Larbi Ben M'hidi-Oum El Bouaghi University

Faculty of Exact Sciences and Natural and Life Sciences
 Departement of Mathematics and Computer Science

First year Licence Introduction to probability and descriptive statistics

Answers of the first series: Bacis concepts and statistical vocabulary

Answer 01 :
Items X_{1}, X_{4}, and X_{12} are quantitative discrete.
Items X_{3}, X_{9}, X_{10} and X_{14} are quantitative continuous.
Items X_{2}, X_{5}, X_{6}, and X_{7} are qualitative nominal.
Items $X_{8}, X_{1} 1$ and X_{13} are qualitative ordinal.

Answer 02 : The all measurements (observations) for the data set are the following :

$$
\begin{array}{llllllllllllllll}
31 & 32 & 32 & 32 & 32 & 32 & 33 & 33 & 33 & 33 & 33 & 33 & 34 & 34 & 34 & 34 \\
35 & 35
\end{array}
$$

Answer 05 :

1. the population of interest is weeks set (group of weeks) and the population size is $n=20$.
2. The variable of interest is the number of products sold per week and its type is quantitative discrete data.
3. Complete the following frequency table:

Number of products sold	14	15	16	17	18	19	\sum
Number of weeks	02	06	04	03	03	02	$n=20$
Relative frequency $f_{i}=\frac{n_{i}}{n}$	0.1	0.3	0.2	0.15	0.15	0.1	1
Percentage $\quad p_{i}=f_{i} \times 100(\%)$	10	30	20	15	15	10	100%
Increasing Cumulative Frequency ICF $\quad N_{x=x_{i}} \uparrow$	2	8	12	15	18	20	$/ / / /$
Decreasing Cumulative Frequency DCF $\quad N_{x=x_{i}} \downarrow$	18	12	8	5	2	0	$/ / / /$
Increasing Cumulative Relative Frequency ICRF $\quad F_{x=x_{i}} \uparrow$	0.1	0.4	0.6	0.75	0.9	1	$/ / /$
Decreasing Cumulative Relative Frequency DCRF $\quad F_{x=x_{i}} \downarrow$	0.9	0.6	0.4	0.25	0.1	0	$/ / /$

The formula mathematic of ICF is given by :

$$
N_{x} \uparrow=\sum_{i: x_{i} \leq x} n_{i}, \quad x \in \mathbb{R}
$$

Particular case : if $x=x_{i}$, we obtain $N_{x=x_{i}} \uparrow$ see line 5 in the frequency table.

The formula mathematic of DCF is given by :

$$
N_{x} \downarrow=\sum_{i: x_{i}>x} n_{i}, \quad x \in \mathbb{R}
$$

Or

$$
N_{x} \downarrow=n-N_{x} \uparrow \quad \text { because } \quad N_{x} \uparrow+N_{x} \downarrow=n
$$

Particular case : if $x=x_{i}$, we obtain $N_{x=x_{i}} \downarrow$ see line 6 in the frequency table.

The formula mathematic of ICRF is given by :

$$
F_{x} \uparrow=\sum_{i: x_{i} \leq x} f_{i}, \quad x \in \mathbb{R}
$$

Particular case : if $x=x_{i}$, we obtain $F_{x=x_{i}} \uparrow$ see line 7.

The formula mathematic of DCRF is given by :

$$
F_{x} \downarrow=\sum_{i: x_{i}>x} f_{i}, \quad x \in \mathbb{R}
$$

Or

$$
N_{x} \downarrow=n-N_{x} \uparrow \quad \text { because } \quad F_{x} \uparrow+F_{x} \downarrow=1
$$

Particular case : if $x=x_{i}$, we obtain $F_{x=x_{i}} \downarrow$ see line 8.

Answer 06 :

1. The population studied is a group of students,
the population size $n=20$,
the variable studied is the revision time per student, and its type is quantitative continuous data.
2. The number of classes by using Sturge's rule is :

$$
N_{\text {classes }}=1+3.3 \times \log N=5.29 \simeq 5
$$

Then the class width (amplitude) : $a=\frac{\max -\min }{N_{\text {classes }}}=\frac{23-4}{5}=3.8 \simeq 4$, so we obtain the following frequency table :

Revision time (classes) $\left[e_{i-1}, e_{i}[\right.$	$[4,8[$	$[8,12[$	$[12,16[$	$[16,20[$	$[20,24[$	\sum
Number of students (frequency) n_{i}	2	4	8	5	1	$n=20$
Increasing Cumulative	2	6	14	19	20	$/ / / / /$
Frequency (ICF) $N_{x=e_{i}} \uparrow$						
Relative Frequency f_{i}	0.1	0.2	0.4	0.25	0.05	01
Increasing Cumulative	0.1	0.3	0.7	0.95	1	$/ / / / /$
Relative Frequency (ICRF) $F_{x=e_{i}} \uparrow$						

3. Line 3: $N_{x} \uparrow=\sum_{x_{i}<x} n_{i}$.

Line 4: $f_{i}=\frac{n_{i}}{n}$.
Line 5: $F_{x} \uparrow=\sum_{x_{i}<x} f_{i}$.

