Exercise series No 2

Note: questions marked * left to the students

Exercise 1

1) Show that the function $y=x+1-\frac{1}{3} e^{x}$, is a solution to the first-order initial value problem $\frac{d y}{d x}=y-x ; y(0)=\frac{2}{3}$, on \mathbb{R}.
2)* Show that every member of the family of functions $y=\frac{C}{x}+2$, is a solution of the first-order differential equation $\frac{d y}{d x}=\frac{1}{x}(2-y)$ on the interval $] 0,+\infty[$, where C is any constant.
2) give a differential equation whose solutions are of the form:

$$
y=\frac{c+x}{x^{2}+1} ; c \in \mathbb{R} .
$$

Exercise 2

Solve the following separable differential equations:
a) $y^{\prime}+4 y=0 ; y(0)=2$.
b) $2 x+y y^{\prime}=0 ; y(1)=1$.
c) $x y^{\prime}+(1+x) y=0 ; y(1)=1$.
d)* $\left(1+x^{2}\right) y^{\prime}-x y=0 ; y(0)=1$.
e) $\left(4-x^{2}\right) y y^{\prime}=2\left(1+y^{2}\right)$.
f) ${ }^{*}(1+y) y^{\prime}=4 x^{3} ; \quad ; y(0)=0$.

Exercise 3

Solve the following linear differential equations:
a) $x y^{\prime}+y=x ; y(2)=0$.
b) ${ }^{\prime} y^{\prime}+y=x e^{x} ; y(0)=1$.
c) $y^{\prime}-2 y=-\frac{2}{1+e^{-2 x}} ; y(0)=2$.
d) $\left.{ }^{\prime} y^{\prime}+\tan x y=\sin 2 x ; y(0)=1 ; x \in\right]-\frac{\pi}{2}, \frac{\pi}{2}[$.
e) ${ }^{*}(1+x) y^{\prime}+x y=x^{2}-x+1 ; y(1)=1$.

Exercise 4

Solve the following Bernoulli's differential equation:
a) $x y^{\prime}+3 y=x^{2} y^{2}$;
b) $y^{\prime}+y \cot x+y^{2}=0$.
c) $y^{\prime}+2 x y=-x y^{4}$.

