Larbi Ben M'hidi-Oum El Bouaghi University

Faculty of Exact Sciences and Natural and Life Sciences

Departement of Mathematics and Computer Science

First year Licence

Introduction to probability and descriptive statistics

Answers of series No 2: Graphs and measures of position and variability

Exercise 02 (quantitative discrete data): The frequency table:

Values x_i	1	2	3	4	5	\sum	
Frequency n_i	84	29	3	3	1	n = 120	
ICF $N_{x=x_i} \uparrow$	84	113	116	119	120	////	
$n_i x_i$	84	58	9	12	5	168	
$n_i x_i^2$	84	116	27	48	25	300	

1. The sample of intrest is the subset of vehicles,

The sample size : $n = 120 = \sum n_i$

The variable X of interest is the number of passengers in each vehicle,

The type of X: quantitative discrete.

- 2. Draw the frequency diagram (bar chart) such as the x-axis for the values x_i (line 1) and the y-axis for the n_i (line 2).
- 3. Plot the increasing cumulative frequency curve (or the frequency curve) such as the x-axis for the values xi (line 1) and the y-axis for the $N_x \uparrow$ (line 3).

$$N_x \uparrow = \sum_{i: x_i \le x} n_i, \quad x \in \mathbb{R}$$

4. Measures of position (or central tendency)

The mean:

$$\overline{x} = \frac{\sum_i \ n_i \times x_i}{n} = \frac{168}{120} = 1.4$$

The median: notice that n = 120 an even number, so

$$Me = \frac{\left(\frac{n}{2}\right)^{th} value + \left(\frac{n}{2} + 1\right)^{th} value}{2}$$

from the line $N_{x=x_i} \uparrow$, we obtain : $Me = \frac{1+1}{2} = 1$.

The first quartile q_1 :

$$q_1 = (\frac{n}{4})^{th} \ value = 1$$

The third quartile q_3 :

$$q_3 = (\frac{3n}{4})^{th} \ value = 2$$

<u>The mode</u>: From the line of n_i , we notice that the most frequent is equal to $n_1 = 84$, then Mo = 1.

5. Measures of despersion (or variability or spread)

The rang : R = max - min = 5 - 1 = 4.

The variance:

$$Var(X) = \frac{\sum_{i} n_{i} \times x_{i}^{2}}{n} - \overline{x}^{2} = \frac{300}{120} - (1.4)^{2} = 0.54$$

The standard deviation : $\sigma_X = \sqrt{Var(X)} = 0.73$.

The coefficient of variation: $CV = \frac{\sigma_X}{\overline{T}} = 0.52$.

Answer 03:

1. We have the range $R = max - min = \alpha - 800 = 3200$, so $\alpha = 4000$.

2. We have

$$\overline{x} = 2012 = \frac{\sum_{i} n_{i} c_{i}}{n} = \frac{48400 + 48000 + \frac{100 + \beta}{2} 52 + \frac{\beta + 2400}{2} 18 + 172800}{200}$$
$$\frac{332400 + 35 \beta}{200} = 2012 \implies \beta = 2000.$$

3. Complete the table.

Classes $[e_{i-1}, e_i[$	[800, 1400[[1400, 1600[[1600, 2000[[2000, 2400[[2400, 4000[Σ
Centre of classes c_i	1100	1500	1800	2200	3200	////
Frequency n_i	44	32	52	18	54	n=200
$\Gamma \subset N_{x=e_i} \uparrow$	44	76	128	146	200	////
RF f_i	0.22	0.16	0.26	0.09	0.27	1
RFC $F_{x=e_i} \uparrow$	0.22	0.38	0.64	0.73	1	////
$a_i = e_i - e_{i-1}$	600	200	400	400	1600	////
u_i	3	1	2	2	8	////
$d_i = \frac{n_i}{u_i}$	14.67	32	26	9	6.75	////

Line 2:
$$c_i = \frac{e_{i-1} + e_i}{2}$$
.

Line 5: we have
$$f_1 = F_{x=e_1=1400} \uparrow \text{ and } f_i = F_{e_i} \uparrow -F_{e_{i-1}} \uparrow, \quad i = 2, ..., 5.$$

Line
$$3: n_i = f_i \times n$$
.

Line
$$4: N_{x=e_i} \uparrow = \sum_{e < e_i} n_i$$
 such as $e \in [800, 4000[$. Or $N_{x=e_i} \uparrow = F_{x=e_i} \uparrow \times n$.

$$\sum_i n_i \times c_i^2 = 93380 \times 10^4$$
 (we need this sum to calculate the variance).
Or $\sum_i f_i \times c_i^2 = 4669000$.

- 4. The frequency (or relative frequency) curve : draw the curve such as the x-axis for the classes and the y-axis for the $N_x \uparrow$ (or $F_x \uparrow$). We can deduce the median and the quartiles graphically.
 - The frequency (or relative frequency) histogram :

Step 01: We add a new line for calculating the amplitude (width) of classes a_i (line 6). According to this line, note that the width a_i are not equal, so

Step 02: We add two new lines, the first one to determine the unit u_i (line 7) such as $u_2 = 1$ because the width $a_2 = 200$ is the minimum of the widths a_i (see the table), and the second one for calculating the density $d_i = \frac{n_i}{u_i}$ (or $d_i = \frac{f_i}{u_i}$) (line 8).

Step 03: Draw the histogram such as the x-axis for the classes and the y-axis for the densities d_i .

5. Measures of position

- The mode: from the line 9, note that the most density is $d_2 = 32$, so:

The mode class: $[e_1, e_2] = [1400, 1600]$

The amplitude of the mode class : $a_2 = e_2 - e_1 = 200$

$$m_1 = d_2 - d_1 = 32 - 14.67$$

$$m_2 = d_2 - d_3 = 32 - 26$$

so, the mode is given by:

$$Mo = e_1 + a_2 \frac{m_1}{m_1 + m_2} = 1548.56$$

- The median is the solution to the equation :

$$N_{x=Me} \uparrow = \frac{n}{2}$$

so we have

$$76 \le \frac{n}{2} = 100 < 128$$
 (from the line 4)
 $1600 \le Me < 2000$ (from the line 1)

so the median class is : $[1600, 2000] \Rightarrow Me \in [1600, 2000]$. Then

$$Me = 1600 + (2000 - 1600) \frac{\frac{n}{2} - 76}{128 - 76} = 1784.615$$

The second method: the median is the solution to the equation

$$F_{Me} \uparrow = 0.5$$

so we have

$$0.38 \le 0.5 < 0.64$$
 (from the line 6) $1600 \le Me < 2000$ (from the line 1)

Then, we obtain:

$$Me = 1600 + (2000 - 1600) \frac{0.5 - 0.38}{0.64 - 0.38} = 1784.615$$

- The first quartile q_1 is the solution to the equation

$$N_{q_1} \uparrow = \frac{n}{4}$$

so we have

$$44 \le \frac{n}{4} = 50 < 76$$
 (from the line 4)
 $1400 \le q_1 < 1600$ (from the line 1)

SO

$$q_1 = 1400 + (1600 - 1400) \frac{\frac{n}{4} - 44}{76 - 44} = \dots$$

The second method : the first quartile q_1 is the solution to the equation

$$F_{q_1} \uparrow = 0.25$$

so we have

$$0.22 \leq 0.25 < 0.38$$
 (from the line 6)
 $1400 \leq q_1 < 1600$ (from the line 1)

then

$$q_1 = 1400 + (1600 - 1400) \frac{\frac{1}{4} - 0.22}{0.38 - 0.22} = \dots$$

- The third quartile q_3 is the solution to the equation

$$N_{q_3} \uparrow = \frac{3n}{4}$$

so we have

$$146 \le \frac{3 n}{4} = 150 < 200$$
 (from the line 4)
 $2400 \le q_3 < 4000$ (from the line 1)

so

$$q_3 = 2400 + (4000 - 2400) \frac{\frac{3n}{4} - 146}{200 - 146} = \dots$$

The second method: the third quartile q_3 is the solution to the equation

$$F_{a_3} \uparrow = 0.75$$

so we have

$$0.73 \leq 0.75 < 1$$
 (from the line 6)
 $2400 \leq q_1 < 4000$ (from the line 1)

SO

$$q_3 = 2400 + (4000 - 2400) \frac{\frac{3}{4} - 0.73}{1 - 0.73} = \dots$$

Measures of variability (or dispersion, or spread)

- The variance:

$$Var(X) = \left[\frac{1}{n} \sum_{i} n_i \times c_i^2\right] - \overline{x}^2 = 620856$$

or

$$Var(X) = \left[\sum_{i} f_i \times c_i^2\right] - \overline{x}^2 = 620856$$

- The standard deviation : $\sigma_X = \sqrt{Var(X)} = 787.94$.
- The coefficient of variation : $CV = \frac{\sigma_X}{\overline{x}} = 0.39$.

Answer 04: Construct the box plot for:

A. The first set of data:

$$32, 32, 45, 55.5, 56, 56, 59, 68, 70, 72, 77, 78, 79, 80, 81, 84, 84.5, 90, 90, 99$$

We have

-The smallest value : min = 32

-The first quartile :
$$q_1 = \left(\frac{n}{4}\right)^{th} value = 56$$

-The median :
$$Me = \frac{\left(\frac{n}{2}\right)^{th} value + \left(\frac{n}{2} + 1\right)^{th} value}{2} = \frac{72 + 77}{2} = 74.5$$

- -The third quartile : $q_3 = \left(\frac{3n}{4}\right)^{th} value = 81$
- -The largest value : max = 99
- B. The second set of data:

$$25.5, 45, 65, 68, 76, 78, 78, 79, 79, 80, 81, 81, 83, 84.5, 85, 88, 89, 90, 90, 98, 98, 98$$

We have

- -The smallest value : min = 25.5
- -The first quartile : $q_1 = \left(\frac{n}{4}\right)^{th} value \simeq 6^{th} value = 78$

-The median :
$$Me = \frac{\left(\frac{n}{2}\right)^{th} value + \left(\frac{n}{2} + 1\right)^{th} value}{2} = \frac{81 + 81}{2} = 81$$

- -The third quartile : $q_3 = \left(\frac{3n}{4}\right)^{th} value \simeq 16^{th} value = 88$
- -The largest value : max = 98

We have:

The interquartile range for the first data is: $IQR_A = q_3 - q_1 = 82.5 - 56 = 26.5$.

The interquartile range for the second data is: $IQR_B = q_3 - q_1 = 89 - 78 = 11$.

So, the first data set has the wider spread for the middle 50% of the data, because the IQR_1 is greater than the IQR_2 . This means that there is more variability in the middle 50% of the first data set.

Answer 05: Consider a following data set $\{X_1,...,X_n\}$ of a quantitative variable X. Let

$$\overline{X} = \frac{\sum_{i} X_{i}}{n}$$
 and $Var(X) = \frac{\sum_{i} X_{i}^{2}}{n} - \overline{X}^{2}$

the mean and the variance of X respectively. We define a new data set $\{Y_1,...,Y_n\}$ such as

$$Y_i = \alpha X_i + \beta$$
 $i = 1, ..., n$

a) We have

$$\overline{Y} = \frac{\sum_{i} Y_{i}}{n} = \frac{\sum_{i} (\alpha X_{i} + \beta)}{n}$$

$$= \frac{\alpha \sum_{i} X_{i} + \sum_{i} \beta}{n}$$

$$= \alpha \frac{\sum_{i} X_{i}}{n} + \frac{n \beta}{n}$$

$$= \alpha \overline{X} + \beta.$$

b)

$$Var(Y) = \frac{\sum_{i} Y_{i}^{2}}{n} - \overline{Y}^{2} = \frac{\sum_{i} \left(\alpha X_{i} + \beta\right)^{2}}{n} - \left(\alpha \overline{X} + \beta\right)^{2}$$

$$= \frac{\sum_{i} \left(\alpha^{2} X_{i}^{2} + \beta^{2} + 2 \alpha \beta X_{i}\right)}{n} - \left(\alpha^{2} \overline{X}^{2} + \beta^{2} + 2 \alpha \beta \overline{X}\right)$$

$$= \alpha^{2} \frac{\sum_{i} X_{i}^{2}}{n} + \frac{\sum_{i} \beta^{2}}{n} + \frac{\sum_{i} 2 \alpha \beta X_{i}}{n} - \alpha^{2} \overline{X}^{2} - \beta^{2} - 2 \alpha \beta \overline{X}$$

$$= \alpha^{2} \left(\frac{\sum_{i} X_{i}^{2}}{n} - \overline{X}^{2}\right) + \frac{n\beta^{2}}{n} + 2 \alpha \beta \frac{\sum_{i} X_{i}}{n} - \beta^{2} - 2 \alpha \beta \overline{X}$$

$$= \alpha^{2} Var(X).$$

The second method

$$Var(Y) = \frac{1}{n} \sum_{i} (Y_{i} - \overline{Y})^{2} = \frac{1}{n} \sum_{i} (\alpha X_{i} + \beta - \alpha \overline{X} - \beta)^{2}$$
$$= \frac{1}{n} \sum_{i} \alpha^{2} (X_{i} - \overline{X})^{2}$$
$$= \alpha^{2} Var(X).$$