Exercise series No 1

Note: *questions marked* * *left to the students Exercise 01*

Calculate the *lower Darboux sum* s(d, f) and the *upper Darboux sum* S(d, f) of the function f, attached to the equal-step division over the domain [a, b] in each of the following cases and then conclude that f is Riemann integrable in this domain:

a)
$$[a,b] = [1,2]; f(x) = \frac{1}{x}$$
 b)* $[a,b] = [2,5]; f(x) = lnx$
c)* $[a,b] = \left[\frac{\pi}{2},\pi\right]; f(x) = cosx.$

<u>Exercise 02</u>

Using the Riemann sum of an appropriate function, determine, in each of the following cases, the limit of the sequence $(u_n)_{n \in \mathbb{N}^*}$.

a)
$$u_n = \sum_{k=0}^n \frac{n}{(n+k)^2}$$
 b)* $u_n = \sum_{k=1}^n \frac{1}{\sqrt{n}\sqrt{n+k}}$ c)* $u_n = \prod_{k=0}^n \left(1 + \frac{k}{n}\right)^{\frac{1}{n}}$.

<u>Exercise 03</u>

Using integration by changing the variable, calculate the following integrals:

a)
$$\int \frac{1}{3\sqrt[3]{x+1}-x+1} dx$$
 b) $\int_{-1}^{\frac{1}{2}} \sqrt{x^2 + 2x + 5} dx$ c) $\int \frac{\sin x}{1+\sin x} dx$.
d)* $\int \sqrt{-x^2 + 2x + 3} dx$ e)* $\int_{0}^{\frac{\pi}{2}} \frac{\cos^3 x}{\sqrt{1+\sin x}} dx$ f)* $\int_{0}^{1} x \sqrt{\frac{x}{x+2}} dx$.

<u>Exercise 04</u>

Using integration by parts, calculate the following integrals:

a)
$$\int x^2 ln \frac{x-1}{x} dx$$
 b)* $\int_0^1 x Arc \tan x \, dx$ c)* $\int x^2 e^{2x} \, dx$
d) $\int_0^{\frac{\pi}{2}} \cos 2x \sin x \, dx$.

<u>Exercise 05</u>

Calculate the following integrals:

a)
$$\int \frac{x^5 + 3x^4 + 3x}{(x^2 + 1)(x + 2)^2} dx$$
 b) $\int_1^3 \sqrt{x} ln \frac{x + 1}{x} dx$ c) $\int_0^{\frac{\pi}{2}} \frac{\sin 2x}{1 + \cos x + \sin x} dx$

d)*
$$\int_0^1 x \operatorname{Arc} \tan \frac{x+1}{x} dx$$
 e)* $\int \frac{1}{3x-5} \sqrt{\frac{x+1}{x-1}} dx$ f)* $\int \frac{15\sin x}{8-10\sin x} dx$.

<u>Exercise 06</u>

Let
$$f: \mathbb{R} \to \mathbb{R}$$
 be a function defined by: $f(x) = \begin{cases} \sqrt{x} \ln(x+1), & x > 0 \\ \sqrt{x^2 - 2x} & , & x \le 0 \end{cases}$

- a) Show that f is continuous on \mathbb{R} .
- b) Calculate the integral $\int_{-1}^{1} f(x) dx$.