Homework 2

Exercise 1

Determine the equivalent capacitance of the total capacitors represented in the figure below Data:

$$
\mathbb{C}_{1}=\mathbb{F} \mu \mathbb{F} ; \mathbb{C}_{2}=2 \mu \mathbb{F} ; \mathbb{C}_{3}=6 \mu \mathbb{F} ; \mathbb{C}_{4}=4 \mu \mathbb{F} ; \mathbb{C}_{5}=12 \mu \mathbb{F}
$$

Exercise 2

We have two electric charges q_{A}, q_{B} Equals placed at the two points BgA They are some distance away $d=2 a$ Data:
$\mathrm{a}=3 \mathrm{~cm}$,

$$
q_{A}=q_{B}=40 n C
$$

Determine the properties of forces $\vec{F}_{A / B} \quad \vec{F}_{B / A}$
We put a third charge q_{C} On point C On the line bisector of segment $A B$, determine in terms of Y the resultant of the forces applied to the charge q_{C} by q_{A}, q_{B}
Application $y=a=3 \mathrm{~cm}$

Exercise 3

We have two electric charges q_{A}, q_{B} placed at the two points $B g A$
Data:

$$
\mathrm{a}=\mathrm{AB}=3 \mathrm{~cm}, \quad q_{A}=-20 n C, q_{B}=10 n C
$$

Calculate the intensity of the electric field at point M, where : $A M=2 \sqrt{2} \mathrm{~cm}$ and $B M=1 \mathrm{~cm}$ Then find the angle α Created by an electric field beam $\vec{E}(M)$ With beam With beam
We place a point charge in the point $Q_{0}=15 n C$ Calculate the Coulomb force applied to this charge
Calculate the electric potential at the point resulting from the two charges q_{A} and q_{B}

Comments

The assignment will be submitted on Sunday, April 28, in the teachers' hall from 8 to 10 p.m
The work is individual
Organization and framing of the answer is mandatory

