*=1+x+ %xz +%x3 + x3¢&,(x) with lirré &5x)=0
X—
Qn(x)

*fx) + g(x) = In(1 + x)e*

1 1 1 1
=&00+@&0=(x—?ﬂ+§xﬁ+(1+x+?ﬂ+gxﬂ

1
=1+2x+ Ex?’ + x3e5(x) with lirr(1) &(x) = 0.
X—
*Fx)gx) =In(1+ x) + e*

1 1 1 1
_ (22,3 22,23
—Pn(x)Qn(x)—(x 5% +3x>(1+x+2x +6x)

1 1 1
= x(l +x +—x2> ——x%2(1+x)+ §x3(1)

2 2
1 1 1 1
_ 2. 2.3_2,2_—.3, 2.3
X+ x®4ox = ox? —oxd +ox
1 1 . .
=x+=x%+-x3+ x3g,(x) with limg,(x) = 0.
2 3 x—0

2) f(x) =sinhx = x +%x3 + x3¢; (x) with lin(l) g5x)=0
X—
Pp(x)
gx)=v1l+x=1 +%x —éxz +1—16x3 + x3¢, (x) with lin(1) &x)=0
x—
Qn(x)

*We have lirré g(x) #0,s0 i admits a limited development.
X—

By Euclidean division of B, (x) by Q,,(x) according to increasing powers of x we obtain

Foxt | 14ox—ax? 4ty
D e e
x-l—1§x2—7§x3 x—§x2+ﬁx3
Y 43
S X o X

13



So

f(x) sinhx 1 13 o

G0 = T =x —Exz +ﬁx3 + x3&5(x) with }}I,% &(x) = 0.

fx)=e*=1+x +%x2 +%x3 + x3g, (x) with lirr(1) &) =0,
X—

Pp(x)

g(X) =sinx = x —%xg +x352(x) with 111’1’(1) sz(x) = 0.
X—

~————
Qn(x)

* We have lirré g(x) = 0,so fog admits a limited development.
X—

fog(x) = es"* = P,0Q, (x)

=t (o5 e g0) +5r-50)
= X 6X 2x 6x 6x 6x

= 14 (x— 22 43 P + (0

1
=1+x+ Exz + x3&5(x) with ling &(x) = 0.
X—

Theorem 3.9 (Integration of limited development.)

Let f: [—a; a] — R an integrable function and admitting in the neighborhood of 0 the
limited development:

f(x) = ag+ ax + axx? ... + a,x™ + x™e(x) with lin(l) e(x) =0,
X—

Then the function F: x — fox f(t) dt admits in the neighborhood of 0 the limited

development of order n + 1 following:

a a a
F(x) = apx + —x2+ —x3 o .. 1

n+1 n+1 : : —
> 3 — X + x™*1g; (x) with }CIL‘% gx) =0,

i.e. the regular part of limited development of F is equal to the integral of regular part in
limited development of f.

Proof

14



We have

X X X
F(x) =f f(t)dt =f (ap + ast + ayt? ... .. +ant")dt+f t"e(t) dt

0 0 0
X X

=j (ag + art + a,t? ... .. + a,t™)dt +f t"e(t) dt.
0 0

= qgx + 2x? + 223 +Lx”+1+fxt"s(t)dt
0 2 3 ......... n + 1 0 .

It is enough to show that

fxt”e(t) dt = o(x™*1) .
0

Let x > 0. Since ltirrol e(t) = 0, then the function ¢ is bounded in ]0, x] and Vt €
10, x]: e(t) < |e(t)] < sup |e(t)]. So

o<t=x
X X
j the(t) dt| < f t"|e(t)| dt
0 0
X x xn+1
Sf t™ sup |e(t)|dt = sup |e(t)| | t™dt = sup |e(t)]| :
o 0<tsx 0<tsx 0 0<tsx n+1
So
[ tre@®at| 1
< t
xmH “n+1 oiligxlg( )

Since lime(t) = 0, then lim sup |e(t)| = 0 and from it
t-0 x-0 o<t<x

|Jy tre de| o [Feede
}}&T = 0, and from him }CI_I;% T =0

So
X
f t"e(t) dt = o(x™*1).
0

Corollary 3.1

If F is a primitive function of f over [—a; a] then

— ﬂ 2 % 3 n n+1 n+1 : ; —
F(x)=F(0)+ ayx + > X + 3 X +n+1x + x™*1g; (x) with mel(x)_o.

Theorem 3.10 (Derivation of limited development.)

15



Let f: [—a; a] — R adifferentiable function admitting a limited development of order
n in the neighborhood of 0 If its derivative f’ admits a limited development of order n —
1 in the neighborhood of 0, then the regular part of the limited development of f' is the
derivative of the regular part of the limited development of f.

Proof

The proof is based on the theorem 3.9 and the mean value theorem.

3.2.3 Limited Development of order n in a neighborhood of x

Definition 3.4

Let f be a function defined in a neighborhood of x, - with the possible exception of x,-
we say that f admits a limited Development of order n in a neighborhood of x, if and
only if the function F:h — F(h) = f(h + x,) admits a limited Development of order n
in a neighborhood of 0.And if

F(h) = ay+ah+ azh? ... ... «aph™ + he; (h) with ’llirr(l) g (h) = 0.

Then forall x € v — {xo}:
f(x) = ag+a;(x —xp) + a,(x —x0)? ... ... + an(x — xo)™ + (x — x0)™e(x, x) with

lim &(x,x,) = 0.
X—Xq

3.2.4 Limited Development of order n in a neighborhood of oo
Definition 3.5

Let f be a function defined in a neighborhood of +co (—oo, respectively ). We say that f
admits a limited Development of order n in a neighborhood of +c (—oo, respectively ) if

and only if the function F:h — F(h) = f(%) admits a limited Development of order n in

a neighborhood of 0.And if

F(h) = ag +a h+ ayh? ... .. .. «a,h™ + h™¢, (h) with lim eth)y=0 (lim e(h) = 0, respec)
x-0 x-0
Then
1 1 1 1 o , ~
f(x) = ag+ a + (g sz v + n + x—ns(x) with xl—IHIOO cx)=0 (xl_l)r_l‘loo e(x) =0, resp),

where e(x) = g (1)

x
Remark 3.2

[f the function F admits a limited Development of order n in a neighborhood of 0, then
the two limited Developments of f in the neighborhood of +c0 and in the neighborhood
of —oo are identical. In this case, we say that f admits a limited Development of order n
in a neighborhood of infinity.
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3.3 Applications of limited development

Let x, be a real number or —oo or +oo, and f, g are non-zero functions that accepts limited
developments in the neighborhood of x,. We denote by (a;);cy and (bj)],EN for the

coefficients of their regular parts respectively.
3.3.1 Calculation of limits

When calculating the limit lim % and if we obtain one of the indeterminate form % or
X—Xo

%, to remove the indeterminacy we develop the functions f and g in the neighborhood

of x,, to the smallest orders m and n, respectively, where b,, # 0 and a,, # 0.
Example 3.5

Calculate the limit

In(1+x) + %sinzx —tanx

lim
x—0 (1 — cosx) sinh? x
We have
1 1 1 1 1 1 .\° 1
In(1 + x) +§sin2x —tanx = (x —Exz +§x3 _ZX4) +§(x —€x3) - (x +§x3).
= —ix4 +o(x*) = —ix4 + x*e;(x) with lim &, (x) = 0
12 12 1 x-0 1 '
12 13 : 1,1, 1, 4
sinh x(l—cosx)=<x+gx ) 1—(1—§x +ﬁx ) =5 +o(x*)
1, Y4 4 : -
=% +o(x )=§x + x*e,(x) with Jlcl_r)r(l)(sz(x) = 0.
So
In(1 + x) + =sinx — tan x 2yt + x*e(x) —i+£1(x) 5
lim 2 = lim —2 =lim=—"2%——=-2,
x>0 (1 —cosx)sinh?x x>0 %x‘* +xte,(x)  x00 %+€2(x) 6
Example 3.6

Calculate the limit

x%—x

hm x+1
x->0 arcsinx —tanx

sin +1In(1 + x)

We have

2 2
x?—x x? —x

== —x + 2x% + 0(x?), so sin = —x + 2x% + o(x?
x+1 (%) x+1 ()
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and

2

X° —Xx 1
sin +In(14+x) =—x4+2x>4+x —=x% ==x% 4+ x?¢;(x) with lime& (x) =0,
——+In(1+x) == () with lim e, ()
. 13 13 13 3 . .
arcsinx —tanx = x +-x°> — <x +-x ) == ——x> + x°¢,(x) with lim&,(x) = 0.
3 6 6 x-0
So
. x2—x 1 2 2 1
51n—1+ln(1 +x) SX5+x g (x) 1 E+£1(x)
lim —2+1 = lim 2, = lim=| 2————|.
x->0 arcsinx —tanx x—>0_gx3 + x3¢&,(x) x_)gc _g+£2(x)
. X%—x . X%—x
sin +In(1 + x) sin +1In(1 + x)
a1 = +oo0; lim —X = —oo.
xSo arcsinx —tanx x50 Aarcsinx —tanx

3.3.2 Study the relative position of the graph and the tangent line

To determine the relative position of the graph of a function f and its tangent line at the
point x,, we develop the function f in the neighborhood of x, to the smallest order n
such thata, # 0and n > 2.

Exercise 3.1

1

Let the function f be define by f(x) = vx —In (cos Gx — E))‘ and we denote by (Cf) the

graph representing the function f.

1) Find a limited Development of order 3 in a neighborhood of 1 for the functions f.

2) Deduce the equation of the tangent (T') to the curve (Cf) at the abscissa point x = 1.
3) Determine the relative positions of (Cf) and (T). What do you conclude?.

Solution

DFMh)=f(h+x)=f(h+1)=vV1I+h-— ln(cos%).

We have
h h h
In (cos E) =1In (1 + cos — 1) = UoV(h) where U(h) =In(1 + h)and V(h) = cos 7 — 1.

Since ln(1+x)=h—%h2+§h3+o(h3) and cosg—lz—%h2+0(h3),weget
h 1 1/ 1. N\ 17 1 3\° 1

) —(_Zp2\_Z(_Zp2 “(_Zp2) — _Zp2 3

ln(cosz> UoV(h) ( 8h) 2( 8h) +3( 8h) 8h +o(h3)

And we havev1l+h=1 +%h—§h2 +ih3 + o(h?).

18



So

o1, 1, 1.5 (15 . 1, 14 ;
V1+h—ln<COSE>—1+Eh gh +1—6h < §h>—1+§h+1—6h +O(h)

Substituting h = x — 1 we get:
() =142 (=D += (= D 4 0((x = 1?) =37 =5 + = (x = D + (x = D e(x)
flx)= 2x 16x o((x —2x216x X e(x).

2) We have f(1) = —% = aq so f is differentiable at x, = 1, and therefore (Cf) accepts tangent

line wich we denote by (T). And the equation of (T) isy = %x - %
3) We have () - (3x - 1) = (x - 1)? (1—16 + s(x)).
If x is sufficiently close to 1, the sign of the difference f(x) — Gx — %) is the same sign of
(x — 1)3, hence the following result:
For x < 1, (Cf) is located under the tangent.
For x > 1, (Cf) is located above the tangent.
We conclude that (C;) accepts an inflection point A,(1,1).

3.3.3 The study of infinite branches of curves

To study the infinite branches and determine the asymptotic lines of the graph (Cf) of
function f in the neighborhood of +00 ( —oo, respectively ), we develop the function f in
the neighborhood of +00 ( —oo, respectively) to the smallest order n, where a,, # 0 and
n € N*,
Exercise 3.2

x—1
Let the function g be define by g(x) = xe2x?-3x, and we denote by (Cg) the graph
representing the function g.

1) Find a limited Development of order 2 in a neighborhood of o for the functions f.

2) Deduce that the curve (Cg) accepts an asymptote (A)and write an equation for it.

Study the relative position of (Cg) and (A) in a neighborhood of oo.

Solution

1 h—h

1) WeputG(h) =g (H) = %em.

We have
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h? —h
3h—-2

1 1 1
=Eh+zh2+o(h2) and e = 1+h+zh2 + o(h?).

So
G(h) ! 1 <1t 1t2) 1(1t 1t2)2
B R VR R O

1 1 3
— _ 42 2
_h<1+2t+8t +o(h )).

Substituting h = %we get:

(x) = +1+31+ (1)— +1+3+1() ith lime(x) =0
gx)=x >t 8x ox—x >t ax xsxw1 xl_r)I;IOSX—.

2) Since lim (i + lE(x)) = 0, then
x—oo \8x X
a) The line with the equation: y = x + % is asymptotic to the curve (Cg) in the
neighborhood of oo.

If x is sufficiently close to 1, the sign of the difference f(x) — (%x — %) is the same sign of

(x — 1)3, hence the following result:

b) We also have: g(x) — (x + %) = %(g + e(x)), for |x| Big enough, the sign of the

difference g(x) — (x + %) is the same sign of%%. Hence the following result:
In a neighborhood of —oo, (¢;) is located under the asymptotic.
In a neighborhood of +o, (¢;) is located above the asymptotic.

3.4 generalized limited development

Let f be a function defined in the neighborhood of a point 0, - with the possible
exception of 0. We suppose that f does not admit a limited development to the
neighborhood of 0 but the function x —» x%*f(x) (a € R} admits a limited development
of order n in the neighborhood of 0. We can then write in the neighborhood of 0 and for
x # 0:

xf(x) =ay+a;x + a,x?......... + a,x™ + x™e(x) with lin(l) g(x)=0.
x—
From where, the generalized limited development of f in the neighborhood of 0 is:

1
fx) = por (ao +a;x + ayx?...... + a,x™ + x"e(x)) with ling g(x) =0.
X—
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3.5 Usual limited developments in 0

Limited Development of usual Functions in 0.

1 1 1
e¥=14+x+=x2+=x3+ ........ +—x™ + o(x")
2 6 n!
1 1 (=Dn
. _t.3, T s 2n+1 2n+2
sinx = x 6x +120x ......... +(2n+1)!x +o(x )
1 "
cosx =1 —Exz +ﬁx4 ......... + ((Zn%! x2" + o(x2nt1)
sinhx = x + —x3 +ix5 +—1 x4 o(x2mF2)
c 5% Gt D
coshx =1 +1x2 +ix4 4ot X2+ o(x2"*1)
> TR )
ala—1 a(a—1)..... a—n+1
(1+x)“=1+ax+%x2+ ...... + ( ) n'( )x”+o(x”) (a €RY)
. ! !
m=1+x+x2+x3+ ......... + x™ + o(x™)
1
=1—-x+x2—x34+ ... + (=1)"x™ + o(x™)
1+x
1
In(1 —x) =—x—§x2—§x3 ......... ——x" 4+ o(x™)
1 1 —1)n1
In(1+x)=x—=x2+=-x3+ ... +an+o(xn)
2 3 n
1 (-
t = x——x3 4 =x5 ST 2L g g(y2nH2
arctanx = x — 2x° + ¢ x : 1" o(x )
1x3 1x3x%> 1x3x5x7 1x3x(2n—-1) x?n*t
arcsinx = x +-—+ ( ) + o(x?"*2)

—+ = 4+
23 '2x45 2x4x67 2x4x(2n) (2n+1)

1 1 1
t h — A3 —x5 ... 2n+1 2n+2
argtanh x x+3x +5x 2n+1x + o(x )
1x3 1x3x> 1x3x5x7 1x3x(2n—-1) x**t
inhx =x — ==+ .. +(=D" + o(x?m+?
S = X S T 045 2x4%X67 (1) 2 xax () anip oV )
1 2 17 62 1382
t — +— 3_|__ 5_|_ 7_|_ 9_|_ 11+ 12
ANX = X a7 7o+ e x o F eeen Ho(x)
1 2 17 62 1382
t h — — 3 +_ 5 _— 7 + 9 — 11 + 12
anhix = x — 2% + 75X — X oeaex” — e + o)
1 1 1 5 7 21 33 429
Vitx=1+-x—-x?+—x3 ——xt+-——x° 6 7 x® + 0(x?®)

2% 78 16 128" t256% " 1024° T2048° 32768
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