Chapter 1:Riemann integral and primitives

1.1 Riemann integral

Definition.1.1 (partition)

A partition P of [a, b] is a finite set of numbers $\{x_0, x_1, x_2, \ldots, x_{n-1}, x_n\}$ such that $a = x_0 < x_1 < x_2 < \ldots < x_{n-1} < x_n = b$

We write $\Delta x_i = x_i - x_{i-1}$.

We define the norm of partition P is the positive number $||P|| = \max_{1 \le i \le n} (x_i - x_{i-1})$.

Remak:

When the n subintervals have equal length $\Delta x_i = \frac{b-a}{n}$

The i^{th} term of the partition is $x_i = a + i \frac{b-a}{n}$ (This makes $x_n = b$.)

Definition 1.2 (Darboux sums)

Suppose $f: [a, b] \to \mathbb{R}$ is bounded and P is a partition of [a, b]. Define

$$m_i = \inf\{f(x): x_{i-1} < x < x_i\}$$

$$M_i = \sup\{f(x): x_{i-1} < x < x_i\}$$

$$s(P,f) = \sum_{i=1}^n m_i \, \Delta x_i$$

$$S(P,f) = \sum_{i=1}^n M_i \, \Delta x_i.$$

We call s(P, f) the *lower Darboux sum* and S(P, f) the *upper Darboux sum*.

Lemma.1.1. Let P and Q be two partitions of [a, b] such that $P \subset Q$ Then

$$s(P,f) \le s(Q,f)$$

 $S(P,f) \ge S(Q,f)$.

(The partition Q is called a refinement of P.)

Proof

First let us consider a particular case. Let $P^{'}$ be a partition formed from P by adding one extra point, say $c \in [x_{i-1}, x_i]$. Let $m_i^{'} = \sup_{x_{i-1} \le x \le c} f(x)$, $m_i^{''} = \sup_{c \le x \le x_i} f(x)$.

Then $m_i^{'} \geq m_i$, $m_i^{''} \geq m_i$, and we have

$$s(P',f) = \sum_{i=1}^{i-1} m_i \, \Delta x_{i-1} + m_i'(c - x_{i-1}) + m_i''(x_i - c) + \sum_{i=i+1}^{n} m_i \, \Delta x_{i+1}$$

$$\geq \sum_{i=1}^{i-1} m_i \, \Delta x_{i-1} + m_i(x_i - x_{i-1}) + \sum_{i=i+1}^{n} m_i \, \Delta x_{i+1} = s(P,f).$$

Similarly one obtains that

$$S(P',f) \leq S(P,f)$$
.

Now to prove the assertion one has to P consequetly a finite number of points in order to form Q.

Lemma.1.2

Let P and Q be arbitrary partitions of [a, b]. Then

$$s(P,f) \leq S(Q,f)$$
.

Proof

Consider the partition $P \cup Q$. By Lemma 1 1 we have $s(P, f) \le s(P \cup Q, f) \le S(P \cup Q, f) \le S(Q, f)$.

Proposition 1.1

Let $f: [a, b] \to \mathbb{R}$ be a bounded function. Let $m, M \in \mathbb{R}$ be such that for all $x \in [a, b]$, we have m < x < M. Then for every partition P of [a, b],

$$m(b-a) \le s(P,f) \le S(P,f) \le M(b-a)$$

Proof

Let P be a partition of [a, b]. Note that $m \le m_i \le M_i \le M$ for all i and $\sum_{i=1}^n \Delta x_i = (b-a)$. Therefore,

$$m(b-a) = \sum_{i=1}^{n} m \Delta x_i \le \sum_{i=1}^{n} m_i \Delta x_i \le \sum_{i=1}^{n} M_i \Delta x_i \le \sum_{i=1}^{n} M \Delta x_i = M(b-a)$$

Definition 1.3

As the sets of lower and upper Darboux sums are bounded, we define Lower Darboux integral $\int_a^b f = \sup(P, f)$: P a partition of [a, b].

Upper Darboux integral $\overline{\int_a^b f} = \inf S(P, f) : P$ a partition of [a, b].

Lemma.1.3

$$\underline{\int_{a}^{b} f} \leq \overline{\int_{a}^{b} f}.$$

Proof

Fix a partition Q. Then by Lemma 12

$$\forall P: s(P, f) \leq S(Q, f).$$

Therefore

$$\underbrace{\int_{a}^{b} f}_{P} = \sup_{P} S(P, f) \le S(Q, f).$$

And from the above

$$\forall Q \colon \int_a^b f \leq S(Q, f).$$

Hence

$$\int_{a}^{b} f \le \inf S(Q, f) = \overline{\int_{a}^{b} f}.$$

Proposition 1.2. Let $f:[a,b] \to \mathbb{R}$ be a bounded function. Let $m,M \in \mathbb{R}$ be such that for all $x \in [a,b]$, we have $m \le f(x) \le M$. Then

$$m(b-a) \le \int_a^b f \le \int_a^b f \le M(b-a)$$

Proof. By Proposition 1.1, for every partition P,

$$m(b-a) \le s(P,f) \le S(P,f) \le M(b-a)$$

The inequality $m(b-a) \le s(P,f)$ implies $m(b-a) \le \int_a^b f$. The inequality $S(P,f) \le f$

$$M(b-a)$$
 implies $\overline{\int_a^b f} \le M(b-a)$.

Definition 1.4.A function $f:[a,b] \to \mathbb{R}$ is called Riemann integrable if

$$\int_{a}^{b} f = \overline{\int_{a}^{b} f}.$$

The common value is called integral of f over [a,b] and is denoted by $\int_a^b f(x) dx$.

Proposition 1.3. Let $f:[a,b]\to\mathbb{R}$ be a Riemann integrable function. Let $m,M\in\mathbb{R}$ be such that $m\leq f(x)\leq M$ for all $x\in[a,b]$. Then

$$m(b-a) \le \int_a^b f(x) dx \le M(b-a).$$

Proof Is a direct consequence of Proposition 1.2.

Example 11

We integrate constant functions. If f(x) = c for some constant c, then we take m = M = c. In Proposition 1.3. Thus f is integrable on [a, b] and

$$\int_a^b f(x) dx = c(b - a).$$

Theorem 1.1

A function $f:[a,b] \to \mathbb{R}$ is Riemann integrable if and only if for any $\varepsilon > 0$ there exists a partition P of [a,b] such that $S(P,f) - s(P,f) < \varepsilon$.

Proof

1 Necessity: Let $\int_a^b f = \overline{\int_a^b f}$, i.e. let us assume that f is integrable.

$$\exists P_1, P_2: s(P_1, f) > \underline{\int_a^b f} - \frac{\varepsilon}{2} \text{ and } S(P_2, f) < \overline{\int_a^b f} + \frac{\varepsilon}{2}.$$

Let $Q = P_1 \cup P_2$. Then

$$\underline{\int_{a}^{b} f - \frac{\varepsilon}{2}} < s(P_1, f) \le S(P_1 \cup P_2, f) \le S(P_1 \cup P_2, f) \le S(P_2, f) < \overline{\int_{a}^{b} f + \frac{\varepsilon}{2}}.$$

Therefore (since $\int_a^b f = \overline{\int_a^b f}$)

$$S(Q,f) - s(Q,f) < \varepsilon$$
.

2 sufficiency: Fix $\varepsilon > 0$. Let P be a partition such that $S(P,f) - s(P,f) < \varepsilon$. Note that

$$\overline{\int_a^b f} - \underline{\int_a^b f} = S(P, f) - s(P, f) < \varepsilon.$$

Therefore it follows that

$$\forall \varepsilon > 0: \overline{\int_a^b f} - \int_a^b f < \varepsilon.$$

This implies that

$$\overline{\int_a^b f} = \int_a^b f.$$

Example 1.2

Let us show $f(x) = x^2$ is integrable on [a, b] for all b > a > 0. We will see later that continuous functions are integrable, but let us demonstrate how we do it directly.

Let ε be given. Take $n \in \mathbb{N}$ and let $x_i = a + i \frac{b-a}{n}$ form the partition P =

 $\{x_0,x_1,x_2,\ldots,x_{n-1},x_n\}$ of [a,b]. Then $\Delta x_i=\frac{b-a}{n}$ for all i. As f is increasing, for every subinterval $[x_{i-1},x_i]$,

$$m_i = \inf\{f(x): x_{i-1} < x < x_i\} = \left(a + (i-1)\frac{b-a}{n}\right)^2$$

$$M_i = \sup\{f(x): x_{i-1} < x < x_i\} = \left(a + i\frac{b-a}{n}\right)^2$$

Then

$$S(P,f) - s(P,f) = \sum_{i=1}^{n} (M_i - m_i) \Delta x_i$$

$$\begin{split} &= \frac{b-a}{n} \sum_{i=1}^{n} \left(\left(a + i \frac{b-a}{n} \right)^{2} - \left(a + (i-1) \frac{b-a}{n} \right)^{2} \right) \\ &= \frac{b-a}{n} \sum_{i=1}^{n} \left(\left(a + n \frac{b-a}{n} \right)^{2} - \left(a + 0 \frac{b-a}{n} \right)^{2} \right) = \frac{b^{3}}{n} \\ &= \frac{b-a}{n} (b^{2} - a^{2}). \end{split}$$

Picking n to be such that, $\frac{b-a}{n}(b^2-a^2)<\varepsilon$ the proposition is satisfied, and the function is integrable.

On the other hand, as we know from algebra (or can be proven by induction):

$$\sum_{i=1}^{n} i = \frac{n(n+1)}{2} \quad \text{and} \quad \sum_{i=1}^{n} i^2 = \frac{n(2n+1)(n+1)}{6}$$

So

$$S(P,f) = \frac{b-a}{n} \sum_{i=1}^{n} \left(a + i \frac{b-a}{n} \right)^{2}$$

$$= \frac{b-a}{n} \left[\sum_{i=1}^{n} a^{2} + 2a \frac{b-a}{n} i + \left(\frac{b-a}{n} \right)^{2} i^{2} \right]$$

$$= \frac{b-a}{n} \left[a^{2}n + 2a \frac{b-a}{n} \sum_{i=1}^{n} i + \left(\frac{b-a}{n} \right)^{2} \sum_{i=1}^{n} i^{2} \right]$$

$$= \frac{b-a}{n} \left[a^{2}n + 2a \frac{b-a}{n} \frac{n(n+1)}{2} + \left(\frac{b-a}{n} \right)^{2} \frac{n(2n+1)(n+1)}{6} \right]$$

$$= (b-a) \left[a^{2} + a(b-a) \frac{(n+1)}{n} + (b-a)^{2} \frac{(2n+1)(n+1)}{6n^{2}} \right].$$

Similarly one obtains that

$$s(P,f) = (b-a) \left[a^2 + a(b-a) \frac{(n-1)}{n} + (b-a)^2 \frac{(2n-1)(n-1)}{6n^2} \right].$$

So

$$\lim_{n \to \infty} S(P, f) = \lim_{n \to \infty} s(P, f) = \frac{(b - a)}{3} (b^2 + ab + a^2) = \frac{1}{3} (b^2 - a^2).$$

Finally we obtain

$$\int_{a}^{b} x^{2} dx = \frac{1}{3} (b^{2} - a^{2}).$$

Definition 1.5 (Riemann sums)

Let $f: [a,b] \to \mathbb{R}$ be defined on the interval [a,b] and let $P = \{x_0, x_1, x_2, \dots, x_{n-1}, x_n\}$ be a partition of [a,b].

Let $C = \{c_1, c_2, \dots, c_{i-1}, c_i, \dots, c_{n-1}, c_n\}$ where c_i denote any value in the i^{th} subinterval $(c_i \in [x_{i-1}, x_i])$. The Riemann sum of a function f on [a, b] that corresponds to P and the point system C is

$$R(P,f,C) = \sum_{i=1}^{n} f(c_i) \Delta x_i.$$

Theorem 1.2

A function f is Riemann integrable on [a,b] if there is a number L such that for each $\varepsilon>0$ there is $\delta>0$ such that if P is any partition of [a,b] with $\|P\|<\delta$ then $|R(P,f,\mathbb{C})-L|<\varepsilon$. (In other words $\lim_{\|P\|\to 0}R(P,f,\mathbb{C})=L$). And we have $L=\int_a^bf(x)dx$. The set of all Riemann integrable functions in [a,b] is denoted by $\mathcal{R}([a,b])$.

Proof

1 Necessity: using $|R(P, f, \mathbb{C}) - L| \le S(P, f) - s(P, f)$.

2 sufficiency: To do this, we will first show that

$$S(P,f) = \sup_{C} R(P,f,C), \quad s(P,f) \inf_{C} R(P,f,C).$$

Remark

If the function f is Riemann integrable on [a,b] then the number $\int_a^b f(x)dx$ is the common limit of the two sequences $u_n = \frac{b-a}{n}\sum_{i=0}^{n-1} f(a+\frac{b-a}{n}i)$ and $v_n = \frac{b-a}{n}\sum_{i=1}^n f(a+\frac{b-a}{n}i)$.

Example

Calculate the limit of the sum $v_n = \sum_{i=0}^n \frac{n}{(n+i)^2}$

We have

$$v_n = \sum_{i=0}^{n-1} \frac{n}{(n+i)^2} + \frac{1}{4n} = \frac{1}{n} \sum_{i=0}^{n-1} \frac{1}{\left(1 + \frac{i}{n}\right)^2} + \frac{1}{4n}$$

by putting [a, b] = [1,2]; $f(x) = \frac{1}{x^2}$ then

$$v_n = \frac{b-a}{n} \sum_{i=0}^{n-1} f(a + \frac{b-a}{n}i) + \frac{1}{4n}.$$

So

$$\lim_{n \to \infty} v_n = \lim_{n \to \infty} \left(\frac{1}{n} \sum_{i=0}^n f(1 + \frac{1}{n}i) \right) + 0 = \int_a^b f(x) dx = \int_1^2 \frac{1}{x^2} dx = \frac{1}{2}$$

1.2 Integrable functions

Theorem 1.3

Let $f : [a, b] \to \mathbb{R}$ be monotone. Then f is Riemann integrable.

Proof

Suppose that f is increasing so that $f(a) \le f(b)$.

If f(a) = f(b) then f is constant, so f is Riemann integrable and $\int_a^b f(x) dx = f(a)(b-a)$.

If f(a) < f(b) let $\varepsilon > 0$ and P a partition of [a,b] such that $||P|| < \delta = \frac{\varepsilon}{f(b) - f(a)}$.

For this partition we obtain

$$S(P,f) - s(P,f) = \sum_{i=1}^{n} (M_i - m_i) \Delta x_i = \sum_{i=1}^{n} (f(x_i) - f(x_{i-1})) \Delta x_i$$

$$< \delta \sum_{i=1}^{n} (f(x_i) - f(x_{i-1})) = \delta (f(b) - f(a)) = \varepsilon.$$

Theorem 1.4

Let $f: [a, b] \to \mathbb{R}$ be continuous. Then f is Riemann integrable.

Proof

Let
$$P = \{x_0, x_1, x_2, \ldots, x_{n-1}, x_n\}$$
 be a partition of $[a, b]$ and $m_i = \inf_{x_{i-1} \le x \le x_i} f(x)$; $M_i = \sup_{x_{i-1} \le x \le x_i} f(x)$. Let $\varepsilon > 0$. A continuous function on closed interval $[x_{i-1}, x_i]$ is uniformly continuous

Let $\varepsilon > 0$. A continuous function on closed interval $[x_{i-1}, x_i]$ is uniformly continuous and reaches its upper and lower bounds at least once, so there exists $\delta > 0$ such that $\forall x_{i-1}, x_i \in [a,b]: |x_i-x_{i-1}| < \delta \Longrightarrow |f(x_i)-f(x_{i-1})| < \frac{\varepsilon}{b-a}$ and there is at least x_i' ; x_i'' are from the subinterval $[x_{i-1}, x_i]$ where $m_i = f(x_i')$; $M_i = f(x_i'')$. Choose a partition P such that $||P|| < \delta$ so

$$S(P,f) - s(P,f) = \sum_{i=1}^{n} (M_i - m_i) \Delta x_i = \sum_{i=1}^{n} (f(x_i) - f(x_{i-1})) \Delta x_i$$
$$< \frac{\varepsilon}{b - a} \sum_{i=1}^{n} \Delta x_i = \frac{\varepsilon}{b - a} (b - a) = \varepsilon.$$

Theorem 1.5

If $f,g:[a,b]\to\mathbb{R}$ are integrable, then $fg:[a,b]\to\mathbb{R}$ is integrable. If, in addition, $g\neq 0$ and $\frac{1}{g}$ is bounded, then $\frac{f}{g}:[a,b]\to\mathbb{R}$ is integrable.

1.3. Properties of the Riemann integral

Let $f, g: [a, b] \to \mathbb{R}$ Riemann integrable functions on [a, b]. The integral has the following three basic properties.

1) Linearity:

$$\int_{a}^{b} (f(x) + g(x))dx = \int_{a}^{b} f(x)dx + \int_{a}^{b} f(x)dx , \quad \int_{a}^{b} \lambda f(x)dx = \lambda \int_{a}^{b} f(x)dx$$

2) Monotonicity:

If $\forall x \in [a, b]: f(x) \le g(x)$, then $\int_a^b f(x) dx \le \int_a^b g(x) dx$.

3) Additivity: If $\alpha, \beta, \gamma \in [a, b]$, then

a)
$$\int_{\alpha}^{\beta} f(x)dx = \int_{\alpha}^{\gamma} f(x)dx + \int_{\gamma}^{\beta} f(x)dx$$
.

b).
$$\int_{\alpha}^{\alpha} f(x) dx = 0.$$

c)
$$\int_{\alpha}^{\beta} f(x)dx = -\int_{\beta}^{\alpha} f(x)dx$$
.

4) If f is continuous on [a, b] and $\forall x \in [a, b]$: $f(x) \ge 0$ then

$$\left(\int_{a}^{b} f(x)dx = 0\right) \Longrightarrow (\forall x \in [a,b]: f(x) = 0).$$

5)
$$\left| \int_a^b f(x) dx \right| \le \int_a^b |f(x)| dx$$
.

6) If f is continuous on [a, b], then there exists $c \in [a, b]$, where

$$\int_{a}^{b} f(x)dx = f(c)(b-a).$$

1.4 Integrals and primitives

Definition 1.6

Let $f: [a, b] \to \mathbb{R}$ function, we say that function F is a primitive function of f over [a, b] if and only if F is differentiable over [a, b] and $\forall x \in [a, b]$: F'(x) = f(x).

Proposition 1.4

If F_1 and F_2 are primitive functions of f on [a,b] then $\forall x \in [a,b]$: $F_1(x) - F_2(x) = C$ where C is a real constant.

Example

The function $F(x) = \frac{1}{3}x^3$ is a primitive of the function $f(x) = x^2$ over \mathbb{R} because

$$\forall x \in \mathbb{R}: F'(x) = \left(\frac{1}{3}x^3\right)' = x^2 = f(x).$$

Theorem 1.6 (The fundamental theorem of calculus 1)

if $F: [a, b] \to \mathbb{R}$ is continuous on [a, b] and differentiable in]a, b[with F' = f where $f: [a, b] \to \mathbb{R}$ is Riemann integrable, then

$$\int_{a}^{b} f(x) dx = F(b) - F(a).$$

Proof

Let $P = \{x_0, x_1, x_2, \dots, x_{n-1}, x_n\}$ be a partition of [a, b].

The function F is continuous on the closed interval $[x_{i-1}, x_i]$ and differentiable in the open interval $[x_{i-1}, x_i]$ with F' = f. By the mean value theorem, there exists

 $c_i \in]x_{i-1}, x_i[$ such that

$$F(x_i) - F(x_{i-1}) = F'(c_i)(x_i - x_{i-1})$$
$$= f(c_i)(x_i - x_{i-1})$$

Since *f* is Riemann integrable, it is bounded and it follows that

$$m_i(x_i - x_{i-1}) \le f(c_i)(x_i - x_{i-1}) \le M_i(x_i - x_{i-1})$$

or

$$m_i(x_i - x_{i-1}) \le F(x_i) - F(x_{i-1}) \le M_i(x_i - x_{i-1})$$

where

$$M_i = \sup_{x_{i-1} \le x \le x_i} f(x)$$
 and $m_i = \inf_{x_{i-1} \le x \le x_i} f(x)$.

So

$$\sum_{i=1}^{n} m_i \, \Delta x_i \le \sum_{i=1}^{n} \left(F(x_i) - F(x_{i-1}) \right) \Delta x_i \le \sum_{i=1}^{n} M_i \, \Delta x_i$$

Hence $s(P, f) \le F(b) - F(a) \le S(P, f)$ of every partition of [a, b] wich implies that $\underline{\int_a^b f} \le F(b) - F(a) \le \overline{\int_a^b f}$. Since f is integrable i.e. $\underline{\int_a^b f} = \overline{\int_a^b f}$ we obtain

$$F(b) - F(a) = \int_a^b f(x) \, dx.$$

Theorem 1.7 (The fundamental theorem of calculus 2)

Suppose that $f: [a, b] \to \mathbb{R}$ is continuous on [a, b] and $F: [a, b] \to \mathbb{R}$ is defined by $\forall x \in [a, b] \colon F(x) = \int_a^x f(t) \, dt$. Then F is differentiable over [a, b] and $\forall x \in [a, b] \colon F'(x) = f(x)$ (that is, F is a primitive function of f over [a, b]).

Proof

Let $x, h \in [a, b]$ and h > 0. Then

$$\frac{F(x+h) - F(x)}{h} = \frac{\int_{a}^{x+h} f(t) \, dt - \int_{a}^{x} f(t) \, dt}{h} = \frac{1}{h} \int_{x}^{x+h} f(t) \, dt.$$

Let $\varepsilon > 0$. Since f is continuous at x there exists $\delta > 0$ such that

$$|f(t) - f(x)| < \varepsilon$$
 for $|t - x| < \delta$.

It follows that if $0 < h < \delta$ then

$$\left| \frac{F(x+h) - F(x)}{h} - f(x) \right| = \left| \frac{1}{h} \int_{x}^{x+h} f(t) \, dt - f(x) \right|$$

$$= \left| \frac{1}{h} \int_{x}^{x+h} \left(f(t) - f(x) \right) dt \right|$$

$$\leq \frac{1}{h} \int_{x}^{x+h} |f(t) - f(x)| \, dt$$

$$\leq \frac{1}{h} \sup_{x < t < x+h} |f(t) - f(x)| \left| \int_{x}^{x+h} \, dt \right|$$

$$\leq \frac{1}{h} \varepsilon h = \varepsilon.$$

So

$$\lim_{h \to 0} \frac{F(x+h) - F(x)}{h} = f(x).$$

In the same way, we obtain

$$\lim_{h\to 0} \frac{F(x+h) - F(x)}{h} = f(x).$$

Which proves the result.

Corollary 1.1

Let $f: [a, b] \to \mathbb{R}$ be continuous in [a, b] and F is a primitive function of f over [a, b]. Then

$$\int_{a}^{b} f(x) dx = F(b) - F(a).$$

Proof Proof is a direct consequence of Theorem 1.7.

Example

Since $F(x) = \frac{1}{3}x^3$ is primitive function of $f(x) = x^2$ over \mathbb{R} . Then

$$\forall a, b \in \mathbb{R}: \int_{a}^{b} f(x) dx = F(b) - F(a) = \frac{1}{3}b^{3} - \frac{1}{3}a^{3}.$$

Theorem 1.8 (Change of variables)

Let φ : $[a,b] \to \boxtimes$ be a continuously differentiable function, let f be continuous over $\varphi([a,b])$, Then $\int_a^b f(x)dx = \int_\alpha^\beta f(\varphi(t))\varphi'(t)dt$, where $b = \varphi(\beta)$; $\alpha = \varphi(\alpha)$ and $\alpha = \varphi(t)$; $\alpha = \varphi(t)$ and $\alpha = \varphi(t)$ are $\alpha = \varphi(t)$.

Proof

The function $f(\varphi)\varphi'$ is continuous and therefore integrable. Let F be a primitive of f and then $F(\varphi)$ is a primitive of $f(\varphi(t))\varphi'(t)$. So according to the Corollary 1.1,

$$\int_{\alpha}^{\beta} f(\varphi(t))\varphi'(t)dt = F(\varphi(\beta)) - F(\varphi(\alpha)) = F(b) - F(a) = \int_{a}^{b} f(x)dx.$$

Example 1

Calculate the integral $J = \int_0^1 \sqrt{1 - x^2} \, dx$. (Put $x = \varphi(t) = \sin t$).

$$x = \varphi(t) = \sin t \implies dx = \cos t \, dt$$

 $\sin \alpha = 0 \iff \alpha = 0, \pi, -\pi, 2\pi, -2\pi, \dots$ (The value of α can be chosen from among the values $0, \pi, -\pi, 2\pi, -2\pi$...).

 $\sin\beta=1 \iff \beta=\frac{\pi}{2},\frac{-3\pi}{2},\frac{5\pi}{2}...$ (The value of β can be chosen from among the values $\frac{\pi}{2},\frac{-3\pi}{2},\frac{5\pi}{2}...$).

So

$$J = \int_0^{\frac{\pi}{2}} \sqrt{1 - (\sin t)^2} \cos t \, dt = \int_0^{\frac{\pi}{2}} \sqrt{(\cos t)^2} \cos t \, dt.$$

Since $\forall x \in \left[0, \frac{\pi}{2}\right] : cos t \ge 0$. Then

$$J = \int_0^{\frac{\pi}{2}} (\cos t)^2 dt = \frac{1}{2} \int_0^{\frac{\pi}{2}} (1 + \cos 2t) dt$$

$$= \frac{1}{2} \left[t + \frac{1}{2} \sin 2t \right]_0^{\frac{\pi}{2}} = \frac{\pi}{4}.$$

Example 2

Calculate the integral $K = \int_0^4 \frac{\sqrt{x}}{\sqrt{x+1}} dx$. (Put $x = \varphi(t) = t^2$).

$$x = \varphi(t) = t^2 \Longrightarrow dx = 2tdt.$$

 $\varphi(\alpha) = a \iff \alpha^2 = 0 \iff \alpha = 0$ (The value of α can be chosen from among the values

 $\varphi \varphi(\beta) = b \iff \beta^2 = 4 \iff \beta = -2, \beta = 2$ (The value of β can be chosen from among the values -2, 2). So

$$K = \int_{0}^{-2} \frac{\sqrt{t^2}}{\sqrt{t^2} + 1} 2tdt$$

Since $\forall t \in [-2,0]: t \leq 0$. Then

$$K = 2 \int_{-2}^{0} \frac{t^2}{-t+1} dt = 2 \int_{-2}^{0} (-t-1 - \frac{1}{t-1}) dt$$
$$= 2 \left[-\frac{1}{2} t^2 - t - \ln|t-1| \right]_{-2}^{0} = 2\ln 3.$$

Theorem 1.9 (Integration by parts). Suppose that $u, v : [a, b] \to \mathbb{R}$ are continuous on [a, b] and differentiable in (a, b), and u', v' are integrable on [a, b]. Then

$$\int_a^b uv' \, dx = [uv]_a^b - \int_a^b u'v \, dx.$$

Proof. The function u v is continuous on [a,b] and, by the product rule, differentiable

in (a,b) with derivative (uv)' = u'v + uv'. Since u,v,u' and v' are integrable on [a,b]. Theorem 1.4 implies that u'v, uv' and (uv)', are integrable. From Theorem 1.5, we get that $\int_a^b (uv' + u'v) dx = \int_a^b uv' dx + \int_a^b u'v dx = [uv]_a^b$, which proves the result.

Example 1

calculate the integral $I = \int_0^1 Arc \tan x \, dx$.

$$\begin{cases} v' = 1 \\ u = Arc \tan x \end{cases} \Longrightarrow \begin{cases} v = x \\ u' = \frac{1}{x^2 + 1} \end{cases}$$

$$I = [uv]_0^1 - \int_0^1 u'v \, dx = [xArc \tan x]_0^1 - \int_0^1 \frac{1}{x^2 + 1} x \, dx$$

$$I = \left[xArc \tan x - \frac{1}{2}ln(x^2 + 1) \right]_0^1 = \frac{\pi}{4} - \frac{1}{2}ln2.$$

Example 2

calculate the integral $I = \int_{1}^{2} x \ln \frac{x}{x+1} dx$.

$$\begin{cases} v' = x \\ u = \ln \frac{x}{x+1} \Longrightarrow \begin{cases} v = \frac{1}{2}x^2 \\ u' = \frac{1}{x(x+1)} \end{cases}$$

$$I = [uv]_1^2 - \int_1^2 u'v \, dx$$

$$I = \left[\frac{1}{2}x^2 \ln \frac{x}{x+1}\right]_1^2 - \int_1^2 \frac{1}{2}x^2 \frac{1}{x(x+1)} dx$$

$$I = \left[\frac{1}{2}x^{2}\ln\frac{x}{x+1}\right]_{1}^{2} - \int_{1}^{2}\frac{1}{2}x^{2}\frac{1}{x(x+1)}dx$$

$$I = \frac{5}{2}\ln 2 - 2\ln 3 - \int_{1}^{2} \frac{1}{2} \frac{x}{(x+1)} dx$$

$$I = \frac{5}{2}\ln 2 - 2\ln 3 - \frac{1}{2}\int_{1}^{2} 1 - \frac{1}{(x+1)} dx$$

$$I = \frac{5}{2}\ln 2 - 2\ln 3 - \frac{1}{2}[x - \ln(x+1)]_1^2$$

$$I = \frac{5}{2}\ln 2 - 2\ln 3 - \frac{1}{2}[1 + \ln 2 - \ln 3] = 2\ln 2 - \frac{3}{2}\ln 3 - \frac{1}{2}.$$

Definition 1.7.(The Indefinite Integral)

The set of all primitive functions of f is the *indefinite integral* of f with respect to x and denoted by $\int f(x) dx$ where

 $\int f(x) dx$ is read "the integral of f w.r.t x ".

Note: The above definition says that if a function F is an primitive of f, then

$$\int f(x) dx = F(x) + C \text{ where C is a real constant.}$$

Example

$$\int x^3 dx = \frac{1}{4}x^4 + C$$

primitives of usual functions

_	
$\int f(x) dx$	f
$\frac{1}{\alpha+1}x^{\alpha+1} + C$ $\ln x + C$	$(\alpha \in \mathbb{R}^* - \{-1\}$ حيث x^{α}
$\ln x + C$	1
	$\frac{\overline{x}}{x}$
$e^x + C$	$\frac{x}{e^x}$
$-\cos x + C$	sin x
$\sin x + C$	cos x
$-\ln \cos x + C$	tan <i>x</i>
$\tan x + C$	1
	$\frac{\overline{\cos^2 x}}{1}$
$-\cot x + C$	1
	$\frac{1}{\sin^2 x}$
$\cosh x + C$	sinh x
$\sinh x + C$	$\cosh x$
$\frac{1}{z}$ Arctan $\frac{x}{z} + C$	1
$-\operatorname{Arctan} - + C$	$\frac{\overline{x^2 + a^2}}{1}$
Arcsin $\frac{x}{-} + C$	1
a	$\sqrt{a^2-x^2}$
$1 \cdot x+a $	1
$\frac{1}{2a}\ln\left \frac{1}{x-a}\right + C$	$\overline{x^2-a^2}$
$\frac{1}{(\omega(\alpha))^{\alpha+1}}$	$\frac{\overline{x^2 - a^2}}{\left(u(x)\right)^{\alpha} u'(x)}$
$\frac{1}{2a} \ln \left \frac{x+a}{x-a} \right + C$ $\frac{1}{\alpha+1} (u(x))^{\alpha+1} + C$	$(u \in C^1(I)$ و $\alpha \in \mathbb{R}^* - \{-1\}$ $\underline{u'(x)}$
	u'(x)
$\ln u(x) + C$	$\overline{u(x)}$
	$(u \in C^1(I)$ و $\forall x \in I : u(x) \neq 0$
$e^{u(x)} + C$	$u'(x)e^{u(x)}$
	$\left(u \in C^1(I)\right)$
G(u(x)) + C	g(u(x))u'(x)
G is a primitive of g over I	Where $u \in C^1(I)$
	and g is continuous over $u(I)$
	and g to continuous over u(1)

Theorem 1.10 (change the variable)

Let $h: I \longrightarrow J$ C^1 -diffeomorphism. We put x = h(t) and dx = h'(t)dt then

$$\int f(x) dx = \int f(h(t)) h'(t) dt \text{ and } t = h^{-1}(x).$$

Note: A function $h: I \longrightarrow J$ is called C^1 -diffeomorphism if

- a) h is a bejiction of I on J;
- b) h and h^{-1} admit derivatives of order 1, continuous, respectively on I and J.

Example 1

Calculate $I = \int \sqrt{1 - x^2} \, dx$.

We put $x = h(t) = \sin t$ where $h: \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[\longrightarrow]-1,1[$ (h is C^1 -diffeomorphism), and $dx = \cos t \, dt$.

So

$$I = \int \sqrt{1 - \sin^2 t} \cos t \, dt = \int \sqrt{\cos^2 t} \cos t \, dt.$$

Since $\forall t \in \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[: \cos t \ge 0 \text{ we get} \right]$

$$I = \int \cos^2 t \, dt = \frac{1}{2} \int (1 + \cos 2t) \, dt$$
$$= \frac{1}{2} \left(t + \frac{1}{2} \sin 2t \right) + C = \frac{1}{2} t + \frac{1}{2} \cos t \sin t + C$$
$$= \frac{1}{2} t + \frac{1}{2} \sqrt{1 - \sin^2 t} \sin t + C.$$

Substituting $t = h^{-1}(x) = Arcsin x$ we get the following result:

$$I = \frac{1}{2} \text{Arcsin} x + \frac{1}{2} x \sqrt{1 - x^2} + C.$$

Example 2

Calculate $J = \int \frac{x}{\sqrt{x}+1} dx$.

We put $x=h(t)=t^2$ where $h:]0,+\infty[\to]0,+\infty[$ ($h: C^1$ -diffeomorphism), and dx=2tdt.

So

$$J = \int \frac{t^2}{\sqrt{t^2 + 1}} 2t dt$$

Since $\forall t \in]0, +\infty[: t > 0 \text{ we get}]$

$$J = \int \frac{t^2}{\sqrt{t^2 + 1}} 2t dt$$
$$= 2 \int \frac{t^3}{t + 1} dt$$

$$= 2 \int \left(t^2 - \frac{1}{t+1} - t + 1 \right) dt$$

$$= 2 \left(\frac{1}{3} t^3 - \ln(t+1) - \frac{1}{2} t^2 + t \right)$$

$$J = \frac{2}{3} t^3 - 2\ln(t+1) - t^2 + 2t + C.$$

Substituting $t = h^{-1}(x) = \sqrt{x}$ we get the following result:

$$J = \frac{2}{3}x\sqrt{x} - x + 2\sqrt{x} - 2\ln(\sqrt{x} + 1) + C.$$

Theorem 1.11 (Integration by parts).

Let I be a interval for \mathbb{R} and v, u are functions of class C^1 on the interval I then

$$\int uv'\,dx = uv - \int u'v\,dx.$$

Example 1

Calculate $I = \int xe^{2x} dx$. By putting:

$$\begin{cases} v' = e^{2x} \\ u = x \end{cases} \Rightarrow \begin{cases} v = \frac{1}{2}e^{2x} \\ u' = 1 \end{cases}$$

$$I = \int xe^{2x} dx = uv - \int u'v dx$$

$$= x\frac{1}{2}e^{2x} - \int \frac{1}{2}e^{2x} dx$$

$$= \left(\frac{1}{2}x - \frac{1}{4}\right)e^{2x} + C.$$

Example 2

Calculate $J = \int e^x \sin x \, dx$. By putting:

$$\begin{cases} v' = \sin x \\ u = e^x \end{cases} \Rightarrow \begin{cases} v = -\cos x \\ u' = e^x \end{cases}.$$

We get

$$J = -e^x \cos x + \int e^x \cos x \, dx.$$

Again we put

$$\begin{cases} v' = \cos x \\ u = e^x \end{cases} \Rightarrow \begin{cases} v = \sin x \\ u' = e^x \end{cases}$$

SO

$$J = -e^x \cos x + e^x \sin x - \int e^x \sin x \, dx$$
$$J = -e^x \cos x + e^x \sin x - J$$
$$2J = -e^x \cos x + e^x \sin x$$

we obtain

$$= -e^x \cos x + e^x \sin x + C$$
.

Example 3*

Calculate $J = \int x \sqrt{x} dx$. By putting:

$$\begin{cases} v' = x \\ u = \sqrt{x} \end{cases} \Longrightarrow \begin{cases} v = \frac{1}{2}x^2 \\ u' = \frac{1}{2\sqrt{x}} \end{cases}.$$

We get

$$J = \frac{1}{2}x^{2}\sqrt{x} - \int \frac{1}{2\sqrt{x}} \frac{1}{2}x^{2} dx$$

$$= \frac{1}{2}x^{2}\sqrt{x} - \frac{1}{4}\int x\sqrt{x}$$

$$= \frac{1}{2}x^{2}\sqrt{x} - \frac{1}{4}J$$

$$J + \frac{1}{4}J = \frac{1}{2}x^{2}\sqrt{x}$$

we obtain

$$J = \frac{2}{5}x^2\sqrt{x} + C.$$

1.5 Special integration methods:

1.5.1 Integration of a rational function

Definition 1.8

Let P,Q be two real polynomials, $Q(x) \neq 0$. Function $x \to \frac{P(x)}{Q(x)}$ is called rational function or rational fraction

Definition 1.9

The functions $x \to \frac{A}{(x-a)^k}$, $x \to \frac{Mx+N}{(x^2+px+q)^k}$ where $k \in \mathbb{N}^*$, a, A, M, N, p, $q \in \mathbb{R}$, $p^2-4q < 0$, are called simple elements, of the first and second species respectively.

Theorem 1.12

Any rational fraction $\frac{P}{Q}$ is represented in the unique form $\frac{P(x)}{Q(x)} = S(x) + \frac{R(x)}{Q(x)}$

the polynomials S, R being respectively the quotient and the remainder of the division of P by Q.

Theorem 1.13

Let $\deg P < \deg Q$,

$$Q(x) = (x - a_1)^{m_1} (x - a_2)^{m_2} \dots (x - a_k)^{m_k} \cdot (x^2 + p_1 x + q_1)^{n_1}$$
$$(x^2 + p_2 x + q_2)^{n_2} \dots (x^2 + p_5 x + q_5)^{n_5}, \ p_i^2 - 4q_i < 0, \forall \ 1 \le j \le s.$$

Then the fraction $\frac{P}{Q}$ is represented in the form

where A, B, C, M, N, p, q, a, are real canstants.

Examples

1)
$$\frac{P(x)}{Q(x)} = \frac{4x^4 - 4x^3 - 3x^2 - 12x + 13}{(2x - 1)^2(x - 2)} = x + 2 + \frac{1}{x - 2} + \frac{4}{2x - 1} + \frac{-4}{(2x - 1)^2}$$
.

$$\frac{P(x)}{Q(x)} = = x + 2 + \frac{12x^2 - 28x + 17}{(2x - 1)^2(x - 2)} = S(x) + \frac{R(x)}{Q(x)}$$
. Where deg $R < \deg Q$. So

$$\frac{R(x)}{Q(x)} = \frac{1}{x-2} + \frac{4}{2x-1} + \frac{-4}{(2x-1)^2}.$$

2)
$$\frac{P(x)}{Q(x)} = \frac{5x^7 - x^6 + 6x^5 + 11x^4 + 29x^3 + 66x^2 + 29x + 27}{(x-1)^3(x+2)^2(x^2 + x + 1)^2}$$
 where $\deg P < \deg Q$. So

$$\frac{P(x)}{Q(x)} = \frac{1}{x-1} + \frac{-1}{(x-1)^2} + \frac{2}{(x-1)^3} + \frac{-2}{x+2} + \frac{3}{(x+2)^2} + \frac{x-1}{x^2 + x + 1} + \frac{2x+1}{(x^2 + x + 1)^2}$$

Integration of a rational fraction

To calculate the integral of a fraction $\frac{P(x)}{Q(x)}$, we first write this fraction as the sum of a polynomial and a finite number of rational fractions in the form $\frac{A}{(x-a)^k}$ or $\frac{Mx+N}{((x-a)^2+\beta^2)^k}$ where k is a non zero natural number and β , α , N, M, A, a are real numbers, so the integral rational fractions returns to calculate integrals of the type $\int \frac{A}{(x-a)^k} dx$ and $\int \frac{Mx+N}{((x-a)^2+\beta^2)^k} dx$.

Calculate the integral $\int \frac{A}{(x-a)^k} dx$

$$\int \frac{1}{x-a} dx = \ln|x-a| + C$$

$$\forall k > 1: \int \frac{1}{(x-a)^k} dx = \frac{-1}{(k-1)(x-a)^{k-1}} + C.$$

Calculate the integral $\int \frac{Mx+N}{\left((x-\alpha)^2+\beta^2\right)^k} dx$.

Calculating this integral after changing the variable $x = \alpha + \beta t$ leads to calculating integrals of two types: $I_k = \int \frac{t}{(1+t^2)^k} dt$ And $J_k = \int \frac{1}{(1+t^2)^k} dt$, where we have:

$$I_1 = \frac{1}{2}ln(1+t^2) + C$$
 and $\forall k > 1$: $I_k = \frac{-1}{2(k-1)(1+t^2)^{k-1}} + C$.

As for the integration $J_k = \int \frac{1}{(1+t^2)^k} dt$, we use integration by parts and obtain the following recurrence relation:

$$J_1 = Arctanx + C$$
 and $\forall k \ge 1$: $2kJ_{k+1} = (2k-1)J_k + \frac{t}{(1+t^2)^k}.....(*)$

Example 1

Calculate the integral $I = \int \frac{2x^4 - x^3 + 2x^2 - 1}{(x^2 + 1)(x - 1)} dx$.

By Euclidean division we get:

$$\frac{2x^4 - x^3 + 2x^2 - 1}{x^3 - x^2 + x - 1} = 2x + 1 + \frac{x^2 + x}{(x^2 + 1)(x - 1)}$$

We put $\frac{x^2+x}{(x^2+1)(x-1)} = \frac{Mx+N}{x^2+1} + \frac{A}{x-1}$ we get M = 0, N = 1, A = 1.

$$I = \int \left(2x + 1 + \frac{1}{x^2 + 1} + \frac{1}{x - 1}\right) dx$$
$$= x^2 + x + Arctanx + \ln|x - 1| + C.$$

Example 2

Calculate the integral $J = \int \frac{x^2 - 6x + 11}{(x+1)(x-2)^2} dx$.

We put
$$\frac{x^2-6x+11}{(x+1)(x-2)^2} = \frac{a}{x+1} + \frac{b}{x-2} + \frac{c}{(x-2)^2}$$
 we get $a=2, b=-1, c=1$.

$$J = \int \left(\frac{2}{x+1} - \frac{1}{x-2} + \frac{1}{(x-2)^2}\right) dx$$
$$= 2\ln(x+1) - \ln(x-2) - \frac{1}{x-2} + C.$$

Example 3*

Calculate the integral
$$J = \int \frac{8x^6 - 8x^5 + 2x^4 + 23x^3 - 15x^2 + 7x + 2}{(x+1)^2(2x^2 - 2x + 1)^2} dx$$

By Euclidean division we get:
$$\frac{8x^6 - 8x^5 + 2x^4 + 23x^3 - 15x^2 + 7x + 2}{(x+1)^2(2x^2 - 2x + 1)^2} = 2 + \frac{-8x^5 + 10x^4 + 15x^3 - 17x^2 + 11x}{(x+1)^2(2x^2 - 2x + 1)^2}.$$

We put

$$\frac{-8x^5 + 10x^4 + 15x^3 - 17x^2 + 11x}{(x+1)^2(2x^2 - 2x + 1)^2}$$

$$= \frac{a}{x+1} + \frac{b}{(x+1)^2} + \frac{cx+d}{2x^2 - 2x + 1} + \frac{ex+f}{(2x^2 - 2x + 1)^2}$$

we get:

$$a = -2$$
, $b = -1$, $c = 0$, $d = 3$, $e = 1$, $f = 0$.

So

$$I = \int \left(2 + \frac{-2}{x+1} + \frac{-1}{(x+1)^2} + \frac{3}{2x^2 - 2x+1} + \frac{x}{(2x^2 - 2x+1)^2}\right) dx$$

$$I = 2x - 2\ln|x+1| + \frac{1}{x+1} + \int \left(\frac{3}{2x^2 - 2x+1} + \frac{x}{(2x^2 - 2x+1)^2}\right) dx.$$

Since $2x^2 - 2x + 1 = 2\left(\left(x - \frac{1}{2}\right)^2 + \left(\frac{1}{2}\right)^2\right)$, to calculate the integral on the second side we put $x = \frac{1}{2} + \frac{1}{2}t$.

So

$$\int \left(\frac{3}{2x^2 - 2x + 1} + \frac{x}{(2x^2 - 2x + 1)^2}\right) dx = 3 \int \frac{1}{t^2 + 1} dx + \int \frac{t + 1}{(t^2 + 1)^2} dx$$

$$= 3Arc \tan x + \int \frac{t}{(t^2 + 1)^2} dx + \int \frac{1}{(t^2 + 1)^2} dx$$

$$\int \left(\frac{3}{2x^2 - 2x + 1} + \frac{x}{(2x^2 - 2x + 1)^2}\right) dx = 3Arc \tan t - \frac{1}{2} \frac{1}{t^2 + 1} + \underbrace{\int \frac{1}{(t^2 + 1)^2} dx}_{t^2}$$

Substituting k=1 in the regressive relationship (*) we get: $2J_2=J_1+\frac{t}{(1+t^2)^1}=$ Arc $\tan t+\frac{t}{1+t^2}$ and from there $J_2=\frac{1}{2}{\rm Arc}\tan t+\frac{t}{2(t^2+1)}$.

So

$$\int \left(\frac{3}{2x^2 - 2x + 1} + \frac{x}{(2x^2 - 2x + 1)^2}\right) dx = \frac{7}{2} \operatorname{Arc} \tan t + \frac{t - 1}{2(t^2 + 1)}.$$

Substituting t = 2x - 1 we get

$$\int \left(\frac{3}{2x^2 - 2x + 1} + \frac{x}{(2x^2 - 2x + 1)^2}\right) dx = \frac{7}{2} \operatorname{Arc} \tan(2x - 1) + \frac{x - 1}{2(2x^2 - 2x + 1)^2}$$

So

$$I = 2x - 2ln|x+1| + \frac{1}{x+1} + \frac{7}{2}\operatorname{Arc}\tan(2x-1) + \frac{x-1}{2(2x^2 - 2x + 1)} + C.$$

1.5.2 Integration of the type $\int R(sinx, cosx) dx$:

Where R(sinx, cosx) is a rational fraction in the variables x and y.

This integral can be converted to a rational fractional integral using the change in the variable $t = \tan \frac{x}{2}$, where:

$$\cos x = \frac{1 - t^2}{1 + t^2}$$
; $\sin x = \frac{2t}{1 + t^2}$; $dx = \frac{2}{1 + t^2} dt$.

Example 1 Calculate the integral $J = \int \frac{\cos^2 x}{5 - 4\sin x} dx$

by putting $t = tan \frac{x}{2}$ we get

$$J = \int \frac{\left(\frac{1-t^2}{1+t^2}\right)^2}{5-4\left(\frac{2t}{1+t^2}\right)} \left(\frac{2}{1+t^2}\right) dt = \int \frac{2(t^2-1)^2}{(5t^2-8t+5)(t^2+1)^2} dt.$$

we put

$$\frac{2(t^2-1)^2}{(5t^2-8t+5)(t^2+1)^2} = \frac{at+b}{t^2+1} + \frac{ct+d}{(t^2+1)^2} + \frac{et+f}{5t^2-8t+5}.$$

on obtain a=0 , $b=\frac{5}{8}$, c=1 , d=0 , e=0 , $f=-\frac{9}{8}$

So

$$J = \int \frac{\frac{5}{8}}{t^2 + 1} + \frac{t}{(t^2 + 1)^2} + \frac{-\frac{9}{8}}{5t^2 - 8t + 5} dt = \frac{5}{8} \operatorname{Arc} \tan t - \frac{1}{2(t^2 + 1)} + \underbrace{\int \frac{-\frac{9}{8}}{5t^2 - 8t + 5} dt}_{I}.$$

Calculate the integral *I*:

Since
$$5t^2 - 8t + 5 = 5\left(\left(t - \left(\frac{4}{5}\right)\right)^2 + \left(\frac{3}{5}\right)^2\right)$$
, we put $t = \frac{4}{5} + \frac{3}{5}y$ so

$$I = -\frac{3}{8} \int \frac{1}{y^2 + 1} dy = -\frac{3}{8} \operatorname{Arc} \tan y = -\frac{3}{8} \operatorname{Arc} \tan \left(\frac{5}{3}t - \frac{4}{3}\right).$$

And

$$J = \frac{5}{8} \operatorname{Arc} \tan t - \frac{1}{2(t^2 + 1)} - \frac{3}{8} \operatorname{Arc} \tan \left(\frac{5}{3}t - \frac{4}{3} \right).$$

Substituting $t = tan \frac{x}{2}$ we get

$$J = \frac{5}{16}x - \frac{1}{2}\cos^2\frac{x}{2} - \frac{3}{8}\arctan\left(\frac{5}{3}\tan\frac{x}{2} - \frac{4}{3}\right) + C.$$

1.5.3 Integration of the type
$$\int R\left(x, \left(\frac{ax+b}{cx+d}\right)^{\frac{m}{n}}, \left(\frac{ax+b}{cx+d}\right)^{\frac{p}{q}}, \dots, \left(\frac{ax+b}{cx+d}\right)^{\frac{r}{s}}\right) dx$$

Where $R(x, y, \dots, z)$ is a rational fraction in the variables x, y,, z and $\frac{m}{n}$, $\frac{p}{q}$,, $\frac{r}{s}$ are rational numbers. To calculate this type of integration, we use a

change in the variable $t = \left(\frac{ax+b}{cx+d}\right)^{\frac{1}{k}}$, where k is the Least Common Multiple (LCM) of the numbers n, q, , s.

Example 1 calculate the integral $I = \int \frac{1+\sqrt{x+1}}{\sqrt[3]{x+1}} dx$.

We put $t = (x+1)^{\frac{1}{6}}$ and from it $x = t^6 - 1$ and $dx = 6t^5dt$ so

$$I = \int \frac{1+t^3}{t^2} 6t^5 dt = 6 \int t^6 + t^3 dt = \frac{6}{7} t^7 + \frac{3}{2} t^4 + C.$$

So

$$I = \frac{6}{7}(x+1)^{\frac{7}{6}} + \frac{3}{2}(x+1)^{\frac{4}{6}} + C.$$

Example 2 calculate the integral $J = \int x \sqrt{\frac{x-1}{x+1}} dx$.

We put $t=\sqrt{\frac{x-1}{x+1}}$ and from it $x=\frac{-t^2-1}{t^2-1}$ and $dx=\frac{4t}{(t^2-1)^2}dt$ so

$$J = \frac{-t^2 - 1}{t^2 - 1} t \frac{4t}{(t^2 - 1)^2} dt = \int \frac{-4(t^4 + t^2)}{(t^2 - 1)^3} dx.$$

We put

$$\frac{-4(t^4+t^2)}{(t^2-1)^3} = \frac{a}{t-1} + \frac{b}{(t-1)^2} + \frac{c}{(t-1)^3} + \frac{d}{t+1} + \frac{e}{(t+1)^2} + \frac{f}{(t+1)^3}$$

we get

$$a = -\frac{1}{2}$$
, $b = -\frac{3}{2}$, $c = -1$, $d = \frac{1}{2}$, $e = -\frac{3}{2}$, $f = 1$

so

$$J = \int \frac{-\frac{1}{2}}{t-1} + \frac{-\frac{3}{2}}{(t-1)^2} + \frac{-1}{(t-1)^3} + \frac{\frac{1}{2}}{t+1} + \frac{-\frac{3}{2}}{(t+1)^2} + \frac{1}{(t+1)^3} dt$$

$$= -\frac{1}{2} \ln|t-1| + \frac{3}{2(t-1)} + \frac{1}{2(t-1)^2} + \frac{1}{2} \ln|t+1| + \frac{3}{2(t+1)} - \frac{1}{2(t+1)^2} + C.$$

Substituting $t = \sqrt{\frac{x-1}{x+1}}$ we get

$$J = \frac{1}{2} \ln \left| \frac{\sqrt{\frac{x-1}{x+1}} + 1}{\sqrt{\frac{x-1}{x+1}} - 1} \right| + \left(\frac{1}{2} x^2 - \frac{1}{2} x - 1 \right) \sqrt{\frac{x-1}{x+1}} + C.$$

1.5.4 Integration of the type $\int \sqrt{ax^2 + bx + c} dx$

After writing the trinomial $ax^2 + bx + c$ in canonical form, this integral takes one of the following forms:

$$\int \sqrt{(x-\alpha)^2 + \beta^2} \, dx, \int \sqrt{(x-\alpha)^2 - \beta^2} \, dx \text{ and } \int \sqrt{\beta^2 - (x-\alpha)^2} \, dx.$$

To calculate the integral $\int \sqrt{(x-\alpha)^2 + \beta^2} dx$, we use a change in the variable $x - \alpha = \beta \sinh t$.

To calculate the integral $\int \sqrt{(x-\alpha)^2 - \beta^2} dx$, we use a change in the variable $x - \alpha = \pm \beta \cosh t$. (According to the interval of integration).

To calculate the integral $\int \sqrt{\beta^2 - (x - \alpha)^2} dx$, we use a change in the variable $x - \alpha = \beta \cos t$. (or $x - \alpha = \beta \sin t$).

Example 1 Calculate the integral $L = \int \sqrt{x^2 + 4x + 3} dx$.

We have $x^2 + 4x + 3 = (x + 2)^2 - 1$ and from there

If $x + 2 \le -1$ (i.e. if $x \in]-\infty, -3]$) we put $x + 2 = -\cosh t$ where $t \in [0, +\infty[$.

If $x + 2 \ge 1$ (i.e. if $x \in [-1, +\infty[$) we put $x + 2 = \cosh t$ where $t \in [0, +\infty[$.

For $x \in]-\infty, -3] \cup [-1, +\infty[$ then $x + 2 = \overline{+} \cosh t$ and $dx = \overline{+} \sinh t \, dt$.

So

$$L = \int \sqrt{\cosh^2 t - 1} \, (\mp \sinh t) dt = \int \sqrt{\sinh^2 t} \, (\mp \sinh t) dt = \int \mp \sinh^2 t \, dt$$

$$= \frac{1}{2} \int \mp (-\cosh 2t + 1) \, dt = \mp \left(-\frac{1}{4} \sinh 2t + \frac{1}{2}t \right) = \mp \left(-\frac{1}{2} \cosh t \sinh t + \frac{1}{2}t \right)$$

$$= \mp \frac{1}{2} \left[\mp (x + 2) \sqrt{(x + 2)^2 - 1} \right] \mp \frac{1}{2} \operatorname{Arg} \cosh \left[\mp (x + 2) \right]$$

$$= \frac{1}{2} (x + 2) \sqrt{x^2 + 4x + 3} \pm \frac{1}{2} \ln \left| \mp (x + 2) + \sqrt{x^2 + 4x + 3} \right| + C.$$

$$= \frac{1}{2} (x + 2) \sqrt{x^2 + 4x + 3} - \frac{1}{2} \ln \left| x + 2 + \sqrt{x^2 + 4x + 3} \right| + C.$$

(Note that
$$-\frac{1}{2}\ln\left|(x+2) + \sqrt{x^2 + 4x + 3}\right| = \frac{1}{2}\ln\left|-(x+2) + \sqrt{x^2 + 4x + 3}\right|$$
).