Chapter 2

2. First order ordinary differential equations 2
2.1 Generalities 2
2.2 Separable Equations 3
2.3 Homogeneous Equations 4
2.4 First-Order Linear differential Equations 5
2.5 Bernoulli Equations 7

First order ordinary differential equations

2.1 Generalities

Definition 2.1

We call a first-order differential equation, each equation of the form

$$
\begin{equation*}
F\left(x, y, y^{\prime}\right)=0 \ldots \ldots \ldots \tag{*}
\end{equation*}
$$

where $y: I \rightarrow \mathbb{R}$ is a function of the variable x defined in the interval I and y^{\prime} is the first derivative of the function y and $F:(x, y, z) \rightarrow F(x, y, z)$ is a function of the variables x, y, z.

Definition 2.2

We call the solution of the differential equation (*), in the interval I, each function ϕ is differentiable in the interval I and satisfies the following.

$$
F\left(x, \phi(x), \phi^{\prime}(x)\right)=0 .
$$

Definition 2.3

The general solution of the differential equation in the interval I it represents the set of all solutions, i.e., the set of all functions which satisfy the equation in the interval I.
Example 2.1
$y^{\prime}-\frac{2}{x} y-\frac{1}{2} x \sqrt{x}=0$.
(1) is a first-order differential equation.

The function $\phi:] 0,+\infty\left[\rightarrow \mathbb{R}\right.$ where $\phi(x)=x^{2} \sqrt{x}$ is a solution to equation (1) because ϕ is differentiable over the interval $] 0,+\infty$ [and achieves $\phi^{\prime}(x)-\frac{2}{x} \phi(x)-\frac{1}{2} x \sqrt{x}=0$. Indeed

$$
\phi(x)=x^{2} \sqrt{x} ; \quad \phi^{\prime}(x)=\frac{5}{2} x \sqrt{x} .
$$

So

$$
\phi^{\prime(x)}-\frac{2}{x} \phi(x)-\frac{1}{2} x \sqrt{x}=\frac{5}{2} x \sqrt{x}-\frac{2}{x} x^{2} \sqrt{x}-\frac{1}{2} x \sqrt{x}=\frac{5}{2} x \sqrt{x}-\frac{2}{x} x \sqrt{x}-\frac{1}{2} x \sqrt{x}=0 .
$$

There are different types of first-order differential equations, but we will only mention four of them.

2.2 Separable Equations.

Definition 2.4

The first order ODE $y^{\prime}=f(x, y)$ is said to be separable if $f(x, y)$ can be expressed as a product of a function of x times a function of y. That is, the equation is separable if the function f has the form: $f(x, y)=g(x) h(y)$, where g and h are continuous functions on some interval I.
The solution method is based on writing the equation in the form

$$
\frac{1}{h(y)} d y=g(x) d x
$$

Of course, in dividing the equation by $h(y)$ we have to assume that $h(y) \neq 0$.

Example 2.2

The differential equation $y^{\prime}=-\frac{x}{y}$ is separable since

$$
f(x, y)=-\frac{x}{y}=(-x)\left(\frac{1}{y}\right)
$$

Writing the equation in the form

$$
y d y=x d x
$$

and integrating

$$
\int y d y=\int x d x
$$

we get

$$
x^{2}+y^{2}=C
$$

Example 2.3

Show that the differential equation

$$
y^{\prime}=\frac{y x-y}{y+1}
$$

is separable. Then

1. Find the general solution and any singular solutions.
2. Find a solution which satisfies the initial condition $y(2)=1$.

We have $f(x, y)=(x-1) \frac{y}{y+1}$.
For $y \neq 0$, writing the equation in the form:

$$
\left(\frac{1}{y}+1\right) d y=(x-1) d x
$$

Integrating with respect to x, we get

$$
\int\left(\frac{1}{y}+1\right) d y=\int(x-1) d x
$$

and

$$
\ln |y|+y=\frac{1}{2} x^{2}-x+C
$$

Is the general solution. Again we have y defined implicitly as a function of x. Note that $y=0$ is a solution of the differential equation (verify this), but this function is not included in the general solution
To find a solution that satisfies the initial condition, set $x=2, y=1$ in the general solution:

$$
\ln |1|+1=\frac{1}{2}(2)^{2}-2+C \text { which implies } C=1 .
$$

A particular solution that satisfies the initial condition is: $\ln |y|+y=\frac{1}{2} x^{2}-x+1$.

2.3 Homogeneous Equations

Definition 2.4

An ordinary differential equation $y^{\prime}=f(x, y)$, is said to be a homogeneous differential equation if the following condition is satisfied $f(\lambda x, \lambda y)=f(x, y)$, for any $\lambda \in \mathbb{R}$.

Set $y=v x$; thus the general form of first order ODE becomes

$$
y^{\prime}=\frac{d(v x)}{d x}=v+x v^{\prime}=f(x, v x)
$$

On obtain

$$
\begin{equation*}
v^{\prime}=\frac{f(x, v x)-v}{x} . \tag{*}
\end{equation*}
$$

We can use variable separation to solve the equation (*).

Example 2.4

Find the solution of the following equation

$$
y^{\prime}=\frac{y^{2}+2 x y}{x^{2}}
$$

Set

$$
f(x, y)=\frac{y^{2}+2 x y}{x^{2}}
$$

Clearly,

$$
f(\lambda x, \lambda y)=\frac{(\lambda y)^{2}+2 \lambda x \lambda y}{(\lambda x)^{2}}=f(x, y) .
$$

Therefore, this equation is homogenous.
Now to find the solution, we set $y=v x$; and the equation can be written as follows

$$
v^{\prime}=\frac{f(x, v x)-v}{x}=\frac{\frac{v^{2} x^{2}+2 x v x}{x^{2}}-v}{x}=\frac{v^{2}+v}{x} .
$$

By inspection, $v=-1$ and $v=0$ are solutions (i.e. $y=-x$ and $y=0$).
For $v \neq-1$ and $v \neq 0$ we have

$$
\frac{d x}{x}=\frac{d v}{v^{2}+v^{\prime}}
$$

if you integrate the two sides, we get

$$
\ln |x|+c=\int \frac{1}{v^{2}+v} d v=\int \frac{1}{v}-\frac{1}{v+1} d v=\ln |v|-\ln |v+1|
$$

so

$$
\ln |x|+c=\ln \left|\frac{v}{v+1}\right|
$$

we get

$$
\frac{v}{v+1}=k x
$$

so

$$
v=\frac{k x}{1-k x}
$$

There fore,

$$
y=\frac{k x^{2}}{1-k x}
$$

So the general solution of the original differential equation, is

$$
y=\frac{k x^{2}}{1-k x} \text { or } y=-x
$$

Example 2.5

Find the solution of the following equation

$$
y^{\prime}=\frac{1}{x^{2}} y^{2}+\frac{1}{x} y+1
$$

Set

$$
f(x, y)=\frac{1}{x^{2}} y^{2}+\frac{1}{x} y+1 .
$$

Clearly,

$$
f(x, y)=\frac{1}{(\lambda x)^{2}}(\lambda y)^{2}+\frac{1}{(\lambda x)}(\lambda y)+1=f(x, y) .
$$

Now to find the solution, we set $y=v x$; and the equation can be written as follows

$$
v^{\prime}=\frac{f(x, v x)-v}{x}=\frac{\frac{1}{x^{2}}(x v)^{2}+\frac{1}{x}(x v)+1-v}{x}=\frac{v^{2}+1}{x} .
$$

So

$$
\frac{d v}{v^{2}+1}=\frac{d x}{x}
$$

if you integrate the two sides, we get

$$
\int \frac{1}{v^{2}+1} d v=\int \frac{1}{x} d x
$$

So

$$
\arctan v=\ln x+C
$$

Or

$$
v=\tan (\ln x+C)
$$

So the general solution of the original differential equation, is

$$
y=x \tan (\ln x+C)
$$

2.4 First-Order Linear differential Equations

Definition 2.5

A first-order linear differential equation is one that can be written in the form

$$
\begin{equation*}
y^{\prime}-a(x) y=b(x) \tag{1}
\end{equation*}
$$

where a and b are continuous functions of x. Equation (1) is the linear equation's standard form.

Solving Linear Equations

We solve the equation

$$
y^{\prime}+a(x) y=b(x)
$$

By multiplying both sides by a positive function $v(x)$ that transforms the left-hand side into the derivative of the product $v(x) y$. We will show how to find the function v later, but first we want to show how, once found, it provides the solution we seek.
Multiplying by $v(x)$ gives:

$$
v(x) y^{\prime}+a(x) v(x) y=v(x) b(x)\left(v(x) \text { is chosen to make } v y^{\prime}+a v y=(v y)^{\prime}\right)
$$

So

$$
\begin{gathered}
(v(x) y)^{\prime}=\frac{d}{d x}(v(x) y)=v(x) b(x) \\
v(x) y=\int v(x) b(x) d x
\end{gathered}
$$

So the solution would be

$$
\begin{equation*}
y=\frac{1}{v(x)} \int v(x) b(x) d x \tag{2}
\end{equation*}
$$

Equation (2) expresses the solution of Equation (1) in terms of the function $v(x)$ and $b(x)$. We call $v(x)$ an integrating factor for Equation (1).
To find such an v, we have:

$$
\begin{aligned}
\frac{d}{d x}(v y) & =v \frac{d y}{d x}+a v y \\
v \frac{d y}{d x}+y \frac{d v}{d x} & =v \frac{d y}{d x}+a v y \\
\frac{d v}{d x} & =a v
\end{aligned}
$$

This is a separable differential equation for v, which we solve as follows:

$$
\begin{gathered}
\int \frac{d v}{v}=\int a d x \\
\ln v=\int a d x \\
v(x)=e^{\int a(x) d x}
\end{gathered}
$$

To solve the linear differential equation $y^{\prime}+a(x) y=b(x)$, multiply both sides by the integrating factor $v(x)=e^{\int a(x) d x}$ and integrate both sides.
When you integrate the left-hand side product in this procedure, you always obtain the product $v(x) y$ of the integrating factor and solution function y this is after defining v.

Example 2.6

Solve the differential equation $\frac{d y}{d x}+3 x^{2} y=6 x^{2}$.

Solution

The given equation is linear since it has the form of Equation (1) with $a(x)=3 x^{2}$ and $b(x)=6 x^{2}$. An integrating factor is $v(x)=e^{\int a(x) d x}=e^{\int 3 x^{2} d x}=e^{x^{3}}$ Multiplying both sides of the differential equation by $e^{x^{3}}$, we get

$$
e^{x^{3}} \frac{d y}{d x}+3 x^{2} e^{x^{3}} y=6 x^{2} e^{x^{3}}
$$

or

$$
\frac{d}{d x}\left(e^{x^{3}} y\right)=6 x^{2} e^{x^{3}}
$$

Integrating both sides, we have

$$
\begin{gathered}
e^{x^{3}} y=\int 6 x^{2} e^{x^{3}} d x=2 e^{x^{3}}+C \\
y=2+C e^{-x^{3}}
\end{gathered}
$$

Example 2.7

Find the solution of the initial-value problem $x^{2} y^{\prime}+x y=1 ; x>0 ; y(1)=2$

Solution

We must first divide both sides by the coefficient of y^{\prime} to put the differential equation into standard form: $y^{\prime}+\frac{1}{x} y=\frac{1}{x^{2}} ; x>0$ \qquad (4)

The integrating factor is

$$
v(x)=e^{\int a(x) d x}=e^{\int \frac{1}{x} d x}=e^{\ln x}=x
$$

Multiplication of Equation (4) by x gives

$$
x y^{\prime}+y=\frac{1}{x} \text { or }(x y)^{\prime}=\frac{1}{x} .
$$

Then

$$
x y=\int \frac{1}{x} d x=\ln x+C
$$

and so

$$
y=\frac{\ln x+C}{x} .
$$

Since $y(1)=2$ we have

$$
2=\frac{\ln 1+C}{1}=C
$$

Therefore the solution to the initial-value problem is

$$
y=\frac{\ln x+2}{x} .
$$

2.5 Bernoulli Equations

Definition 2.6

The differential equation

$$
\begin{equation*}
y^{\prime}+a(x) y=b(x) y^{n}, \quad n \neq 0, \quad n \neq 1 \tag{5}
\end{equation*}
$$

where a and b are continuous functions on some interval I, is called a Bernoulli equation. To solve (5), multiply the equation by y^{-n} to obtain

$$
y^{-n} y^{\prime}+a(x) y^{1-n}=b(x) y^{n} .
$$

The substitution $z=y^{1-n}, z^{\prime}=(1-n) y^{-n} y^{\prime}$ transforms (5) into the following linear equation in z and x :

$$
\frac{1}{1-n} z^{\prime}+a(x) z=b(x)
$$

or

$$
z^{\prime}+(1-n) a(x) z=(1-n) b(x) .
$$

Example 2.8

Solve the Bernoulli equation $x y^{\prime}+y=y^{2} \ln x$, For $x>0$.
In this example $a(x)=\frac{1}{x}, b(x)=\frac{1}{x} \ln x$, and $n=2$. Therefore, we put $z=y^{1-n}=\frac{1}{y}$.
Then, $z^{\prime}=-\frac{1}{y^{2}} y^{\prime}$.
Inserting $z=\frac{1}{y}$ and $z^{\prime}=-\frac{1}{y} y^{\prime}$ into the differential equation, we get

$$
z^{\prime}-\frac{1}{x} z=-\frac{1}{x} \ln x
$$

Thus, the resulting equation is a linear first order differential equation.
It can be solved using the integrating factor,

$$
v(x)=e^{\int a(x) d x}=e^{-\int \frac{1}{x} d x}=\frac{1}{x}
$$

Multiplying the differential equation by the integrating factor, we have

$$
\frac{1}{x} z^{\prime}-\frac{1}{x^{2}} z=-\frac{1}{x^{2}} \ln x
$$

or

$$
\left(\frac{z}{x}\right)^{\prime}=-\frac{1}{x^{2}} \ln x
$$

Integrating, we obtain

$$
\begin{aligned}
\frac{z}{x} & =-\int \frac{1}{x^{2}} \ln x d x \quad(\text { By integrating by parts) } \\
& =\frac{1}{x} \ln x+\int \frac{d x}{x^{2}} \\
& =\frac{1}{x} \ln x+\int \frac{d x}{x^{2}} \\
& =\frac{1}{x} \ln x-\frac{1}{x}+C
\end{aligned}
$$

Multiplying by x, we have $z=\ln x-1+C x$. Since $z=\frac{1}{y}$, the general solution to the problem is

$$
y=\frac{1}{\ln x-1+C x}
$$

Example 2.9

Fined every solution of the equation $x y^{\prime}=3 y+x^{5} y^{\frac{1}{3}}$.

Solution

Rewrite the differential equation as

$$
y^{\prime}=\frac{3}{x} y+x^{4} y^{\frac{1}{3}}
$$

This is a Bernoulli equation for $n=\frac{1}{3}$. Divide the equation by $y^{\frac{1}{3}}$

$$
y^{-\frac{1}{3}} y^{\prime}=\frac{3}{x} y^{\frac{2}{3}}+x^{4}
$$

Define the new unknown function $z=y^{\frac{2}{3}}$, calculate its derivative, $z^{\prime}=\frac{2}{3} y^{-\frac{1}{3}} y^{\prime}$, and introduce them in the differential equation,

$$
\frac{3}{2} z^{\prime}=\frac{3}{x} z+x^{4} \text { or } z^{\prime}-\frac{2}{x} z=\frac{2}{3} x^{4}
$$

This is a linear equation for z. Integrate this equation using the integrating factor method. Then, the integrating factor is

$$
v(x)=e^{\int a(x) d x}=e^{-\int_{\bar{x}}^{2} d x}=\frac{1}{x^{2}}
$$

Therefore, the equation for z can be written as,

$$
\frac{1}{x^{2}} z-\frac{2}{x^{3}} z=\frac{2}{3} x^{2}
$$

or

$$
\frac{d}{d x}\left(\frac{1}{x^{2}} z\right)=\frac{2}{3} x^{2}
$$

Integrating, we obtain

$$
\frac{1}{x^{2}} z=\frac{2}{3} \int x^{2} d x=\frac{2}{9} x^{3}+C
$$

and the solution of the differential equation is

$$
z=\frac{2}{9} x^{5}+C x^{2}
$$

Once z is known we compute the original unknown $y= \pm z^{\frac{3}{2}}$, where the double sign is related to taking the square root. We finally obtain

$$
y= \pm\left(\frac{2}{9} x^{5}+C x^{2}\right)^{\frac{3}{2}}
$$

