Larbi Ben M'hidi-Oum El Bouaghi University

Faculty of Exact Sciences and Natural and Life Sciences

Departement of Mathematics and Computer Science
First year Licence Introduction to probability and descriptive statistics
Answers of series N $^{\circ} 2$: Graphs and measures of position and variability
Exercise 02 (quantitative discrete data) : The frequency table :

Values x_{i}	1	2	3	4	5	\sum
Frequency n_{i}	84	29	3	3	1	$n=120$
ICF $N_{x=x_{i}} \uparrow$	84	113	116	119	120	$/ / / /$
$n_{i} x_{i}$	84	58	9	12	5	168
$n_{i} x_{i}^{2}$	84	116	27	48	25	300

1. The sample of intrest is the subset of vehicles,

The sample size : $n=120=\sum n_{i}$
The variable X of interest is the number of passengers in each vehicle,
The type of X : quantitative discrete.
2. Draw the frequency diagram (bar chart) such as the x -axis for the values x_{i} (line 1) and the y-axis for the n_{i} (line 2).
3. Plot the increasing cumulative frecuency curve (or the frequency curve) such as the x-axis for the values $x i$ (line 1) and the y-axis for the $N_{x} \uparrow$ (line 3).

$$
N_{x} \uparrow=\sum_{i: x_{i} \leq x} n_{i}, \quad x \in \mathbb{R}
$$

4. Measures of position (or central tendency)

The mean :

$$
\bar{x}=\frac{\sum_{i} n_{i} \times x_{i}}{n}=\frac{168}{120}=1.4
$$

The median : notice that $n=120$ an even number, so

$$
M e=\frac{\left(\frac{n}{2}\right)^{t h} \text { value }+\left(\frac{n}{2}+1\right)^{t h} \text { value }}{2}
$$

from the line $N_{x=x_{i}} \uparrow$, we obtain : $M e=\frac{1+1}{2}=1$.
The first quartile q_{1} :

$$
q_{1}=\left(\frac{n}{4}\right)^{\text {th }} \text { value }=1
$$

The third quartile q_{3} :

$$
q_{3}=\left(\frac{3 n}{4}\right)^{\text {th }} \text { value }=2
$$

The mode: From the line of n_{i}, we notice that the the most frequent is equal to $n_{1}=84$, then $M o=1$.

5. Measures of despersion (or variability or spread)

$\underline{\text { The rang }: ~} R=\max -\min =5-1=4$.
The variance :

$$
\operatorname{Var}(X)=\frac{\sum_{i} n_{i} \times x_{i}^{2}}{n}-\bar{x}^{2}=\frac{300}{120}-(1.4)^{2}=0.54
$$

The standard deviation : $\sigma_{X}=\sqrt{\operatorname{Var}(X)}=0.73$.
The coefficient of variation : $C V=\frac{\sigma_{X}}{\bar{x}}=0.52$.

Answer 03 :

1. We have the range $R=\max -\min =\alpha-800=3200$, so $\alpha=4000$.
2. We have

$$
\begin{gathered}
\bar{x}=2012=\frac{\sum_{i} n_{i} c_{i}}{n}=\frac{48400+48000+\frac{100+\beta}{2} 52+\frac{\beta+2400}{2} 18+172800}{200} \\
\frac{332400+35 \beta}{200}=2012 \Rightarrow \beta=2000 .
\end{gathered}
$$

3. Complete the table.

Classes $\left[e_{i-1}, e_{i}[\right.$	$[800,1400[$	$[1400,1600[$	$[1600,2000[$	$[2000,2400[$	$[2400,4000[$	\sum
Centre of classes c_{i}	1100	1500	1800	2200	3200	$/ / / /$
Frequency n_{i}	44	32	52	18	54	$\mathrm{n}=200$
FC $N_{x=e_{i}} \uparrow$	44	76	128	146	200	$/ / / /$
RF f_{i}	0.22	0.16	0.26	0.09	0.27	1
RFC $F_{x=e_{i} \uparrow} \uparrow$	0.22	0.38	0.64	0.73	1	$/ / / /$
$a_{i}=e_{i}-e_{i-1}$	600	200	400	400	1600	$/ / / /$
u_{i}	3	1	2	2	8	$/ / / /$
$d_{i}=\frac{n_{i}}{u_{i}}$	14.67	32	26	9	6.75	$/ / / /$

Line 2: $c_{i}=\frac{e_{i-1}+e_{i}}{2}$.
Line 5: we have $f_{1}=F_{x=e_{1}=1400} \uparrow$ and $f_{i}=F_{e_{i}} \uparrow-F_{e_{i-1}} \uparrow, \quad i=2, \ldots, 5$.
Line 3: $n_{i}=f_{i} \times n$.
Line 4: $N_{x=e_{i}} \uparrow=\sum_{e<e_{i}} n_{i}$ such as $e \in\left[800,4000\left[. \quad\right.\right.$ Or $\quad N_{x=e_{i}} \uparrow=F_{x=e_{i}} \uparrow \times n$.
$\sum_{i} n_{i} \times c_{i}^{2}=93380 \times 10^{4}$ (we need this sum to calculate the variance).
Or $\sum_{i} f_{i} \times c_{i}^{2}=4669000$.
4. - The frequency (or relative frequency) curve : draw the curve such as the x-axis for the classes and the y-axis for the $N_{x} \uparrow$ (or $F_{x} \uparrow$). We can deduce the median and the quartiles graphically.

- The frequency (or relative frequency) histogram :

Step 01: We add a new line for calculating the amplitude (width) of classes a_{i} (line 6). According to this line, note that the width a_{i} are not equal, so

Step 02 : We add two new lines, the first one to determine the unit u_{i} (line 7) such as $u_{2}=1$ because the width $a_{2}=200$ is the minimum of the widths a_{i} (see the table), and the second one for calculating the density $d_{i}=\frac{n_{i}}{u_{i}}$ (or $d_{i}=\frac{f_{i}}{u_{i}}$) (line 8).
Step 03: Draw the histogram such as the x -axis for the classes and the y -axis for the densities d_{i}.

5. Measures of position

- The mode : from the line 9 , note that the most density is $d_{2}=32$, so :

The mode class : $\left[e_{1}, e_{2}[=[1400,1600[\right.$
The amplitude of the mode class : $a_{2}=e_{2}-e_{1}=200$
$m_{1}=d_{2}-d_{1}=32-14.67$
$m_{2}=d_{2}-d_{3}=32-26$
so, the mode is given by :

$$
M o=e_{1}+a_{2} \frac{m_{1}}{m_{1}+m_{2}}=1548.56
$$

- The median is the solution to the equation :

$$
N_{x=M e} \uparrow=\frac{n}{2}
$$

so we have

$$
\begin{aligned}
76 & \leq \frac{n}{2}=100<128 \quad(\text { from the line } 4) \\
1600 & \leq M e<2000 \quad \text { (from the line } 1)
\end{aligned}
$$

so the median class is : $[1600,2000[\Rightarrow M e \in[1600,2000[$. Then

$$
M e=1600+(2000-1600) \frac{\frac{n}{2}-76}{128-76}=1784.615
$$

The second method : the median is the solution to the equation

$$
F_{M e} \uparrow=0.5
$$

so we have

$$
\begin{aligned}
& 0.38 \leq 0.5<0.64 \quad(\text { from the line } 6) \\
& 1600 \leq M e<2000 \quad(\text { from the line } 1)
\end{aligned}
$$

Then, we obtain :

$$
M e=1600+(2000-1600) \frac{0.5-0.38}{0.64-0.38}=1784.615
$$

- The first quartile q_{1} is the solution to the equation

$$
N_{q_{1}} \uparrow=\frac{n}{4}
$$

so we have

$$
\begin{aligned}
44 & \leq \frac{n}{4}=50<76 \quad(\text { from the line } 4) \\
1400 & \leq q_{1}<1600 \quad(\text { from the line } 1)
\end{aligned}
$$

so

$$
q_{1}=1400+(1600-1400) \frac{\frac{n}{4}-44}{76-44}=\ldots
$$

The second method : the first quartile q_{1} is the solution to the equation

$$
F_{q_{1}} \uparrow=0.25
$$

so we have

$$
\begin{aligned}
0.22 & \leq 0.25<0.38 \quad(\text { from the line } 6) \\
1400 & \leq q_{1}<1600 \quad(\text { from the line } 1)
\end{aligned}
$$

then

$$
q_{1}=1400+(1600-1400) \frac{\frac{1}{4}-0.22}{0.38-0.22}=\ldots
$$

- The third quartile q_{3} is the solution to the equation

$$
N_{q_{3}} \uparrow=\frac{3 n}{4}
$$

so we have

$$
\begin{aligned}
146 & \leq \frac{3 n}{4}=150<200 \quad(\text { from the line } 4) \\
2400 & \leq q_{3}<4000 \quad(\text { from the line } 1)
\end{aligned}
$$

so

$$
q_{3}=2400+(4000-2400) \frac{\frac{3 n}{4}-146}{200-146}=\ldots
$$

The second method : the third quartile q_{3} is the solution to the equation

$$
F_{q_{3}} \uparrow=0.75
$$

so we have

$$
\begin{aligned}
0.73 & \leq 0.75<1 \quad(\text { from the line } 6) \\
2400 & \leq q_{1}<4000 \quad(\text { from the line } 1)
\end{aligned}
$$

so

$$
q_{3}=2400+(4000-2400) \frac{\frac{3}{4}-0.73}{1-0.73}=\ldots
$$

$\underline{\text { Measures of variability (or dispersion, or spread) }}$

- The variance :

$$
\operatorname{Var}(X)=\left[\frac{1}{n} \sum_{i} n_{i} \times c_{i}^{2}\right]-\bar{x}^{2}=620856
$$

or

$$
\operatorname{Var}(X)=\left[\sum_{i} f_{i} \times c_{i}^{2}\right]-\bar{x}^{2}=620856
$$

- The standard deviation : $\quad \sigma_{X}=\sqrt{\operatorname{Var}(X)}=787.94$.
- The coefficient of variation : $C V=\frac{\sigma_{X}}{\bar{x}}=0.39$.

Answer 04 : Construct the box plot for :
A. The first set of data :

$$
32,32,45,55.5,56,56,59,68,70,72,77,78,79,80,81,84,84.5,90,90,99
$$

We have
-The smallest value: $\min =32$
-The first quartile : $q_{1}=\left(\frac{n}{4}\right)^{\text {th }}$ value $=56$
-The median : $M e=\frac{\left(\frac{n}{2}\right)^{\text {th }} \text { value }+\left(\frac{n}{2}+1\right)^{\text {th }} \text { value }}{2}=\frac{72+77}{2}=74.5$
-The third quartile : $q_{3}=\left(\frac{3 n}{4}\right)^{\text {th }}$ value $=81$
-The largest value : $\max =99$
B. The second set of data :
$25.5,45,65,68,76,78,78,79,79,80,81,81,83,84.5,85,88,89,90,90,98,98,98$
We have
-The smallest value : $\min =25.5$
-The first quartile : $q_{1}=\left(\frac{n}{4}\right)^{\text {th }}$ value $\simeq 6^{\text {th }}$ value $=78$
-The median : $M e=\frac{\left(\frac{n}{2}\right)^{\text {th }} \text { value }+\left(\frac{n}{2}+1\right)^{\text {th }} \text { value }}{2}=\frac{81+81}{2}=81$
-The third quartile : $q_{3}=\left(\frac{3 n}{4}\right)^{\text {th }}$ value $\simeq 16^{\text {th }}$ value $=88$
-The largest value : $\max =98$
We have :
The interquartile range for the first data is : $I Q R_{A}=q_{3}-q_{1}=82.5-56=26.5$.
The interquartile range for the second data is : $I Q R_{B}=q_{3}-q_{1}=89-78=11$.
So, the first data set has the wider spread for the middle 50% of the data, because the $I Q R_{1}$ is greater than the $I Q R_{2}$. This means that there is more variability in the middle 50% of the first data set.

Answer 05 : Consider a following data set $\left\{X_{1}, \ldots, X_{n}\right\}$ of a quantitative variable X. Let

$$
\bar{X}=\frac{\sum_{i} X_{i}}{n} \quad \text { and } \quad \operatorname{Var}(X)=\frac{\sum_{i} X_{i}^{2}}{n}-\bar{X}^{2}
$$

the mean and the variance of X respectively. We define a new data set $\left\{Y_{1}, \ldots, Y_{n}\right\}$ such as

$$
Y_{i}=\alpha X_{i}+\beta \quad i=1, \ldots, n
$$

a) We have

$$
\begin{aligned}
\bar{Y}=\frac{\sum_{i} Y_{i}}{n} & =\frac{\sum_{i}\left(\alpha X_{i}+\beta\right)}{n} \\
& =\frac{\alpha \sum_{i} X_{i}+\sum_{i} \beta}{n} \\
& =\alpha \frac{\sum_{i} X_{i}}{n}+\frac{n \beta}{n} \\
& =\alpha \bar{X}+\beta .
\end{aligned}
$$

b)

$$
\begin{aligned}
\operatorname{Var}(Y)=\frac{\sum_{i} Y_{i}^{2}}{n}-\bar{Y}^{2} & =\frac{\sum_{i}\left(\alpha X_{i}+\beta\right)^{2}}{n}-(\alpha \bar{X}+\beta)^{2} \\
& =\frac{\sum_{i}\left(\alpha^{2} X_{i}^{2}+\beta^{2}+2 \alpha \beta X_{i}\right)}{n}-\left(\alpha^{2} \bar{X}^{2}+\beta^{2}+2 \alpha \beta \bar{X}\right) \\
& =\alpha^{2} \frac{\sum_{i} X_{i}^{2}}{n}+\frac{\sum_{i} \beta^{2}}{n}+\frac{\sum_{i} 2 \alpha \beta X_{i}}{n}-\alpha^{2} \bar{X}^{2}-\beta^{2}-2 \alpha \beta \bar{X} \\
& =\alpha^{2}\left(\frac{\sum_{i} X_{i}^{2}}{n}-\bar{X}^{2}\right)+\frac{n \beta^{2}}{n}+2 \alpha \beta \frac{\sum_{i} X_{i}}{n}-\beta^{2}-2 \alpha \beta \bar{X} \\
& =\alpha^{2} \operatorname{Var}(X) .
\end{aligned}
$$

The second method

$$
\begin{aligned}
\operatorname{Var}(Y)=\frac{1}{n} \sum_{i}\left(Y_{i}-\bar{Y}\right)^{2} & =\frac{1}{n} \sum_{i}\left(\alpha X_{i}+\beta-\alpha \bar{X}-\beta\right)^{2} \\
& =\frac{1}{n} \sum_{i} \alpha^{2}\left(X_{i}-\bar{X}\right)^{2} \\
& =\alpha^{2} \operatorname{Var}(X) .
\end{aligned}
$$

