LARBI BEN M'HIDI-OUM EL BOUAGHI UNIVERSITY
FACULTY OF EXACT SCIENCES AND NATURAL AND LIFE SCIENCES DEPARTEMENT OF MATHEMATICS AND COMPUTER SCIENCE

First year licence
Second semester

Introduction to probability and descriptive statistics

Lecturer teacher:

Besma Bennour

Contents

1 Bacis concepts and statistical vocabulary 4
1.1 Statistical vocabulary : key terms 5
1.1.1 Population 5
1.1.2 Sample 5
1.1.3 Element or individuel 5
1.1.4 Caracter or variable 5
1.1.5 Types of variable 5
1.1.6 Data and values 6
1.1.7 Frequency of value 6
1.2 Basic concepts 7
1.2.1 Relative frequency of value 7
1.2.2 Cumulative frequency 7
1.2.3 Relative frequency cumulative 8
1.3 Data set and frequency table 9
1.3.1 Case of a quantative discrete data 9
1.3.2 Case of quantitative continuous data 9
2 Graphical representation of data 12
2.1 Graphing ungrouped data 12
2.1.1 Bar chart 12
2.1.2 Increasing cumulative frequency (or relative frequency) curve 12
2.2 Graphing grouped data 14
2.2.1 The frequency (or the relative frequency) histogram 14
2.2.2 Increasing cumulative frequency (or relative frequency) curve 15
3 Numerical representations of data 16
3.1 Measures of position 16
3.1.1 Mean 16
3.1.2 Mode 16
3.1.3 Median 17
3.1.4 Quartiles 18
3.2 Measures of dispersion 19
3.2.1 Rang 19
3.2.2 Variance 19
3.2.3 Standard deviation 19
3.2.4 Coefficient of variation 20
3.3 Box Plots 20

Chapter 1

Bacis concepts and statistical vocabulary

- Statistics : is a branch of mathematics dealing with collecting, organizing, summarizing, analysis and making decision from data.
- Fields : it can be found in all sciences.
- Statistical software like : Excel, SPSS, R, Matlab, Python, ...
- Types of statistics : statistics is divided into two mains areas, wich are descriptive and inferential statistics.

1. Descriptive statistics deals with methods for collecting, organizing, and describing data by using tables, graphs, and measures.
2. Inferential statistics deals with methods that use sample results, to help in estimation or make decisions about the population.

In this book, we're going to study only the first one.

In the first chapter, we're going to present some statistical vocabulary (like population and variable) and some basic concepts (frequency, relative frequency, percentage, increasing cumulative frequency, and increasing cumulative relative frequency).

1.1 Statistical vocabulary : key terms

1.1.1 Population

A population is the set of all elements under study. It can be a collection of any persons, things, or objects, for examples: persons set, books, animals, machines, computer, or departement, ...

* The population size is noted by N.

1.1.2 Sample

A sample is the subset of the population. The sample size is noted by n.

1.1.3 Element or individuel

An element (or member) of a sample or population is a specific subject or object about which the information is collected. It's noted by w.

1.1.4 Caracter or variable

A statistical variable is all application denoted X such that:

$$
\begin{aligned}
X: & \mathbf{P} \rightarrow \mathbb{R} \\
& w \rightarrow X(w)
\end{aligned}
$$

* A variable is a characteristic of interest for each person or thing in a population or a sample.

1.1.5 Types of variable

We have two types of variables: quantitative and qualitative.

1. A variable is quantitative if the data set is a set of numbers. Quantitative variable may be discrete or continuous :

- Discrete variable assumes values that can be counted. For example : number of children, number of error, number of people living in a town, number of machines in a gym, number of accidents, ...
- Continuous variable assumes all values between any two specific values, i.e. they take all values in an interval. For example : distance, age, lifetime, height, weight, ...

2. A variable is qualitative if the data set is a set of names or labels (i.e. it takes non-numerical values).
Qualitative variables can be ordinal or nominal :

- A variable is ordinal when its values can be ordered. For example : level of stadies, mention au bac, classe d'âge, stade d'une maladie, ...
- A variable is nominal when its values can not be ordered. For example : genders (male, female), nationality, profession, religious affiliation (muslim, Christian, ...), blood type (A, B, AB, O), hair color, ...

1.1.6 Data and values

* The value of a variable for an element is called an observation or a measurement. The value may be number or word.
* The set of all values is called data set.

1.1.7 Frequency of value

A frequency is the number of times a value x_{i} of the data set occurs. This number is denoted by n_{i}.

* The population size n is given by: $n=n_{1}+\ldots+n_{k}=\sum_{i=1}^{k} n_{i}$

1.2 Basic concepts

1.2.1 Relative frequency of value

A relative frequency is the ratio (fraction or proportion) of the frequency n_{i} to the total number n.

$$
f_{i}=\frac{n_{i}}{N}
$$

* The relative frequency f_{i} is always between 0 and 1 .
* We have : $f_{1}+\ldots+f_{k}=\sum_{i=1}^{k} f_{i}=1$.
* The percentage of a value x_{i} is the number $p_{i}=f_{i} \times 100$.

1.2.2 Cumulative frequency

We have two types :
Increasing Cumulative Frequency $N_{x} \uparrow$ and Decreasing Cumulative Frequency $N_{x} \downarrow$. * Case of quantitative discrete data :

1. Increasing Cumulative Frequency (ICF) of a value $x \in \mathbb{R}$ is the sum of the frequencies n_{i} of values x_{i} such as $x_{i} \leq x$. It's noted by $N_{x} \uparrow$.

$$
N_{x} \uparrow=\sum_{i: x_{i} \leq x} n_{i}, \quad x \in \mathbb{R}
$$

Case particular: if $x=x_{i}$ we obtain $N_{x=x_{i}} \uparrow$.
2. Decreasing Cumulative Frequency (DCF) of a value $x \in \mathbb{R}$ is the sum of the frequencies n_{i} of values x_{i} such as $x_{i}>x$. It's noted by $N_{x} \downarrow$.

$$
N_{x} \downarrow=\sum_{i: x_{i}>x} n_{i} \text { ou } N_{x} \downarrow=n-N_{x} \uparrow
$$

Case particular: if $x=x_{i}$ we obtain $N_{x=x_{i}} \downarrow$.

* Case of quantitative continuous data :

1. Increasing Cumulative Frequency (ICF) of a value $x \in \mathbb{R}$ is given by :

$$
N_{x} \uparrow=\sum_{i: x_{i}<x} n_{i}, \quad x \in \mathbb{R}
$$

Case particular: if $x=e_{i}$ we obtain $N_{x=e_{i}} \uparrow$.
2. Decreasing Cumulative Frequency (DCF) of a value $x \in \mathbb{R}$ is given by :

$$
N_{x} \downarrow=\sum_{i: x_{i} \geq x} n_{i} \text { ou } N_{x} \downarrow=n-N_{x} \uparrow
$$

Case particular: if $x=e_{i}$ we obtain $N_{x=e_{i}} \downarrow$.

1.2.3 Relative frequency cumulative

We have also two types : increasing cumulative relative frequency $F_{x} \uparrow$ and decreasing cumulative relative frequency $F_{x} \downarrow$.

* Case of quantitative discrete data :

1. Increasing Cumulative Relative Frequency (ICRF) of a value $x \in \mathbb{R}$ is the sum of the relative frequencies f_{i} of values x_{i} such as $x_{i} \leq x$. It's noted by $F_{x} \uparrow$.

$$
F_{x} \uparrow=\sum_{i: x_{i} \leq x} f_{i}, \quad x \in \mathbb{R}
$$

Case particular: if $x=x_{i}$ we obtain $F_{x=x_{i}} \uparrow$.
2. Decreasing Cumulative Relative Frequency (DCF) of a value $x \in \mathbb{R}$ is the sum of the relative frequencies f_{i} of values x_{i} such as $x_{i}>x$. It's noted by $F_{x} \downarrow$.

$$
F_{x} \downarrow=\sum_{i: x_{i}>x} f_{i} \text { ou } F_{x} \downarrow=1-F_{x} \uparrow
$$

Case particular: if $x=x_{i}$ we obtain $F_{x=x_{i}} \downarrow$.

* Case of quantitative continuous data :

1. Increasing Cumulative Relative Frequency (ICRF) of a value $x \in \mathbb{R}$ is given by :

$$
F_{x} \uparrow=\sum_{i: x_{i}<x} f_{i}, \quad x \in \mathbb{R}
$$

Case particular: if $x=e_{i}$ we obtain $F_{x=e_{i}} \uparrow$.
2. Decreasing Cumulative Relative Frequency (DCRF) of a value $x \in \mathbb{R}$ is given by :

$$
F_{x} \downarrow=\sum_{i: x_{i} \geq x} f_{i} \text { ou } F_{x} \downarrow=1-F_{x} \uparrow
$$

Case particular: if $x=e_{i}$ we obtain $F_{x=e_{i}} \downarrow$.

1.3 Data set and frequency table

1.3.1 Case of a quantative discrete data

Example : Twenty students were asked " how many hours they worked per day ? ". Their responses, in hours, are as follows :

$$
5,6,3,3,2,4,7,5,2,3,5,6,5,4,4,3,5,2,5,3
$$

Based on this data, we find the following frequency table:

Values x_{i}	2	3	4	5	6	7	\sum
Frequencies n_{i}	3	5	3	6	2	1	$n=20$

- The population studied is the set (group) of students.
- The population size : $n=20$.
- The variable X studied is the number of working hours per day.
- The type of X is a quantitative discrete.

We add the lines for calculating $f_{i}, p_{i}, N_{x=x_{i}} \uparrow, F_{x=x_{i}} \uparrow$ as follows :

Values x_{i}	2	3	4	5	6	7	\sum
Frequencies n_{i}	3	5	3	6	2	1	$n=20$
Relative frequencies f_{i}	0.15	0.25	0.15	0.3	0.1	0.05	1
Percentages $p_{i} \%$	15	25	15	30	10	5	100
ICF $N_{x=x_{i}} \uparrow$	3	8	11	17	19	20	$/ / /$
DCF $N_{x=x_{i}} \downarrow$	17	12	9	3	1	0	$/ / /$
ICRF $F_{x=x_{i}} \uparrow$	0.15	0.4	0.55	0.85	0.95	1	$/ / /$
DCRF $N_{x=x_{i}} \downarrow$	0.85	0.6	0.45	0.15	0.05	0	$/ / /$

1.3.2 Case of quantitative continuous data

Example : We measured the height in cm of a group of people and found the following results:

153	165	160	150	159	151	163	160	158	149
154	153	163	140	158	150	158	155	163	159
157	162	160	152	164	158	153	162	166	162
165	157	174	158	171	162	155	156	159	162
152	158	164	164	162	158	156	171	164	158

- The population studied is the set (group) of persons.
- The population size : $n=50$.
- The variable X studied is the height per person.
- The type of X is a quantitative continuous.
- According to Sturge's rule, the number of classes is:

$$
N_{\text {classes }}=1+3.3 \log (n)=6.61 \simeq 7
$$

and according to Yule's rule we have :

$$
N_{\text {classes }}=2.5 \quad \sqrt[4]{n}=6.64 \simeq 7
$$

and the amplitude class (or width) is : $a_{i}=\frac{\max -\min }{6.6}=\frac{174-140}{6.6}=5.15 \simeq 5$.
So we find the following frequency table :

$\left[e_{i-1}, e_{i}[\right.$	$[140,145[$	$[145,150[$	$[150,155[$	$[155,160[$	$[160,165[$	$[165,170[$	$[170,175$
n_{i}	1	1	9	17	16	3	3
ICF $N_{x=e_{i}} \uparrow$	1	2	11	28	44	47	50
DCF $N_{x=e_{i}} \downarrow$	49	48	37	22	6	3	0
$f_{i}=\frac{n_{i}}{n}$	0.02	0.02	0.18	0.34	0.32	0.06	0.06
ICRF $F_{x=e_{i}} \uparrow$	0.02	0.04	0.22	0.56	0.88	0.94	1
DCRF $F_{x=e_{i}} \downarrow$	0.98	0.96	0.78	0.44	0.12	0.06	0

Conclusion 1 : Key terms of statistics.

Conclusion 2: Types of variable

Chapter 2

Graphical representation of data

2.1 Graphing ungrouped data

2.1.1 Bar chart

Example 1 : Consider the following fequency table :

Values x_{i}	0	1	2	3	4	5	6	7	\sum
Frequencies n_{i}	25	55	75	50	35	5	4	1	250
Relative frequencies f_{i}	0.1	0.22	0.3	0.2	0.14	0.02	0.016	0.004	1

2.1.2 Increasing cumulative frequency (or relative frequency) curve

- Step 1: calculate $N_{x} \uparrow$ or $F_{x} \uparrow$.
- Step 2: Place the x_{i} on the x-axis and $N_{x} \uparrow$ or $F_{x} \uparrow$ on the y-axis.
- Step 3: Determine the points $\left(x_{i}, N_{x_{i}} \uparrow\right)$ or $\left(x_{i}, F_{x_{i}} \uparrow\right)$ on the plan.
- Step 4: Draw the curve as follows :

Values x_{i}	0	1	2	3	4	5	6	7	Total
$N_{x=x_{i}} \uparrow$	25	80	155	205	240	245	249	250	$/ / / / /$

$$
N_{x} \uparrow=\sum_{i: x_{i} \leq x} n_{i}= \begin{cases}0 & \text { if } x<0 \\ 25 & \text { if } 0 \leq x<1 \\ 80 & \text { if } 1 \leq x<2 \\ 155 & \text { if } 2 \leq x<3 \\ 205 & \text { if } 3 \leq x<4 \\ 240 & \text { if } 4 \leq x<5 \\ 245 & \text { if } 5 \leq x<6 \\ 249 & \text { if } 6 \leq x<7 \\ 250 & \text { if } x \geq 7\end{cases}
$$

The frequency (or relative frequency) curve

2.2 Graphing grouped data

2.2.1 The frequency (or the relative frequency) histogram

Case 01

- Step 1: Calculate the width of classes a_{i}. If the width a_{i} are equal, so
- Step 2: Draw the histogram such as the x -axis for the classes and the y -axis for the frequencies n_{i} or relative frequencies f_{i}.

Case 02

- Step 1: Calculate the width of classes a_{i}. If the width a_{i} are not equal, so,
- Step 2: Determine the unit u_{i} such as the minimum of width $a_{i} \rightarrow u_{i}=1$, and determine the density $d_{i}=\frac{n_{i}}{u_{i}}$ (or $d_{i}=\frac{f_{i}}{u_{i}}$).
- Step 3: Draw the histogram such as the x -axis for the classes and the y -axis for the densities d_{i}.

Example : Find the frequency table of this frequency histogram

The frequency histogram

2.2.2 Increasing cumulative frequency (or relative frequency) curve

- Step 1: Calculate $N_{x} \uparrow$ or $F_{x} \uparrow$.
- Step 2: Place the calasses on the x-axis and the $N_{x} \uparrow$ or $F_{x} \uparrow$ on the y-axis.
- Step 3: Determine the points ($e_{i}, N_{e_{i}} \uparrow$) or ($e_{i}, F_{e_{i}} \uparrow$) on the plan.
- Step 4: Draw the curve.

Exercise: From the following curve, find the relative frequency table.

The relative frequency curve.

Chapter 3

Numerical representations of data

3.1 Measures of position

3.1.1 Mean

The mean is given by the following formulas :

Quantitative discete data	Quantitative continuous data
$\bar{x}=\frac{1}{n} \sum_{i=1}^{n} x_{i}$	
or	
$\bar{x}=\frac{1}{n} \sum_{i=1}^{k} n_{i} x_{i}$	$\bar{x}=\frac{1}{n} \sum_{i=1}^{k} n_{i} c_{i}$
or	or
$\bar{x}=\sum_{i=1}^{k} f_{i} x_{i}$	$\bar{x}=\sum_{i=1}^{k} f_{i} c_{i}$

3.1.2 Mode

The mode, noted $M o$, is the most frequent number (value).

Quantitative discete data	Quantitative continuous data
$M o=x_{i}$ such as $n_{i}=n_{\text {max }}$ (from the line of n_{i}) or $f_{i}=f_{\max }$ (from the line of f_{i})	Case 1: the a_{i} are equals From the line of n_{i} (or f_{i}), note that the most frequent is n_{i}, so : The mode class : $\left[e_{i-1}, e_{i}[\right.$, $\begin{aligned} & m_{1}=n_{i}-n_{i-1} \\ & m_{2}=n_{i}-n_{i+1} \end{aligned}$ so, the mode is given by : $M o=e_{i-1}+\left(e_{i}-e_{i-1}\right) \frac{m_{1}}{m_{1}+m_{2}}$ Case 2: the a_{i} are not equals We change n_{i} by d_{i}.

3.1.3 Median

The median is the midille value in a data set, noted by $M e$. So the median is the solution of equation :

$$
N_{M e} \uparrow=\frac{N}{2} \text { ou } \quad F_{M e} \uparrow=0.5
$$

Quantitative discrete data	Quantitative continuous data
\bullet If N is an even number:	$\bullet M e=e_{i-1}+a_{i} \frac{N}{2}-N_{e_{i-1}} \uparrow$
$M e=\frac{\left(\frac{N}{2}\right)^{\text {th }} \text { value }+\left(\frac{N}{2}+1\right)^{\text {th }} \text { value }}{2}$	such as:
-If N is an odd number:	$N_{e_{i-1} \leq \frac{N}{2} \leq N_{e_{i}}}$
$M e=\left(\frac{N+1}{2}\right)^{\text {th }}$ value	and $e_{i-1} \leq M e \leq e_{i}$
and $a_{i}=e_{i}-e_{i-1}$	
	or:
	- $M e=e_{i-1}+a_{i} \frac{0.5-F_{e_{i-1}} \uparrow}{f_{i}}$

Example 1:

Find the median for the data set:
$312,257,421,289,526,374,497$
Solution: First, the data set after we have ranked in increasing order is:

Since there are 7 values in this data set, so the fourth term $\left(\frac{7+1}{2}=4\right)$ in the ranked data is the median. Therefore the median is

$$
\text { median }=x_{\frac{+1}{1}}=x_{\frac{+1}{2}}=x_{4}=374
$$

The relative frequency curve.

Example 2: Find the median of the following data set:

$$
8,12,7,17,14,45,10,13,17,13,9,11
$$

3.1.4 Quartiles

-The first quartile q_{1} is the solution of equation :

$$
N_{q_{1}} \uparrow=\frac{N}{4} \quad \text { or } \quad F_{q_{1}} \uparrow=0.25
$$

So:

Quantitative discrete data	Quantitative continuous data				
$q_{1}=\left(\frac{N}{4}\right)^{\text {th }}$ value	$q_{1}=e_{i-1}+\left(e_{i}-e_{i-1}\right)^{\frac{N}{4}-N_{e_{i-1}} \uparrow}$				
n_{i}		$	$	such as $: N_{e_{i-1}} \leq \frac{N}{4} \leq N_{e_{i}}$	
:---	:---				
or	and $e_{i-1} \leq q_{1} \leq e_{i}$				
$F_{i-1} \uparrow<0.25<F_{i} \uparrow$ so: $q_{1}=x_{i}$	or				
$q_{1}=e_{i-1}+a_{i} \frac{0.25-F_{e_{i-1}} \uparrow}{f_{i}}$					

-The third quartile q_{3} is the solution of equation :

$$
N_{q_{3}} \uparrow=\frac{3 N}{4} \quad \text { or } \quad F_{q_{3}} \uparrow=0.75
$$

So:

Quantitative discrete data	Quantitative continuous data
$q_{3}=\left(\frac{3 N}{4}\right)^{\text {th }}$ value	$q_{3}=e_{i-1}+\left(e_{i}-e_{i-1}\right)^{\frac{3 N}{4}-N_{e_{i-1}} \uparrow}$
n_{i}	
such as : $N_{e_{i-1}} \leq \frac{3 N}{4} \leq N_{e_{i}}$	
or	and $e_{i-1} \leq q_{3} \leq e_{i}$
$F_{i-1} \uparrow<0.75<F_{i} \uparrow$ so: $q_{3}=x_{i}$	or

Particular cases:

- If $N_{x_{i}} \uparrow=0.25$ so $q_{1}=x_{i}$.
-If $N_{x_{i}} \uparrow=0.5$ so $M e=x_{i}$.
- If $N_{x_{i}} \uparrow=0.75$ so $q_{3}=x_{i}$.

3.2 Measures of dispersion

3.2.1 Rang

The rang is given by : $E=x_{\max }-x_{\text {min }}$

3.2.2 Variance

The variance, noted by $\operatorname{var}(X)$, is given by the following formula :

Quantitative discrete data	Quantitative continuous data
$\operatorname{var}(X)=\frac{1}{N} \sum_{i=1}^{k} n_{i}\left(x_{i}-\bar{x}\right)^{2}$	$\operatorname{var}(X)=\frac{1}{N} \sum_{i=1}^{k} n_{i}\left(c_{i}-\bar{x}\right)^{2}$
$=\left(\frac{1}{N} \sum_{i=1}^{k} n_{i} x_{i}^{2}\right)-\bar{x}^{2}$	$=\left(\frac{1}{N} \sum_{i=1}^{k} n_{i} c_{i}^{2}\right)-\bar{x}^{2}$
or:	or:
$\operatorname{var}(X)=\left(\sum_{i=1}^{n} f_{i} x_{i}^{2}\right)-\bar{x}^{2}$	$\operatorname{var}(X)=\left(\sum_{i=1}^{n} f_{i} c_{i}^{2}\right)-\bar{x}^{2}$

3.2.3 Standard deviation

The standard deviation, noted σ_{X}, such as: $\sigma_{X}=\sqrt{\operatorname{var}(X)}$.

The standard deviation characterizes the dispersion of a data set. The smaller the σ_{X}, the more the data are clustered around the mean \bar{x}, and the more homogeneous the population.

3.2.4 Coefficient of variation

The coefficient of variation is:

$$
C V=\frac{\sigma_{X}}{\bar{x}}
$$

3.3 Box Plots

Box plots give a good graphical image of the concentration of the data.
Step 1 Find $x_{\text {min }}, x_{\text {max }}, M e, q_{1}$, and q_{3}.
Step 2 Draw the box Plots as following :

