Combinational Logic

	Tutorial: First session
Question	Solution
Q1	The solution of Q1 is provided in the attached file titled "Q1 Solution". Feel free to check the attachment for the complete solution.
Q2	 → Combinational Logic Circuits: Functionality: Combinational circuits perform operations based solely on the current input values. No Memory: They do not have memory elements, and the output is determined only by the current input values. Immediate Output: The output is immediately produced as a function of the inputs, without considering any past states. Example: Logic gates, adders, multiplexers, etc. → Sequential Logic Circuits: Functionality: Sequential circuits take into account both the current input values and the past states or inputs. Memory: They include memory elements (typically flip-flops) that store information about past inputs. Timing: The output is dependent not only on the current inputs but also on the order and timing of these inputs. Example: Flip-flop-based circuits, counters, registers, memory units, etc.
Q3	Circuit 1: It is observed that the output of this circuit is fed back into the input. Consequently, the output is influenced not only by the 'Write' and 'Data' inputs but also by its previous state. This observation establishes that the circuit is not purely a combinational logic circuit; rather, it exhibits the characteristics of a sequential logic circuit. Circuit 2: Similar to the observation made for Circuit 1, the outputs are explicitly fed back as inputs. This characteristic distinguishes it from a combinational logic circuit, confirming its classification as a sequential circuit. Circuit 3: In this circuit, the outputs Si (where i ranges from 0 to 3) all depend solely on the inputs 'e ₀ ' and 'e ₁ '. We can even deduce the equations for these outputs. For example, $S_3 = e_1.e_0$. It can be inferred that this is a combinational logic circuit.

Designate the sign of the second number B as S2.

• Designate the sign of the result R as Sr. We can, therefore, write: D = f(S1, S2, Sr).

We are indeed dealing with a logical system: a Boolean function and Boolean variables. Let's now find the relationship that exists between the output D and the inputs (S1, S2, Sr). We will do this by creating a truth table.

Si	Sign of A Sign of the Result Fonction D											
	S1	S2	Sr	D	Observation							
m _o	0	0	0	0	The sign of A and B is positive and the results are also => no overflow							
m ₁	0	0	1	1	The sign of A and B is positive and the results is negative => overflow							
m ₂	0	1	0	0	The sign of A is different from that of b => impossible to have an overflow							
m ₃	0	1	1	0	The sign of A is different from that of b => impossible to have an overflow							
m ₄	1	0	0	0	The sign of A is different from that of b => impossible to have an overflow							
$m_{\scriptscriptstyle S}$	1	0	1	0	The sign of A is different from that of b => impossible to have an overflow							
m ₆	1	1	0	1	The sign of A and B is negative and the results is positive=> overflow							
m ₇	1	1	1	0	he sign of A and B is negative and the results are also => no overflow							

From the truth table, we can deduce the equation of the function D, D= $\sum (1,6)$. D= $\frac{S_1.S_2.S_r}{S_1.S_2.S_r}$ + $\frac{S_1.S_2.S_r}{S_1.S_2.S_r}$

Exercise 5

Dec	Α	В	С	D	a	b	c	d	e	f	g
0	0	0	0	0	1	1	1	1	1	1	0
1	0	0	0	1	0	1	1	0	0	0	0
2	0	0	1	0	1	1	0	1	1	0	0
3	0	0	1	1	1	1	1	1	0	0	1
4	0	1	0	0	0	1	1	0	0	1	1
5	0	1.	0	1	1	0	1	1	0	1	1
6	0	1	1	0	1	0	1	1	1	1	1
7	0	1	1	1	1	1	1	0	0	0	0
8	1	0	0	0	1	1	1	1	1	1	1
9	1	0	0	1	1	1	1	1	0	1	1

<u>a</u>				
AB CD	00	01	11	10
00	1	0	1	1
01	0	1	1	1
11	X	X	X	X
10		1	X	X

 $a = A + C + \overline{B \oplus D}$

With same method, we can found:

$$b=\bar{B}+(\overline{C\oplus D})$$

$$c = \bar{C} + D + B$$

$$d = A + C\overline{D} + (B \oplus \overline{C}D)$$

$$e=\overline{D}(C+\overline{B})$$

$$f = A + \bar{C}\bar{D} + B(\bar{C} + \bar{D})$$

$$f = A + \overline{C}\overline{D} + B(\overline{C} + \overline{D})$$
$$g = (B \oplus C) + A\overline{C} + C\overline{D}$$

Third Tutorial Session

Exercise 6

Q1: This circuit features 8 inputs to a single output and incorporates 3 address lines for the 8 input lines, making it a multiplexer (MUX 8 to 1). where:

- d_0 to d_7 : Input lines
- y: Output
- A_0 , A_1 , A_2 : Address lines
- E: Enable input, active at a low level.

Q2+Q3: Truth Table and the Logigram

Q4:

 Q_5

E	A2	A1	A0	Y
1	X	X	X	0
0	0	0	0	d0
0	0	0	1	d1
0	0	1	0	d2
0	0	1	1	d3
0	1	0	0	d4
0	1	0	1	d5
0	1	1	0	d6
0	1	1	1	d7

$$y = \bar{E}[(\overline{A_2} \, \overline{A_1} \, \overline{A_0})d_0 + (\overline{A_2} \, \overline{A_1} A_0)d_1 + (\overline{A_2} A_1 \overline{A_0})d_2 + (\overline{A_2} A_1 A_0)d_3 + (A_2 \overline{A_1} \, \overline{A_0})d_4 + (A_2 \overline{A_1} A_0)d_5 + (A_2 A_1 \overline{A_0})d_6 + (A_2 A_1 A_0)d_7]$$

X	y	Z	f	di
0	0	0	0	d0 = 0
0	0	1	1	d1 = 1
0	1	0	0	d2 = 0
0	1	1	1	d3 = 1
1	0	0	0	d4 = 0
1	0	1	1	d5 = 1
1	1	0	0	d6 = 0
1	1	1	1	d7 = 1

Q5: We need two 4x1 Mux to achieve the 8x1 mux. The truth table of an 8x1 MUX will be shared between the two 4x1 MUXes as follows:

Exercise 7

Q1: The circuit does not function correctly in its current configuration due to having only 3 address lines, which is insufficient to address all 16 outputs. Therefore, an additional fourth address line $(4^2=16)$ is required to adequately address all outputs.

Q2: Truth Table:

E	A3	A2	A1	A0	Y0	Y1	Y2	Y3	Y4	Y5	Y6	Y7	Y8	 Y15
1	X	X	X	X	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	D	0	0	0	0	0	0	0	0	0
0	0	0	0	1	0	D	0	0	0	0	0	0	0	0
0	0	0	1	0	0	0	D	0	0	0	0	0	0	0
0	0	0	1	1	0	0	0	D	0	0	0	0	0	-0
0	0	1	0	0	0	0	0	0	D	0	0	0	0	0
0	0	1	0	1.	0	0	0	0	0	D	0	0	0	0
0	0	1	1	0	0	0	0	0	0	0	D	0	0	0
0	0	1	1	1.	0	0	0	0	0	0	0	D	0	0
0	1	0	0	0	0	0	0	0	0	0	0	0	D	 0
0	1	0	0	1	0	0	0	0	0	0	0	0	0	0
0	1	0	1	0	0	0	0	0	0	0	0	0	0	0
0	1	0	1	1.	0	0	0	0	0	0	0	0	0	0
0	1	1	0	0	0	0	0	0	0	0	0	0	0	0
0	1	1	0	1	0	0	0	0	0	0	0	0	0	0
0	1.	1	1	0	0	0	0	0	0	0	0	0	0	0
0	1	1	1	1	0	0	0	0	0	0	0	0	0	 D

Exercise 8	Q1:Truth Table	Q2	Q3
	b1 b0 a1 a0 E I S 0 0 0 0 1 0 0 0 0 0 1 0 0 1 0 0 1 0 0 0 1 0 1 0 0 0 1 0 0 1 0 1 0 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 <th>$E = \overline{b_1} \overline{b_0} \overline{a_1} \overline{a_0} + \overline{b_1} b_0 \overline{a_1} a_0 + b_1 \overline{b_0} a_1 \overline{a_0} + b_1 b_0 a_1 a_0$ $= \overline{b_1} \overline{a_1} (\overline{b_0} \overline{a_0} + b_0 a_0) + b_1 a_1 (\overline{b_0} \overline{a_0} + b_0 a_0)$ $E = (\overline{b_0} \oplus a_0). (\overline{b_1} \oplus a_1)$ $S: \qquad \qquad \overline{b_1 b_0} a_1 \underline{a_0} 00 01 11 10$ $00 0 0 1 11 10$ $01 0 0 0 1 11 10$ $11 0 0 0 0 1 0$ $10 0 0 0 1 0$ $11 0 0 0 0$ $11 1 0 0 0$ $11 1 11 0 0 0$ $11 11 11 0 0$ $11 11 11 0 0$ $11 11 11 11$ $11 11$</th> <th>Draw up the corresponding logigram using two input gates</th>	$E = \overline{b_1} \overline{b_0} \overline{a_1} \overline{a_0} + \overline{b_1} b_0 \overline{a_1} a_0 + b_1 \overline{b_0} a_1 \overline{a_0} + b_1 b_0 a_1 a_0$ $= \overline{b_1} \overline{a_1} (\overline{b_0} \overline{a_0} + b_0 a_0) + b_1 a_1 (\overline{b_0} \overline{a_0} + b_0 a_0)$ $E = (\overline{b_0} \oplus a_0). (\overline{b_1} \oplus a_1)$ $S: \qquad \qquad \overline{b_1 b_0} a_1 \underline{a_0} 00 01 11 10$ $00 0 0 1 11 10$ $01 0 0 0 1 11 10$ $11 0 0 0 0 1 0$ $10 0 0 0 1 0$ $11 0 0 0 0$ $11 1 0 0 0$ $11 1 11 0 0 0$ $11 11 11 0 0$ $11 11 11 0 0$ $11 11 11 11$ $11 11 11 11$ $11 11 11 11$ $11 11 11 11$ $11 11 11 11$ $11 11 11 11$ $11 11 11 11$ $11 11 $	Draw up the corresponding logigram using two input gates

	Fourth Tutorial Session													
Exercise 9	Truth Table		Logigram											
	I1 I2 I3 M1 M2 0 0 0 0 0 0 0 1 0 1 0 1 0 0 1 0 1 1 1 1 1 0 0 0 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1	$M_{1} = I_{1}I_{2} + I_{1}I_{3} + I_{2}I_{3}$ $1 $	NAND based logigram $ \overline{M_1} = \overline{I_1I_2 + I_1I_3 + I_2I_3} = \overline{I_1I_2}.\overline{I_1I_3}.\overline{I_2I_3} $ $ \overline{M_2} = \overline{I_1 + I_2 + I_3} = \overline{I_1}.\overline{I_2}.\overline{I_3} $ NOR based logigram $ \overline{M_1} = \overline{\overline{I_1I_2} + \overline{I_1I_3} + \overline{I_2I_3}} = \overline{\overline{I_1} + \overline{I_2} + \overline{I_1} + \overline{I_3} + \overline{I_2} + \overline{I_3}} $ $ \overline{M_2} = \overline{I_1 + I_2 + I_3} $											