Homework 2

Exercise 1

Determine the equivalent capacitance of the total capacitors represented in the figure below Data:

$$C_1 = 1 \mu F$$
; $C_2 = 2 \mu F$; $C_3 = 6 \mu F$; $C_4 = 4 \mu F$; $C_5 = 12 \mu F$

Exercise 2

We have two electric charges $q_{A_3}q_B$ Equals placed at the two points B₂A They are some distance away d = 2a Data:

 $a = 3 \text{ cm}, \qquad \qquad q_A = q_B = 40 nC$

Determine the properties of forces $\vec{F}_{A/B}$ $\vec{F}_{B/A}$

We put a third charge q_c On point C On the line bisector of segment AB, determine in terms of Y the resultant of the forces applied to the charge q_c by q_A , q_B

Application y = a = 3cm

Exercise 3

We have two electric charges q_A , q_B placed at the two points B₂A Data:

$$a = AB = 3 \text{ cm}, \qquad q_A = -20nC, q_B = 10nC$$

Calculate the intensity of the electric field at point M, where $:AM = 2\sqrt{2}cm$ and BM = 1cm Then find the angle α Created by an electric field beam $\vec{E}(M)$ With beam With beam

We place a point charge in the point $Q_0 = 15nC$ Calculate the Coulomb force applied to this charge Calculate the electric potential at the point resulting from the two charges q_A and q_B

Comments

The assignment will be submitted on Sunday, April 28, in the teachers' hall from 8 to 10 p.m The work is individual

Organization and framing of the answer is mandatory