

1 Multidimensional linear problem with constraints

A multidimensional linear problem, also known as a linear programming problem, involves optimizing a linear objective function subject to linear constraints. These problems are prevalent in various fields such as operations research, economics, engineering, and finance.

Here's how you can implement this in MATLAB:

1.1 Command "linprog"

To solve a multidimensional linear problem with constraints in MATLAB, you can use the built-in function linprog. This function is designed to solve linear programming problems of the form:

Minimize:
$f(x)=c^{T} x$
Subject to:
$A x \leq b$
$l b \leq x \leq u b$
Here's how you can use linprog for your problem:
\% Define the objective function coefficients
$c=[1 ; 2 ; 3] ; \%$ Coefficients of the objective function
$\%$ Define the inequality constraints: $A^{*} x<=b$
$A=[1,1,1 ; \%$ Coefficients of the first constraint
2, 3, 1]; \% Coefficients of the second constraint
$b=[10 ; 20] ; \%$ Right-hand side of the constraints
\% Define the bounds for variables: $l b<=x<=u b$
$l b=$ zeros $(3,1) ; \%$ Lower bounds for variables
$u b=[] ; \%$ Upper bounds for variables (empty for unbounded)

```
% Solve the linear programming problem
[x, fval, exitflag] = linprog(c, [], [], A, b,lb,ub);
% Display the results
if exitflag == 1
    disp('Optimal solution found:');
    disp(['x = ', num2str(x')]);
    disp(['Optimal objective value = ', num2str(fval)]);
    else
    disp('Optimal solution not found.');
    end
```

Example 1 Let consider the function $f(x)=x_{1}+2 x_{2}+3 x_{3}$ subject to the following constraints:
$x_{1}+x_{2}+x_{3} \leq 15$
$2 x_{1}+3 x_{2}+x_{3} \leq 25$
$x_{1}, x_{2}, x_{3} \geq 0$
Here's how you can solve this problem using linprog in MATLAB:
$c=[1 ; 2 ; 3]$;
$A=[1,1,1$;
2, 3, 1];
$b=[15 ; 25] ;$
$l b=z \operatorname{eros}(3,1)$;
$u b=[] ;$
$[x$, fval, exitflag] $=\operatorname{linprog}(c,[],[], A, b, l b, u b) ;$
if exitflag $==1$
disp('Optimal solution found:');
disp (['x = ', num2str($\left.\left.x^{\prime}\right)\right]$);
disp (['Optimal objective value $=$ ', num2str(fval)]);
else
disp('Optimal solution not found.');
end

2 Multidimensional non-linear problem with constraints

2.1 Command "fmincon"

To solve a multidimensional non-linear problem with constraints in MATLAB, you can use the fmincon function. fmincon is a versatile optimization function capable of handling nonlinear constraints. Here's a basic example demonstrating how to use fmincon:
$f(x)=(x 1-2) 2+(x 2-3) 2$
Subject to the following constraints:
$x_{1}+x_{2} \leq 5$

```
\(x_{1}-x_{2} \geq 2\)
\(x_{1}, x_{2} \geq 0\)
Here's how you can implement this in MATLAB using fmincon:
\% Define the objective function
fun = @ (x) (x(1)-2)^2 + (x(2)-3)^2;
\% Initial guess for \(x\)
\(x 0=[0 ; 0]\);
\% Define the nonlinear inequality constraints
nonlcon \(=@(x)\) constraints(x);
\% Solve the optimization problem
[x, fval, exitflag, output] = fmincon(fun, x0, [], [], [], [], [], [], nonlcon);
\% Display the results
if exitflag > 0
    disp('Optimal solution found:');
disp (['x = ', num2str ( \(x^{\prime}\) )]);
disp(['Optimal objective value \(=\) ', num2str(fval)]);
else
    disp('Optimal solution not found.');
end
\% Define the nonlinear inequality constraints
function \([c\), ceq] \(=\) constraints \((x)\)
    \(c=[x(1)+x(2)-5 ; \% x 1+x 2<=5\)
\(-(x(1)-x(2)-2)] ; \% x 1-x 2>=2\)
\(c e q=[] ; \%\) No equality constraints
end
Suppose we want to minimize the following function:
\(f(x)\)
Subject to the following constraints:
\(g(x)=4\)
\(h(x) \geq 1\)
\(x=\left(x_{1}, x_{2}\right)\) with \(x_{1}, x_{2} \geq 0\)
Here's how you can implement this in MATLAB using fmincon:
fun \(=@(x) f(x)\);
\(x 0=[0 ; 0]\);
nonlcon \(=@(x)\) constraints \((x)\);
Aeq \(=[1,1]\);
beq \(=4\);
[x, fval, exitflag, output] = fmincon(fun, x0, [], [], Aeq, beq, [], [], nonlcon);
if exitflag > 0
disp('Optimal solution found:');
disp(['x = ', num2str( \(\left.\left.x^{\prime}\right)\right]\) );
disp(['Optimal objective value \(=\) ', num2str(fval)]);
else
disp('Optimal solution not found.');
end
```

```
function [c, ceq] = constraints(x)
    c=-(g(x) - 1);% g(x)>=1
    ceq = []; % No equality constraints
    end
```

Find the minimum value of Rosenbrock's function when there is a linear inequality constraint.

Find the minimum value starting from the point $[-1,2]$, constrained to have $x(1)+2 x(2) \leq 1$.

Express this constraint in the form $A x<=b$ by taking $A=[1,2]$ and $b=1$.
Here's how you can implement this in MATLAB using fmincon:
fun $=@(x) 100^{*}\left(x(2)-x(1)^{\wedge} 2\right)^{\wedge} 2+(1-x(1))^{\wedge} 2$;
$x 0=[-1,2]$;
$A=[1,2]$;
$b=1$;
$x=$ fmincon(fun, $x 0, A, b$)

Find the minimum value of Rosenbrock's function when there are both a linear inequality constraint and a linear equality constraint.

Set the objective function fun to be Rosenbrock's function.
Find the minimum value starting from the point $[0.5,0]$, constrained to have $x(1)+2 x(2) \leq 1$ and $2 x(1)+x(2)=1$.

Here's how you can implement this in MATLAB using fmincon:
fun $=@(x) 100^{*}(x(2)-x(1) \wedge 2) \wedge 2+(1-x(1))^{\wedge} 2 ;$
$x 0=[0.5,0]$;
$A=[1,2]$;
$b=1$;
Aeq $=[2,1] ;$
beq $=1$;
$x=$ fmincon(fun, $x 0, A, b, A e q, b e q)$

