Larbi Ben M'hidi-Oum El Bouaghi University
 Faculty of Exact Sciences and Natural and Life Sciences
 Departement of Mathematics and Computer Science

First year Licence Introduction to probability and descriptive statistics

Answers of the third series : Combinatorial analysis

Answer 01 : 1)Show that:

$$
C_{n}^{1}+C_{n}^{3}+\ldots=C_{n}^{0}+C_{n}^{2}+\ldots \quad \text { for any } n
$$

We have

$$
(x+y)^{n}=\sum_{i=0}^{n} C_{n}^{k} x^{n-k} y^{k}
$$

We pose $x=1$ and $y=-1$, and the previous equation reduces to :

$$
0=\sum_{i=0}^{n} C_{n}^{k}(-1)^{k}
$$

Wich can be written

$$
C_{n}^{0}+C_{n}^{2}+\ldots=C_{n}^{1}+C_{n}^{3}+\ldots
$$

2) Prove that

$$
C_{n}^{1}+2 C_{n}^{2}+\ldots+n C_{n}^{n}=n 2^{n-1}
$$

This time we begin with the expansion of $(1+x)^{n}$:

$$
(1+x)^{n}=\sum_{i=0}^{n} C_{n}^{k} 1^{n-k} x^{k}
$$

Differentiating both sides of the previous equation with respect to x gives

$$
n(1+x)^{n-1}=\sum_{i=1}^{n} C_{n}^{k} k x^{k-1}
$$

Now, let $x=1$, we find :

$$
n 2^{n-1}=\sum_{i=1}^{n} C_{n}^{k} k x^{k-1}=C_{n}^{1}+2 C_{n}^{2}+\ldots+n C_{n}^{n}
$$

Answer 03 : Roll 3 different dice simultaneously and by using the results obtained we construct a 3 -digit number.

1. $6 \times 6 \times 6=6^{3}$
2. The number of numbers are less than 500 and greater than 200 is: 3×6^{2}.
3. 3×6^{2}.
4. $6 \times 5 \times 4=P_{6}^{3}$

Answer 04 : Passwords have 3 different letters followed by 2 different symbols of the following set $\{@, \%, \$, \star\}$ then 2 numbers.
a) $26 \times 25 \times 24 \times 4 \times 3 \times 10 \times 10=P_{26}^{3} \times P_{4}^{2} \times 10^{2}$.
b) $6 \times 25 \times 24 \times 4 \times 3 \times 10 \times 5=6 \times P_{25}^{2} \times P_{4}^{2} \times 10 \times 5$.

Answer 05 : 1)a) For the word "Maths"? the number of arrangement is : 5!
b) For the word "proposition" we have $\{p, p, r, o, o, o, s, i, i, t, n\}$ so the number of arrangement is : $\frac{11!}{2!\times 3!\times 2 \text { ! }}$.
c) For the word "theorem" we have : $\frac{7!}{2!}$.
d) For the word "arrangement" we have : $\frac{11!}{2!\times 2!\times 2!\times 2!}$.

Answer 06 : Twenty books are to be arranged on a shelf; eleven on travel, five on cooking, and four on gardening.

1. 20 !.
2. We have three groups so 3 !. For the books on travel we have 11!, for the books on cooking we have 5 ! and for the books on gardening we have 4!. So the number of arrangements is : $3!\times 11!\times 5!\times 4$!.
3. 11 ! $\times(5+4+1)$! or 11 ! $\times(20-11+1)$!.

Answer 07 :

1) There are C_{70}^{12} choices for the first group. Having chosen 12 for the first group, there are C_{58}^{12} choices for the second group and so on. The total is :

$$
C_{70}^{12} \times C_{58}^{12} \times C_{46}^{12} \times C_{34}^{12} \times C_{22}^{12} \times C_{10}^{10}=\frac{70!}{(12!)^{5} \times 10!}
$$

answer of the fourth series : Probability space

Answer 01 : Express each of the following events by using the events A, B and C :

1. Exactly A occurs : $A \cap \bar{B} \cap \bar{C}$.
2. A and B occur : $A \cap B \cap \bar{C}$.
3. All three events occur : $A \cap B \cap C$.
4. Exactly one of the three events occurs : $(A \cap \bar{B} \cap \bar{C}) \cup(\bar{A} \cap B \cap \bar{C}) \cup(\bar{A} \cap \bar{B} \cap C)$.
5. Exactly two of the three events occurs : $(A \cap B \cap \bar{C}) \cup(A \cap \bar{B} \cap C) \cup(\bar{A} \cap B \cap C)$..
6. None of the three events occurs : $(\bar{A} \cap \bar{B} \cap \bar{C})$.
7. At least one of the events occurs : $A \cup B \cup C$.
8. At most one of the events occurs : $4 \cup 6$.

Answer 03 :

1. let (Ω, \mathcal{F}, P) be a probability space.
i) We want to prove that $\mathcal{G}=\{A \in \mathcal{F}, \quad P(A)=0$ ou $P(A)=1\}$ is a tribe on Ω.

Cond.1. \mathcal{G} is no vide because $\Omega \in \mathcal{F}$ and $P(\Omega)=1$, so $\Omega \in \mathcal{G}$.
Cond.2. Let $A \in \mathcal{G}$ be an event and we show that $\bar{A} \in \mathcal{G}$.
We have

$$
\begin{aligned}
A \in \mathcal{G} & \Longrightarrow A \in \mathcal{F} \text { and } P(A)=0 \text { or } P(A)=1 \\
& \Longrightarrow \bar{A} \in \mathcal{F} \text { and } P(\bar{A})=1-P(A)=1-0=1 \quad \text { or } \quad P(\bar{A})=0 \\
& \Longrightarrow \bar{A} \in \mathcal{F} \text { and } P(\bar{A})=0 \text { or } P(\bar{A})=1 \\
& \Longrightarrow \bar{A} \in \mathcal{G} .
\end{aligned}
$$

Cond.3. Let $\left(A_{i}\right)_{i \geq 0}$ be a sequence of events of \mathcal{G}. We want to prove that $\cup_{i} A_{i} \in \mathcal{G}$.

$$
\begin{aligned}
\text { For all } i \geq 0, A_{i} \in \mathcal{G} & \Longrightarrow \forall i \geq 0, A_{i} \in \mathcal{F} \text { and } P\left(A_{i}\right)=0 \text { or } P\left(A_{i}\right)=1 \\
& \Longrightarrow \cup_{i} A_{i} \in \mathcal{F} \ldots \ldots \ldots . .(1) \text { becaus } \mathcal{F} \text { is a tribe }
\end{aligned}
$$

If $P\left(A_{i}\right)=0$, for all $i \geq 0$, so $P\left(\cup_{i} A_{i}\right)=0$. \qquad
If at least $A_{i}, i \geq 0$, such that $P\left(A_{i}\right)=1$, we find $P\left(\cup_{i} A_{i}\right)=1$.
So from (1), (2), and (3) we deduce that $\cup_{i} A_{i} \in \mathcal{G}$.
ii) Let $A \in \mathcal{F}$ be an event. We want to show that

$$
\mathcal{F}_{A}=\{A \cap B, \quad B \in \mathcal{F}\}
$$

is a tribe on Ω.

Cond.1. We have $A \in \mathcal{F}_{A}$ because $A \cap \Omega=A$ and $\Omega \in \mathcal{F}$. Or,
we have $\emptyset \in \mathcal{F}_{A}$ because $A \cap \emptyset$ and $\emptyset \in \mathcal{F}$.
Cond.2. Let $C \in \mathcal{F}_{A}$ be an avent and we want to prove that $\bar{C} \in \mathcal{F}_{A}$.
First, note that \bar{C} is the complement of C with respect to A, so we can write

$$
\bar{C}=A \backslash C=A \cap \bar{C}
$$

So we have

$$
\begin{aligned}
C \in \mathcal{F}_{A} & \Longrightarrow \exists B \in \mathcal{F}, C=A \cap B \\
& \Longrightarrow \exists B \in \mathcal{F}, \quad \bar{C}=A \cap(\overline{A \cap B}) \\
& \Longrightarrow \exists B \in \mathcal{F}, \quad \bar{C}=A \cap(\bar{A} \cup \bar{B}) \\
& \Longrightarrow \exists B \in \mathcal{F}, \quad \bar{C}=(A \cap \bar{A}) \cup(A \cap \bar{B}) \\
& \Longrightarrow \exists B \in \mathcal{F}, \quad \bar{C}=A \cap \bar{B} \text { et } \bar{B} \in \mathcal{F} \\
& \Longrightarrow \bar{C}=A \cap \bar{B} \in \mathcal{F}_{A}
\end{aligned}
$$

Cond.3. Let $\left(A_{i}\right)_{i \geq 0}$ be a sequence of events of \mathcal{F}_{A}.
We want to prove that $\cup_{i} A_{i} \in \mathcal{F}_{A}$. We have :

$$
\begin{aligned}
\text { For all } i \geq 0, A_{i} \in \mathcal{F}_{A} & \Longrightarrow \forall i \geq 0, \exists B_{i} \in \mathcal{F}, A_{i}=A \cap B_{i} \\
& \Longrightarrow \cup_{i} A_{i}=\cup_{i}\left(A \cap B_{i}\right) \\
& \Longrightarrow \cup_{i} A_{i}=A \cap\left(\cup_{i} B_{i}\right) \\
& \Longrightarrow \cup_{i} A_{i} \in \mathcal{F}_{A}, \text { because } \cup_{i} B_{i} \in \mathcal{F}
\end{aligned}
$$

2. \star Let $\left(\Omega, \mathcal{F}_{i}\right), i \in I$, be a probable space. Prove that $\mathcal{F}=\cap_{i \in I} \mathcal{F}_{i}$ is a tribe on Ω.

Answer 04 : Let (Ω, \mathcal{F}, P) be a probability space.

1) Let B be an event. Show that P_{B} is a probability on Ω such as:

$$
P_{B}(A)=\frac{P(A \cap B)}{P(B)}=P(A \mid B) .
$$

Cond.1. $0 \leq P_{B}(A) \leq 1$, because
$A \cap B \subseteq B \Rightarrow 0 \leq P(A \cap B) \leq P(B) \Rightarrow 0 \leq \frac{P(A \cap B)}{P(B)} \leq 1$.
Cond.2. $\quad P_{B}(\Omega)=1$, because $P_{B}(\Omega)=\frac{P(\Omega \cap B)}{P(B)}=\frac{P(B)}{P(B)}=1$
Cond.3. Let $\left(A_{i}\right)_{i \geq 0}$ be a sequence of events of \mathcal{F}, such as these events are disjoints two by two.
We want to prove that $P_{B}\left(\cup_{i} A_{i}\right)=\sum_{i} P_{B}\left(A_{i}\right)$. We have :

$$
\begin{aligned}
P_{B}\left(\cup_{i} A_{i}\right) & =\frac{P\left(\left(\cup_{i} A_{i}\right) \cap B\right)}{P(B)} \\
& =\frac{P\left(\cup_{i}\left(A_{i} \cap B\right)\right)}{P(B)}
\end{aligned}
$$

Note that the events $A_{i}, i=1, \ldots, n$, are disjoints two by two, then the events $A_{i} \cap B$ are also disjoints two by two. So :

$$
\begin{aligned}
P_{B}\left(\cup_{i} A_{i}\right) & =\sum_{i} \frac{P\left(A_{i} \cap B\right)}{P(B)} \\
& =\sum_{i} P_{B}\left(A_{i}\right)
\end{aligned}
$$

2) \star Let a be a reel and $\Omega=\mathbb{R}$. Show that P_{a} is a probability on Ω such as :

$$
P_{a}(A)=\delta_{a}(A)=\left\{\begin{array}{lll}
1 & \text { if } & a \in A \\
0 & \text { if } & \text { non }
\end{array}\right.
$$

Cond.1. $0 \leq P_{a}(A) \leq 1$.
Cond.2. $\quad P_{a}(\Omega)=1$, because $a \in \mathbb{R}=\Omega$.
Cond.3. Let $\left(A_{i}\right)_{i \geq 0}$ be a sequence of events of \mathcal{F} two by two disjoints.
We want to prove that $P_{a}\left(\cup_{i} A_{i}\right)=\sum_{i} P_{a}\left(A_{i}\right)$. We have :

$$
P_{a}\left(\cup_{i} A_{i}\right)=\left\{\begin{array}{lll}
1 & \text { si } & a \in \cup_{i} A_{i} \\
0 & \text { si } & \text { non }
\end{array}\right.
$$

Case 1: $P_{a}\left(\cup_{i} A_{i}\right)=1$, so :

$$
\begin{aligned}
a \in \cup_{i} A_{i} \Leftrightarrow & \exists!i, a \in A_{i}, \text { and for all } j \neq i, a \notin A_{j} \\
& \text { because } A_{i} \cap A_{j}=\emptyset, \forall i \neq j \\
\Leftrightarrow & \exists!i, P_{a}\left(A_{i}\right)=1, \text { et } \forall j \neq i, P_{a}\left(A_{j}\right)=0
\end{aligned}
$$

so

$$
\begin{aligned}
\sum_{i} P_{a}\left(A_{i}\right) & =P_{a}\left(A_{0}\right)+\ldots+P_{a}\left(A_{i-1}\right)+P_{a}\left(A_{i}\right)+P_{a}\left(A_{i+1)}+\ldots\right. \\
& =0+\ldots+0+1+0+\ldots=1
\end{aligned}
$$

Case 2: $P_{a}\left(\cup_{i} A_{i}\right)=0$, so :

$$
\begin{aligned}
a \notin \cup_{i} A_{i} & \Leftrightarrow \forall i \geq 0, a \notin A_{i} \\
& \Leftrightarrow \forall i \geq 0, P_{a}\left(A_{i}\right)=0
\end{aligned}
$$

so

$$
\begin{aligned}
\sum_{i} P_{a}\left(A_{i}\right) & =P_{a}\left(A_{0}\right)+P_{a}\left(A_{1}\right)+P_{a}\left(A_{2}\right)+\ldots \\
& =0+0+0+\ldots=0
\end{aligned}
$$

Answer 05 : Let (Ω, \mathcal{F}, P) be a probability space and $A_{1}, \ldots, A_{n} n$ events of \mathcal{F}. Prove that:

1) By using " la démonstration par récurrence ", we prove the following proposition $P(n)$:

$$
P(n): P\left(\cup_{i=1}^{n} A_{i}\right) \leq \sum_{i=1}^{n} P\left(A_{i}\right)
$$

Step 1: We want to prove the proposition for $n=2$ (i.e, we show that $P(n=2)$ is true).
So, we have :

$$
P\left(A_{1} \cup A_{2}\right)=P\left(A_{1}\right)+P\left(A_{2}\right)-P\left(A_{1} \cap A_{2}\right) \leq P\left(A_{1}\right)+P\left(A_{2}\right)=\sum_{i=1}^{2} P\left(A_{i}\right)
$$

Step 2: We assume that $P(n)$ is true, and we prove that the $P(n+1)$ is true.

$$
P\left(\cup_{i=1}^{n+1} A_{i}\right)=P\left(\left(\cup_{i=1}^{n} A_{i}\right) \cup A_{n+1}\right)
$$

We pose $B=\cup_{i=1}^{n} A_{i}$, so :

$$
\begin{aligned}
P\left(B \cup A_{n+1}\right) & =P(B)+P\left(A_{n+1}\right)-P\left(B \cap A_{n+1}\right) \\
& \leq P(B)+P\left(A_{n+1}\right)=P\left(\cup_{i=1}^{n} A_{i}\right)+P\left(A_{n+1}\right) \quad \text { by using the } P(n) \\
& \leq \sum_{i=1}^{n} P\left(A_{i}\right)+P\left(A_{n+1}\right) \\
& =\sum_{i=1}^{n+1} P\left(A_{i}\right) .
\end{aligned}
$$

2) We have :

$$
P\left(\cap_{i=1}^{n} A_{i}\right)=P\left(\overline{\cup_{i=1}^{n} \overline{A_{i}}}\right)=1-P\left(\cup_{i=1}^{n} \overline{A_{i}}\right)
$$

From 1), we find :

$$
\begin{aligned}
& P\left(\cup_{i=1}^{n} \overline{A_{i}}\right) \leq \sum_{i=1}^{n} P\left(\overline{A_{i}}\right) \\
\Rightarrow & 1-P\left(\cup_{i=1}^{n} \overline{A_{i}}\right) \geq 1-\sum_{i=1}^{n} P\left(\overline{A_{i}}\right) \\
\Rightarrow & P\left(\cap_{i=1}^{n} A_{i}\right) \geq 1-\sum_{i=1}^{n} P\left(\overline{A_{i}}\right)
\end{aligned}
$$

Answer 06 : Let
M the event " observe a marked ball" so we have $P(M)=3 / 10$,
B the event" observe a black ball" so we have $P(B)=7 / 10$,
R the event " observe a red ball " so we have $P(R)=1-P(B)=3 / 10$, and $P(R \cap M)=2 / 10$.

1. $P(R \cup M)=P(R)+P(M)-P(R \cap M)=(1-P(N))+P(M)-P(R \cap M)=4 / 10$.
2. $P(R \cap \bar{M})=P(R \backslash M)=P(R)-P(R \cap M)=$ \qquad

3. The $1^{\text {st }}$ method :

$$
P(B \cap \bar{M})=P(\bar{R} \cap \bar{M})=P(\overline{R \cup M})=1-P(R \cup M)=
$$

\qquad
The $2^{\text {nd }}$ method :

$$
P(B \cap \bar{M})=P(B \backslash M)=P(B)-P(B \cap M)
$$

Find $P(B \cap M)$: note that $\{B, R\}$ is the partition of Ω so :
$P(M)=P(M \cap B)+P(M \cap R) \rightarrow P(B \cap M)=P(M)-P(M \cap R)=(3 / 10)-(2 / 10)=1 / 10$.

Answer 08 :

1. Let W_{n} the event " draw two white balls ", so :

$$
P\left(W_{n}\right)=\frac{\operatorname{Card}\left(W_{n}\right)}{\operatorname{card}(\Omega)}=\frac{C_{n}^{2}}{C_{n+8}^{2}}=\frac{n \times(n-1)}{(n+8) \times(n+7)}
$$

2. Let R the event "draw two red balls " and G the event "draw two green balls ", so :

$$
\begin{gathered}
P(n)=P\left(W_{n}\right)+P(R)+P(G)=\frac{n \times(n-1)}{(n+8) \times(n+7)}+\frac{\operatorname{card}(R)+\operatorname{card}(G)}{\operatorname{card}(\Omega)} \\
=\frac{n \times(n-1)}{(n+8) \times(n+7)}+\frac{C_{5}^{2}+C_{3}^{2}}{C_{n+8}^{2}}=\frac{n^{2}-n+26}{(n+8) \times(n+7)}
\end{gathered}
$$

$\lim _{n \rightarrow \infty} P(n)=1$. When $n \rightarrow \infty$, we can say that the event "both balls are the same color" is almost certain.

Answer 09 : A queue is formed randomly by n people. Two friends A and B are in this queue. So, the number of arrangements for n people is : $n!$.

1. The probability that the two friends are located one behind the other is :

$$
\frac{(n-1) \times 2!\times(n-2)!}{n!}=\frac{(n-1)!\times 2!}{n!}=\frac{2}{n}
$$

The two friends A and B form a set, and the number of arrangements the $n-2$ people is $(n-2)$! possible. Since A can be placed in line with B behind him or A behind B, so there are $(n-1) \times 2$! possible cases.

Or,

$$
\frac{2!\times(n-2+1)!}{n!}=\frac{2}{n}
$$

2. The probability that the two friends are r places apart (separated by $r-1$ people) is :

$$
\frac{(n-r) \times 2!\times(n-2)!}{n!}=\frac{2 \times(n-r)}{n \times(n-1)}
$$

The possible cases of finding person A then $r-1$ people then person B or the opposite are : $(n-r) \times 2$!.

Answer 10 :

1. Note that the probability of each face appearing is proportional to the number written on it, so :

$$
p_{1}=1 \times p, \quad p_{2}=2 p, \quad p_{3}=3 p, \quad p_{4}=4 p, \quad p_{5}=5 p, \quad p_{6}=6 p
$$

And we have : $\quad \sum_{i=1}^{6} p_{i}=1 \Rightarrow p=\frac{1}{21}$. We deduce the following table :

Face i	1	2	3	4	5	6
$p_{i}=P(i)$	$\frac{1}{21}$	$\frac{2}{21}$	$\frac{3}{21}$	$\frac{4}{21}$	$\frac{5}{21}$	$\frac{6}{21}$

2. Let A the event "obtain an even number", $A=\{2,4,6\}$, so

$$
P(A)=P(\{2\} \cup\{4\} \cup\{6\})=P(\{2\})+P(\{4\})+P(\{6\})=p_{2}+p_{4}+p_{6}=\frac{12}{21}
$$

Answer 11: There are n students in a class. Let A_{n} the event " at least 2 students have the same birthday from n students ", so :

$$
\begin{aligned}
P\left(A_{n}\right) & =1-P\left(\overline{A_{n}}\right) \\
& =1-\frac{\operatorname{card}\left(\overline{A_{n}}\right)}{\operatorname{card}(\Omega)} \\
& =1-\frac{P_{365}^{n}}{365^{n}}
\end{aligned}
$$

If $n=2: P\left(A_{n=2}\right)=1-\frac{365 \times 364}{365^{2}}=0.0027$
Question : Find n, such as $P\left(A_{n}\right)=0.5$.
Exercise 12: We have 20 problems. The student can solve 11 of them. The instructor selects 5 questions randomly.

1. Let A the event " the student can solve all five problems on the exam", so :

$$
P(A)=\frac{\operatorname{card}(A)}{\operatorname{Card}(\Omega)}=\frac{C_{11}^{5}}{C_{20}^{5}}=\ldots \ldots
$$

2. Let B the event " the student can solve exactly one problem", so :

$$
P(B)=\frac{\operatorname{card}(A)}{\operatorname{Card}(\Omega)}=\frac{C_{11}^{1} \times C_{9}^{4}}{C_{20}^{5}}=\ldots \ldots
$$

3. Let C the event " the student can solve at least two problems", so :

$$
P(C)=1-P(\bar{C})=1-\frac{\operatorname{card}(\bar{C})}{\operatorname{Card}(\Omega)}=1-\frac{C_{9}^{5}+C_{11}^{1} \times C_{9}^{4}}{C_{20}^{5}}=\ldots \ldots
$$

4. Let D the event " the student can solve at most one problem", so :

$$
P(D)=P(\bar{C})=\ldots \ldots
$$

