

Problem 1 Maximize the following

$$
\left\{\begin{array}{c}
\max x y \\
\text { subject to } \\
4 x^{2}+y^{2}=36
\end{array}\right.
$$

Problem 2 Minimize the following

$$
\left\{\begin{array}{c}
\min x^{2}+y^{2} \\
\text { subject to } \\
x^{2} y-25=0
\end{array}\right.
$$

Problem 3 Minimize the following

$$
\left\{\begin{array}{c}
\min f(x, y, z)=z \\
\text { subject to } \\
g_{1}(x, y, z)=x+y+z-12=0 \\
g_{2}(x, y, z)=x^{2}+y^{2}-z=0
\end{array}\right.
$$

Problem 4 Let us show by an optimization calculation that the geometric mean of a set of positive values is always less than or equal to the arithmetic mean,

$$
\sqrt[n]{x_{1} x_{2} \ldots x_{n}} \leq \frac{x_{1}+x_{2}+\ldots x_{n}}{n}
$$

Problem 5 Solve the problem

$$
\left\{\begin{array}{c}
\min \langle A x, x\rangle \\
s t \\
\|x\|=1
\end{array}\right.
$$

A is a symmetric matrix and $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right)^{T}$

Problem 6 We consider the function

$$
f(x, y)=x^{2}+y^{2}-4 x y
$$

subject to the constraint

$$
x^{2}+y^{2}=16
$$

What are the extrema of this function?
Problem 7 We consider the function

$$
f(x, y)=x^{3}+y^{3}
$$

subject to the constraint

$$
x^{2}+y^{2}=4
$$

What are the extrema of this function?
Problem 8 We consider the function

$$
f(x, y, z)=(x-2)^{2}+y^{2}+z^{2}
$$

subject to the constraint

$$
x^{2}+2 y^{2}+3 z^{2}=4
$$

What are the extrema of this function?
Problem 9 We consider the function

$$
f(x, y, z)=x^{3}+y+\frac{1}{2} z^{2}
$$

subject to the constraints

$$
\begin{aligned}
& x+y+z=0 \\
& x+y-z=0
\end{aligned}
$$

What are the extrema of this function?
Problem 10 Consider the function

$$
f(x, y, z)=\pi x^{2} y
$$

subject to the constraint

$$
4 \pi x^{2} \times+2 \pi x y-\alpha=0=0
$$

Find the maximum of this function?
Problem 11 Consider theminimization problem with linear equality constraints (again $Q>0$ and A has full row rank):
minimize $\frac{1}{2} x^{T} Q x$ subject to $A x=b$
Deduce the solution of the following problem
minimize $\|x\|$ subject to $A x=b$

