
Chapter 03
1 Optimization with inequality constraints

1.1 Introduction

Optimization with inequality constraints is a fundamental problem encountered
in various disciplines, ranging from engineering and economics to operations
research and machine learning.
The goal of optimization with inequality constraints is to navigate the solu-

tion space e¢ ciently to identify the optimal solution that optimizes the objective
function while respecting the imposed constraints. This task can be challenging
due to the complexity of the solution space and the need to balance competing
objectives.
Example
Project Management : In project management, optimizing resource alloca-

tion is crucial to ensure projects are completed e¢ ciently within time and budget
constraints. Constraints could include limits on manpower, budgetary restric-
tions, and deadlines. By formulating resource allocation as an optimization
problem with inequality constraints, project managers can allocate resources
optimally to di¤erent tasks while ensuring that no resource exceeds its capacity
and that project deadlines are met.
Transportation : Optimization with inequality constraints is used exten-

sively in transportation and logistics to plan the most e¢ cient routes for vehicles
while considering factors such as vehicle capacity, time windows for deliveries,
and road network constraints. By formulating vehicle routing problems as op-
timization problems with inequality constraints, transportation companies can
minimize costs associated with fuel consumption and vehicle wear and tear while
meeting customer demands and adhering to regulatory restrictions.

1.2 General Problem

Constrained optimization problems are formulated as
minimize f(x)
subject to gj(x) � 0, j = 1; :::; p;
hi(x) = 0,i = 1; :::;m;
where gj , hi: Rn ! R are inequality and equality constraint functions,

respectively.
Note that g : Rn ! Rp and h : Rn ! Rm

Remark 1 The constraints can be written as g(x) � 0 and h(x) = 0, respec-
tively
The feasible set is 
 := fx 2 Rn : g(x) � 0; h(x) = 0g:

De�nition 2 (Active constraints)
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gi(x) � 0 is active in x� 2 
 if gi(x�) = 0,
gi(x) � 0 is inactive in x� 2 
 if gi(x�) < 0.

De�nition 3 (Regular point)
We call x a regular point in 
 if rhi(x); rgj(x); are linearly independent

Now we consider the �rst order necessary condition (FONC) for the opti-
mization
problem with both equality and inequality constraints:

Theorem 4 Suppose f; g; h 2 C1, x� is a regular point and local minimizer of
f , then 9� 2 Rm; � 2 Rp such that

rf(x�) +
mX
i=1

�irhi(x�) +
pX
j=1

�jrgj(x�) = 0

h(x�) = 0

g(x�) � 0

8j 2 f1; 2; :::; pg ; �j � 0
8j 2 f1; 2; :::; pg ; �jgj(x

�) = 0

Proof. See Edwin K. P. Chong, Stanislaw H. Zak, An Introduction to Opti-
mization, 2nd Edition, A Wiley-lnterscience Publication

Theorem 5 Su¤cient optimality conditions
Suppose the functions f ; hi ; i =; :::; p; gj ; j = 1; :::;m are twice di eren-

tiable.
Let x be a feasible point of NLP. If there are Lagrange multipliers � and

� � 0 such that:
(i) the KKT conditions are satis�ed at (x; �; �); and
(ii) and the hessian of the Lagrangian is positive de�nite

�
i:e dTHLd > 0

�
for d from the subspace

S =
�
d 2 Rn�dTrhi(x) = 0; dTrgj(x) = 0; hi; i =; :::; p; gj ; j = 1; :::;m, �j > 0

	
In the convex case, we have the following result:

Theorem 6 We suppose that f , hi for i = 1; :::; p and gj for j = 1; :::; q are
class C1 and that f and gj, j = 1; :::; q are convex and hi
, i = 1; :::; p are a¢ ne. We also assume that x� is a regular point point. So
(x� is minimizer of f ), (KKT conditions are satis�ed).

Proof. (() By the condition of convex function, we have the Lagrangian L is
convex

8x 2 Rn : L(x�; ��; ��) � L(x; ��; ��)

2



If x in 
; hi(x) = 0 and gj(x) � 0; we get

mX
i=1

��i hi(x
�) +

pX
j=1

��jgj(x
�) =

pX
j=1

��jgj(x
�) � 0

In the other hand,

f(x�) = L(x�; ��; ��) � L(x; ��; ��) = f(x)

Then x� is minimizer of f

Example 7 Solve the following optimization problem:

min f(x) = x21 � x22
st

x1 + 2x2 + 1 = 0

x1 � x2 � 3

Solution 8 Lagrange function

L(x; �; �) = x21 � x22 + � (x1 + 2x2 + 1) + � (x1 � x2 � 3)

Optimality condition:8>>>>>><>>>>>>:

@L
@x1

= 2x1 + �+ � = 0
@L
@x1

= �2x2 + 2�� � = 0
x1 + 2x2 + 1 = 0
x1 � x2 � 3

� (x1 � x2 � 3) = 0
� � 0

1) If � = 0 8<: 2x1 + � = 0
�2x2 + 2� = 0
x1 + 2x2 + 1 = 0

Then 8<:
��
2 = x1
� = x2
� = �2

3

Hence (x1; x2; �; �) =
�
1
3 ;

�2
3 ;

�2
3 ; 0

�
2) If (x1 � x2 = 3) 8>>>><>>>>:

2x1 + �+ � = 0
�2x2 + 2�� � = 0
x1 + 2x2 + 1 = 0
x1 � x2 = 3
� � 0
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so 8>>>><>>>>:
x1 =

����
2

x2 =
2���
2�

����
2

�
+ 2

�
2���
2

�
+ 1 = 0�

����
2

�
�
�
2���
2

�
= 3

And 8<:
�
����
2

�
+ 2

�
2���
2

�
+ 1 = 0�

����
2

�
�
�
2���
2

�
= 3�

� = �4
3

� = �2
Contradiction with � � 0
To con�rme that (x1; x2; �; �) =

�
1
3 ;

�2
3 ;

�2
3 ; 0

�
is optmal solution, we prove

the hessian of the Lagrangian is positive de�nite
�
i:e dTHLd > 0

�
for d from

the subspace

S =
�
d 2 Rn�dTrhi(x) = 0; dTrgj(x) = 0; � > 0

	

S =

�
d 2 R2�

�
d1 d2

�� 1
2

�
= 0

�
=

�
d 2 R2�d1 = �2d2

	
:

Then

dTHLd =
�
�2d2 d2

�� 2 0
0 �2

��
�2d2
d2

�
= d2 > 0:

Therefore, (x1; x2; �; �) =
�
1
3 ;

�2
3 ;

�2
3 ; 0

�
is an optimal solution.
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