Exercise series No 2

Note: *questions marked* * *left to the students* Exercise 1

1) Show that the function $y = x + 1 - \frac{1}{3}e^x$, is a solution to the first-order initial value problem $\frac{dy}{dx} = y - x$; $y(0) = \frac{2}{3}$, on \mathbb{R} .

2)* Show that every member of the family of functions $y = \frac{c}{x} + 2$, is a solution of the first-order differential equation $\frac{dy}{dx} = \frac{1}{x}(2 - y)$ on the interval $]0, +\infty[$, where *C* is any constant.

3) give a differential equation whose solutions are of the form:

$$y = \frac{c+x}{x^2+1}; \ c \in \mathbb{R}.$$

Exercise 2

Solve the following separable differential equations:

a)* y' + 4y = 0; y(0) = 2. b) 2x + yy' = 0; y(1) = 1. c) xy' + (1 + x)y = 0; y(1) = 1. d)* $(1 + x^2)y' - xy = 0$; y(0) = 1. e) $(4 - x^2)yy' = 2(1 + y^2)$. f)* $(1 + y)y' = 4x^3$; ;y(0) = 0.

Exercise 3

solve the following linear differential equations:

a) $xy' + y = x; \ y(2) = 0.$ b)* $y' + y = xe^{x}; \ y(0) = 1.$ c) $y' - 2y = -\frac{2}{1+e^{-2x}}; \ y(0) = 2.$ d)* $y' + \tan x \ y = \sin 2x; \ y(0) = 1; x \in \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[.$ e)* $(1 + x)y' + xy = x^{2} - x + 1; \ y(1) = 1.$

Exercise 4

solve the following linear Bernoulli's equations:

a)
$$xy' + 3y = x^2y^2$$
;
b)* $y' + y \cot x + y^2 = 0$.
c) $y' + 2xy = -xy^4$.