Chapter 1:Riemann integral and primitives

1.1 Riemann integral

Definition.1.1 (partition)

A patrtition P of [a, b] is a finite set of numbers {x, X1, X2 , cvv cvv ev e, X1, X}

suchthata =xy <x; <%, < ivvv e e < X1 < Xp=b

We write Axi =X;— Xj-1-

We define the norm of partition P is the positive number ||P|| = max (x; — xi_1).
<isn

Remak:

When the n subintervals have equal length Ax; = b;—a

The i*" term of the partition is x; = a + ib;—a (This makes x,, = b.)

Definition 1.2 (Darboux sums)
Suppose f: [a, b] - R is bounded and P is a partition of [a, b]. Define
m; = inf{f (x): x;_; < x < x;} M; = sup{f(x): x;_; < x < x;}

S(P'f) = Z?:lmi A'xi S(P,f) = ?leiAxi-

We call s(P, f) the lower Darboux sum and S(P, f) the upper Darboux sum.
Lemma.l.1. Let P and Q be two partitions of [a, b] such that P € Q Then

s(P,f) <s(Q,f)

SP,f) =S, ).

(The partition Q is called a refinement of P.)

Proof
First let us consider a particular case. Let P’ be a partition formed from P by adding
one extra point, say c € [x;_y, x;]. Letm; = sup f(x), m; = sup f(x).

Xj_1SX<cC c<x=x;
Then m; > m;, m; > m;, and we have
s(P',f) =izt my Axi_y + mi(c—x;_1) + mi(x; — ) + Xy my Axiyg
> Ni2im Dxog +my O —x-q) + X my Axgyy = s(P, ).

Similarly one obtains that

S(P'f) <SP, f).
Now to prove the assertion one has to P consequetly a finite number of points in
order to form Q.

Lemma.l.2
Let P and Q be arbitrary partitions of [a, b]. Then
s(P,f) =S(Q,1).

Proof
Consider the partition P U Q. By Lemma 1 1 we have
s(P,f)<s(PuQ,f) =<S(PUQf)=<S51N.
Proposition 1.1
Let f: [a,b] » R be a bounded function. Let m,M € R be such that for all x € [a, b],
we have m < x < M. Then for every partition P of [a, b],

mb—a) <s(P,f) <SP,f) <MD -a)
Proof



Let P be a partition of [a, b]. Note thatm <m; < M; < M for all i and ), Ax; =
(b — a). Therefore,

m(b—a) = ZmAxi < ZmiAxl- < ZMl-Axi < ZMAxi =M(b —a)
i=1 i=1 i=1 i=1

Definition 1.3
As the sets of lower and upper Darboux sums are bounded, we define

Lower Darboux integral f; f = sups(P, f): P a partition of [a, b].

Upper Darboux integral f; f =infS(P, f) : P a partition of [a, b].
Lemma.l.3

| s | r
Proof - )

Fix a partition Q. Then by Lemma 1 2
vP:s(P,f) <S5, f).

Therefore

b
[ = sunste.p) < s@.p.

And from the above

b
vQ: f £ <S@.0.

Hence

f:f < inngQ,f) = E

Proposition 1.2. Let f : [a,b] — R be a bounded function. Let m,M € R be such
that for all x € [a, b], we havem < f (x) < M. Then

m(b—a)Sfbf Sfbfs M — a)

Proof. By Proposition 1.1 , for every partition 2,
mb—a)<s(P,f) <SP, f) <M —a)
The inequality m(b — a) < s(P,f) implies m(b — a) < f; f.The inequality S(P, f) <

M(b — a) implies f;f < M — a).
Definition 1.4.A function f: [a,b] - R is called Riemann integrable if

b b
Jr=1r
a a
The common value is called integral of f over [a, b] and is denoted by f;f (x) dx.

Proposition 1.3. Let f : [a,b] — R be a Riemann integrable function. Let m,M € R
be suchthat m < f (x) < Mforallx € [a,b]. Then

b
m(b — a) Sff(x)dxs M — a).

Proof Is a direct consequence of Proposition 1.2.




Example 11
We integrate constant functions. If f(x) = ¢ for some constant c, then we take m =
M = c. In Proposition 1.3. Thus f is integrable on [a, b] and

b
f fx)dx=cl — a).

Theorem 1.1

A function f: [a, b] » R is Riemann integrable if and only if for any € > 0 there exists
a partition P of [a, b] such that S(P, f) —s(P,f) < ¢.

Proof

1 Necessity: Let fff = f:f, i.e. let us assume that f is integrable.

3Py, Py (P f) > [ f =S and (P, ) < [, f+.

b e b
ff_E<S(P1'f)SS(P1UPZJf)SS(PluPZlf)SS(PZ’f)<Jf+E

Therefore ( since fabf = fab_f)

SQ,f) —s(Q,f) <e.
2 sufficiency: Fix ¢ > 0. Let P be a partition such that S(P, f) — s(P, f) < e.
Note that

f:f—fabf = 5P, f) —s(P.f) <.

Therefore it follows that

Ve>0:fbf—fbf<s.

b b
Jor=]r
a a
Example 1.2

Let us show f(x) = x? is integrable on [a, b] for all b > a > 0. We will see later that
continuous functions are integrable, but let us demonstrate how we do it directly.

Let € be given. Taken e Nand let x; = a + ib;—aform the partition P =

This implies that

\H

b-a . . .
{X0, %, X2 ) wev wev ve v, Xn—1, X} OF [a,b]. Then Ax; = —forall i. As f is increasing,
for every subinterval [x;_1, X;],

m; = inf{f (x): x;_; < x < x;} = (a + (i — 1)b _ a)

M; = sup{f(x):x;_; <x < x;} = (a +ib _ a)

Then

S, = 5P ) = ) (M; = my) A,



Picking n to be such that, b;—a (b? — a?) < ¢ the proposition is satisfied, and the
function is integrable.

On the other hand, as we know from algebra (or can be proven by induction):

< - n(n+1) - o nn+1)(n+1)
Zl =—— and Z i =
- 2 6

i=1

So

n
i=1
n 2 n
b—a b—a ] b—a
= a’n + 2a i + i?
n n
=1 =1
b—al , b—an(n+1) /b—a\*nC2n+1Dn+1)
= a‘n + 2a +
n n 2 n 6

= (b —a) [az +alb—a) (n;ll— 1) L (b-a)? (2n+6lr)lgn+ 1)1.

Similarly one obtains that

s(P,f)=(b-a)

a2+a(b—a)(n;1)+(b—a)z(zn_zzlgn_l).

So

lim S(P, ) = lim s(P, f) = b 3 @)

1
(b2 +ab + a?) = §(b2 —a?).

Finally we obtain

b 1
f x%dx = §(b2 —a?).

a



Definition 1.5 (Riemann sums)
Let f: [a, b] —» R be defined on the interval [a, b] and let P =
{X0,X1,X2 , crv eevve e, X1, X} be @ partition of [a, b].

Let C = {c1,C2, .....Ci—1,Cjy ... Cn—1,Cn} Where c; denote any value in the it"
subinterval (c; € [x;_1,x;] ). The Riemann sum of a function f on [a, b] that

corresponds to P and the point system C is

R(P,f, C) = Zf(CL)AXl

Theorem 1.2
A function f is Riemann integrable on [a, b] if there is a number L such that for each
€ > 0 there is § > 0 such that if P is any partition of [a, b] with ||P|| < § then

IR(P, f,C) — L| < &. (In other words ||11>i||moR(P’f’ C) =L ).And we have L = fabf(x)dx.

The set of all Riemann integrable functions in [a, b] is denoted by R([a, b]).
Proof
1 Necessity: using [R(P,f,C) —L| < S(P, f) —s(P, ).

2 sufficiency: To do this, we will first show that
SP,f) = supR(P,£,0), s(P, )infR(P, ,C).
©

Remark
If the function f is Riemann integrable on [a, b] then the number fbf(x)dx is the
common limit of the two sequences u,, = —Z o fa+ —l ) and
b—-a
vy = 22T, fla+220).
Example
n n

Calculate the limit of the sum v,, = i=0 (ur )"
We have

n-—

n-1

S SR BUERE

n+z)2 n& iVZ 4n
i=

(1+3)

by putting [a, b] = [1,2]; f(x) = i then
— ¢ Z fa+2 =%+ i.

So
7lli_r)r°1°vn—7111£r°1°<n2f(1+—l)>+0—f f(x)dx—j —dx——

1.2 Integrable functions

Theorem 1.3



Letf f: [a,b] » R be monotone. Then f is Riemann integrable.
Proof
Suppose that f is increasing so that f(a) < f(b).

If f(a) = f(b) then f is constant, so f is Riemann integrable and fff(x)dx = f(a)(b — a).

&

If f(a) < f(b) let e > 0 and P a partition of [a, b] such that ||P|| < § = B

For this partition we obtain

S, = s(P.f) = ) (M=) Ay = Y (FG) = f(xi1) Ay

<6 (D) = fGo) = 8(FB) - f(@) = &

Theorem 1.4

Let f: [a, b] = R be continuous. Then f is Riemann integrable.

Proof
Let P = {X0, X1, X2 , -+ wer v e, Xn—1, X } De @ partition of [a, b] and
m; = inf f(x) ; M= sup f[f(x).

Xi—1SXSX| Xj—qSXSX;

Let € > 0. A continuous function on closed interval [x;_,, x;] is uniformly continuous
and reaches its upper and lower bounds at least once, so there exists § > 0 such that

Vx;_1,%; € [a,b]: |x; — x;—1] < 8 = |f(x;) — fFxi_)| < ﬁ and there is at least x| ; x/'
are from the subinterval [x;_q,x;] where m; = f(x}) ; M; = f(x{").
Choose a partition P such that ||P]| < 6 so

S, = s(Pf) = ) (Mi=m) Axy = Y (FGr) = i) A,

n
£ £
< Ax;=— (b —a) ==
b—aZ : b—a( @)

=

Theorem 1.5

If f,g9:[a,b] - R are integrable, then fg: [a,b] — R is integrable. If, in addition, g # 0
and é is bounded, then g: [a,b] = R isintegrable.

1.3. Properties of the Riemann integral



Let f, g: [a, b] » R Riemann integrable functions on [a, b]. The integral has the
following three basic properties.

1) Linearity:

Lb(f(x) + g(x))dx = fabf(x)dx + fabf(x)dx , belf(x)dx = )\f:f(x)dx
2 ) Monotonicity:
If vx € [a,b]: f(x) < g(x), then [ f(x)dx < [ g(x)dx.
3) Additivity:If «, 5,7 € [a, b], then
a) [¥ feodx = [ fGdx + ! F(x)dx.
b). [ f(x)dx = 0.
0) [f f(0)dx = = [ f(x)dx.

4) If f is continuous on [a, b] and Vx € [a, b]: f(x) = 0 then
b
(f FO)dx = 0> — (Vx € [, b]: f(x) = 0).

5) |1 Fdx| < [ 1f@)ldx.

6) If f is continuous on [a, b], then there exists ¢ € [a, b], where

b
[ reoax = r06 -0,

1.4 Integrals and primitives
Definition 1.6

Let f: [a, b] —» R function, we say that function F is a primitive function of f over [a, b]
if and only if F is differentiable over [a, b] and Vx € [a, b]: F'(x) = f(x).

Proposition 1.4

If F, and F, are primitive functions of f on [a, b] thenvx € [a, b]: F; (x) — F,(x) = C
where C is a real constant.

Example

The function F(x) = §x3 is a primitive of the function f(x) = x2 over R because



4

, 1
Vx ER: F(x) = (§x3> = x2 = f(x).
Theorem 1.6 (The fundamental theorem of calculus 1)

if F: [a, b] = R is continuous on [a, b] and differentiable in ]a, b[ with F' = f where
f:la,b] - R is Riemann integrable, then

b
f FCO) dx = F(b) — F(a).

Proof
Let P = {X(, X1, X2, «er we ve e, Xn—1, X} D€ @ partition of [a, b].

The function F is continuous on the closed interval [x;_1, x;] and differentiable in the
open interval ]x;_1, x;[ with F' = f. By the mean value theorem, there exists

¢; € ]x;_1, x;[ such that
F(x;) = F(x;—1) = F'(¢))(x; — x;-1)
= fe)(x; — x-1)
Since f is Riemann integrable, it is bounded and it follows that

m;(x; — xi-1) < fc) (g — xi-1) < M;(x; — x;-4)

or
m;(x; —x;_1) S F(x) — F(xi_q) < Mi(x; — x;_1)
where
M;= sup f(x) and m; = inf f(x).
Xj_1SXSX; Xj—1SX=Xj
So

n n n
z m; Axi < Z(F(xl) - F(xi_l)) Axl- < Z Mi Axi
i=1 i=1 i=1

Hence s(P,f) < F(b) — F(a) < S(P, ) of every partition of [a, b] wich implies that
f:f < F(b) - F(a) < f;f. Since f is integrable i.e. f:f = f:f we obtain

b
F(b) — F(a) =f f(x)dx.

Theorem 1.7 (The fundamental theorem of calculus 2)



Suppose that f: [a, b] - R is continuous on [a, b] and F: [a, b] - R is defined by
vx € [a,b]: F(x) = [ f(t) dt.Then F is differentiable over [a, b] and

Vx € [a,b]: F'(x) = f(x) (thatis, F is a primitive function of f over [a, b] ).
Proof

Letx,h € [a,b] and h > 0. Then

Fx+h)—FG) [ f©dt— [ f(©dt 1 **h
n = A = EL f(t)dt.

Let € > 0. Since f is continuous at x there exists § > 0 such that
If(t) - f(x)|<e for |t—x|<5é.
It follows that if 0 < h < 6 then

B — x+h
F(x + i)l F(x)_f(x)‘z %L f(@)dt — f(x)

x+h
= H (F(©) — f(x))dt

x+h
<:| ro-rwia

1 x+h
<y sw FO-fI|[ e
x<t<x+h x
< 1 h =
= EE = &.
So
F(x 4+ h) — F(x)
m o = f(x).
h—-0
In the same way, we obtain
F(x+h)—F
lim (x f)L ) = f(x).

h—-0

Which proves the result.

Corollary 1.1



Let f: [a, b] = R be continuous in [a, b] and F is a primitive function of f over [a, b].
Then

b
f £ dx = F(b) — F(a).

Proof Proof is a direct consequence of Theorem 1.7.

Example
Since F(x) = §x3 is primitive function of f(x) = x? over R. Then

b
VYa,b € R: f f(x)dx = F(b) — F(a) =%b3 —%a?’.

Theorem 1.8 (Change of variables)

Let : [a,b] — X be a continuously differentiable function, let f be continuous over

®([a,b]), Then [7 f(x)dx = [* (@)@’ ()dt, where b = ¢(B) ; a = @(a) and x =

() ; dx = @'(t)dt.
Proof

The function f ()" is continuous and therefore integrable. Let F be a primitive of f

and then F(¢) is a primitive of f(¢(t))¢'(t). So according to the Corollary 1.1,
B b
| reme@dr = Flo®) - Flow@) = F) - F(@ = | fedx.

Example 1
Calculate the integral j = folmdx. (Put x = @(t) = sint).
x =@(t) =sint = dx = costdt
sina =0 < a=0,n,—mr,2r, —2mr, .. (The value of @ can be chosen from among the

values 0, 7, —m, 2m, —2m ...).

. -3 5

sinf=1 = 27"7" ... (The value of B can be chosen from among the values
m —-3m 57
=222 ).

2’ 2 72

)

So

T

Vs
2 2

J = f J1—(sint)2costdt = f 4/ (cost)? cos t dt.
0 0

Since Vx € [O,g] :cost = 0. Then

10



7 13
]=f (COSt)Zdt=§f (1 4 cos 2t) dt
0 0

s
e+ omad -1
—2 2Sll’l 0—4.

Example 2
Calculate the integral K = f4£dx (Putx = @(t) = t?)
0 Ter1 AX. .

x = @(t) =t? = dx = 2tdt.

¢a)=a e a?=0 < a=0(The value of a can be chosen from among the
values

e9(f)=b © p?=4 < B =-2,8=2(The value of g can be chosen from among
the values -2,2). So

-2
K—f e e
) V2 +1

Since Vt € [—2,0]:t < 0. Then

—t+1

0
K—Zf e dt—2f f—1-—yae
= =2 |( 7
-2

1 0
= 2[——t2—t—ln|t—1|] = 2In3.
2 -2

Theorem 1.9 (Integration by parts). Suppose that u,v : [a,b] — R are continuous
on [a, b] and differentiable in (a, b), and u’, v' are integrable on [a, b]. Then

b b
f uv’ dx = [uv]? —f u'vdx.
a a

Proof. The function u v is continuous on [a, b] and, by the product rule, differentiable

in (a, b) with derivative (uv)’ = u'v + uv’. Since u, v,u’ and v’ are integrable on [a, b].
Theorem 1.4 implies that u'v, uv’ and (uv)’, are integrable. From Theorem 1.5, we get

that f:(uv’ +u'v)dx = f; uv’ dx + f; u'vdx = [uv]Z, which proves the result.
Example 1

calculate the integral I = fol Arctanx dx.

11



, V=X
{ v =1 =], 1
u = Arctanx u =

x?2+1
1 1 1
= [uv]},—jo uvdx = [xArctanx](l,—fO x2+1xdx
I—[A ¢ 11(2+1)]1—” L in2
= |xArctanx an 0—4 Zn
Example 2
calculate the integral I = [ xIn——dx.
x+1
1
v =x v=_X2
X 2
—
{u=lnx+1 u' = !
S ax(x+1)
2
I=[uv]1—fu’vdx
1
1_[1 2% ]2 f21 .1
B AT M A R Te ) R
1_[1 2% ]2 f21 .1
R v, T L2 e ™
I = 2In2 - 2In3 le ~ 4
T2 eTER T G+ ™
1—512 2In3 1.’-21 ! d
B e R CIE D
5 1
= Ean — 2In3 —E[x—ln(x+ 1)]?
1—512 2In3 1[1+12 In3] = 2In2 313 !
—Zn n ) n n = n 2n 2

Definition 1.7.(The Indefinite Integral)

The set of all primitive functions of f is the indefinite integral of f with respect to x
and denoted by [ f(x) dx where

[ f(x) dx is read " the integral of f w.r.t x ".

Note: The above definition says that if a function F is an primitive of f, then
f f(x)dx = F(x) + C where Cis areal constant.

Example

12



1
Sdx=x*+C
fx X 4x

primitives of usual functions

G is a primitive of g over |

ff(x) dx f
x4 ¢ (a € R* — {—1}&’;\.-.&)x“
a+1
In|x| + C 1
X
e*+C e*
—cosx+C sin x
sinx + C cos x
—In|cosx| + C tan x
tanx + C 1
cos?x
—cotanx + C 1
sin?x
coshx+ C sinh x
sinhx+ C cosh x
1 X 1
—Arctan —+ C > >
a a xX‘+ta
. X 1
Arcsin —+ C -
a a2 — x2
1 l x+a s 1
2a n xX—a x? —aa2
L (wG) ™ C (16) '@
a+1 (ueC'(Dsa € R* — {—1}&n)
u'(x)
Infu(x)|+C u(x)
(uw e Ct(D)sVx € Lu(x) # 0 &)
e*® 4+ ¢ u' (x)e*™
(u € Ct()<n)
G(u(x))+C g(uG))u' (x)

Where u € C*(I)
and g is continuous over u(l)

Theorem 1.10 (change the variable)

Let h: I — J Ct-diffeomorphism. We put x =

[ r@ax= [ ra)w

h(t) and dx = h'(t)dt then

(t)dt andt = h~1(x).

Note: A function h: I — J is called C-diffeomorphism if

13




a) h is a bejiction of I on J;

b) h and h~1 admit derivatives of order 1, continuous, respectively on I and J.
Example 1

Calculate I = [+/1 — x2 dx.

We put x = h(t) = sint where h: ]—gg[ — ]-1,1[ (h is C1-diffeomorphism ), and dx =
cost dt.

So

I = f\/l—sinztcostdt= f\/cosztcostdt.

T T
2

Since vt € ]—;,—[:cost > 0 we get

1
I=fcosztdt=§f(1+c052t)dt

—1t+1' 2t +C—1t+1 tsint+C
=5 5 Sin =5t +5costsin

—1t+1 1 —sin?tsint+C
=5 > sin? t sin .

Substituting t = h™1(x) = Arcsinx we get the following result:

1 1
= — i — — x2
I 2Arcsmx+2x 1—x%2+C.

Example 2

Calculate J = fﬁ dx.

We put x = h(t) = t*> where h: ]0, +oo[ — 10, +oo[ (h is C1-diffeomorphism ), and dx =
2tdt.

So
t2
]=IW2tdt
Since vt € ]0,+[ : t > 0 we get
t2
]=j\/t7+12tdt
t3
B jt+1dt

14



= f(tz—ti—l—w 1)dt

1 1
_ 43 42
—2<3t In(t+ 1) zt +t>

2
Ji =§t3 —2In(t+1)—t>+2t+C.

Substituting t = h=*(x) = vx we get the following result:

2

Ji =§x\/§—x+2\/§—21n(\/§+ 1)+C.
Theorem 1.11 (Integration by parts).
Let I be a interval for R and v, u are functions of class C! on the interval I then
juv’ dx = uv — ju’vdx.

Example 1

Calculate I = [ xe?* dx. By putting:

1
1 _ 2 _ 2
{v = e :{U—Eex
I=fxezxdx=uv—fu’vdx

1 1
—y_p2x _ | Z Zxd
x2€ fze X

_<1 1) 2x+C
= Zx 46 .

Example 2
Calculate J = [ e*sin x dx. By pultting:

"= sj vV =-—CoSsXx
{v Slnx:){

u=e* u =e*

We get

J = —e*cosx +fexcosxdx.
Again we put
. o
{v =cosx _, {v Sin x

u=e* u =e*’

15



SO

J = —e*cosx +e*sinx — f e*sinxdx
] =—e*cosx +e*sinx —J
2] = —e*cosx +e*sinx
we obtain
= —e*cosx+e*sinx + C.
Example 3*

Calculate J = [ xv/x dx. By putting:

(,-1.
{v’ =X { v
—Jx 1
u=+x U =
\ 2Vx
We get
11
= x2x — | ——Zx2
J 5% Vx 2\/sz dx
1 1
— 2 __
=XV 4]’“/}
1 1
— 2 __
= 2x X 4]
+ Ly 2\x
J 4] =S XX
we obtain
] =§x2\/E+ C.
1.5 Special integration methods:
1.5.1 Integration of a rational function
Definition 1.8
Let P, Q be two real polynomials, Q(x) # 0. Function x — Px)

Q(x)
function or rational fraction

Definition 1.9

16

is called rational



4 X > M*N__\where k € N*,a,A,M,N,p,q € R,p? —4q <0,
(x—a)k (x24px+q)k

are called simple elements, of the first and second species respectively.

The functions x —

Theorem 1.12

P(x) S( )+R(x)

Any rational fraction = 0 is represented in the unique form — 7 2

the polynomials S, R being respectively the quotient and the remainder of the division
of P by Q.

Theorem 1.13

Letdeg P < degQ,

Qx)=(x—ay))™(x—ay)™ ... (x —ap)™. (x2 + pix + q)™

(X2 +pyx 4+ q)"™ ... (x2 + psx +q5)"s, p; —4q; <0,V1<j<s.

Then the fraction g is represented in the form

P(x) _ Aq A, 4ot Am1
Q(x) S x— a;  (x—ay)? (x —a))m
B B B
+ 1 + 2 oMz
x—a, (x—ay)? (x —ay)™
N Cy ¢ Conye

+ +...+—
x—a, (x—ag)? (x — )™«

Mix + N} N Mix + N} . My x + Ny,
x2+pix+q; (%2 +pix +qqp)? (x2+pix +q)™

N M#x + Ni N Mzx + N# .. M7 x + N,
x2+px+q; (X2 +pyx +qy)? (x2 + pox + qx)™2

+ -

N Mix + Ny N M3x + N3 L M3 x + Ny
x2+psx+qs  (x2+psx + q5)? (x2 + psx + g5

where A,B,C,M, N, p, q, a, are real canstants.

Examples
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)P(x) _ 4x*—4x3-3x2-12x+13 x4+ 2 +—+ n -4

Q) (2x-1)2(x-2) 2x—1 = (2x—-1)%'
ix) —28x+17 m
2 x+2+ —(ZX o2 =S(x)+ TS Where deg R < deg Q.So
Rx) _ 1 4 -4

Q) x-2  2x-1 + (2x-1)2

2) P(x) _ 5x7—-x®+6x5+11x*+29x3+66x2+29x+27
Q(x) (x—1)3(x+2)2(x2+x+1)2

where deg P < deg Q. So

P(x) _ 1 -1 2 -2 3 x—1 2x+1

Q) x-1  (x-1)2  (x-1)3  x+2  (x+2)%2 = x*+x+1  (P+x+1)%

Integration of a rational fraction

P(x)

To calculate the integral of a fraction — e we first write this fraction as the sum of a

g B g : c A Mx+N
polynomial and a finite number of rational fractions in the form eyl omprrry:

where k is a non zero natural number and g, a, N, M, A,a are real numbers, so the

dx and

integral rational fractions returns to calculate integrals of the type [ (x_Aa)k

f Mx+N dx
((x—a)2+p2)k 7"

dx
.]' 1
X —
-1

1
Vk>1: f(x—a)kdx:(k—l)(x—a)k_1+c'

Calculate the integral f(x_Aa)k

dx =In|x—a|l +C
a

Mx+N

Calculate the integral | ———
gral [ e

Calculating this integral after changing the variable x = a + St leads to calculating

integrals of two types: I}, = f(l oY dt And J, = f(l oY dt, where we have:

1 —1
L =-In(1+t3)+C and Vk>1: I, = C.
1 =51+ +C an kS kDA )R T

As for the integration J, = dt, we use integration by parts and obtain the

f (14 tZ)k

following recurrence relation:

t
Ji =Arctanx + C and Vk > 1: 2k, ;1 = Qk— 1], + m......(*)

Example 1

18



2xt—x34+2x2—-1

Calculate the integral I = [ ey

By Euclidean division we get:
2xt* =3 +2x% -1
X¥—-x*+x-1

x2+x __ Mx+N
(x*+1)(x—1) x2+1

We put
So

=2x+1+

x* + x
+1Dx-1)

+- wegetM=0N=14=1.

I=J(2x+1+x2

1
+ )dx

x—1

= x* 4+ x + Arctanx + In|x — 1| + C.

Example 2

x?—6x+11

Calculate the integral ] = fm .

wegeta=2,b=-1,c=1.

1
)dx

(x —2)?

1
=2lnx+1)—In(x—2)———+C.

x?—6x+11 a b c
We put (x+1)(x=2)2  x+1 toat (x—2)2
So
JE -
J= x+1 x-2
Example 3*

Calculate the integral j = [

xX—2

6__Q.5 4 3_ 2
8x°—8x°+2x*+23x°—15x“+7x+2 dx

By Euclidean division we get:
8x® — 8x° + 2x* +23x° — 15x* + 7Tx + 2

(x + 1)3(2x* — 2x + 1)?

We put
—8x° + 10x* + 15x3 — 17x% + 11x
(x + 1)%(2x* — 2x + 1)?
a b cx+d

(x+1)*(2x*—2x+1)2

—8x> 4+ 10x* + 15x3 — 17x% + 11x

(x + 1)%(2x* — 2x + 1)?

ex+f

= + + +
x+1 (x+1)* 2x*—2x+1 (x*—2x+1)*?

we get:

a=-2b=-1,c=0,d=3,e=1,f =0.

So
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-2 -1 3 b
I = <2+ + s+ +— 2)dx
x+1 (x+1) 2x*—2x+1 (2x*—2x+1)

1 3 X
I=2x—2ln|x+1|+—+f( +— 2)alx
x+1 2x2 —2x+1 (2x*—2x+1)

1 1

2 2
Since 2x2 —2x+1 =2 ((x - E) + (E) ) to calculate the integral on the second side

Weputx=§+ t.

N | =

So

]( SR > )d—3j1d+ e
xr—2x+1 @t —2x+02) YT ) e 1T ey 2™

t 1
= 3Arctanx+jmdx+jmdx

3 x 1 1 1
dx = 3Arctant — - d
j(2x2—2x+1+(2x2—2x+1)2> X retan 2t2+1+J(t2+1)2 x
D —
J2

Substituting k = 1 in the regressive relationship (x) we get: 2], = J; + ﬁ =

t

Arctant + and from there J, = ZArctant + .
1+t2 2 2(t2+1)
So
f ( 3 + ad )d — 7 Arctant 4
2x% — 2x+ 1 " (2x2 — 2x + 12} X T AR T o Ty

Substituting t = 2x — 1 we get

f( S - )d = L Arctan(2x — 1) + ot
2x% — 2x + 1 T (2x2 — 2x 4 1)2) X T paretaniax 22x2 —2x + 1)

So
x—1
+
2(2x* —2x+ 1)

1 7
[ =2x—2In|x +1| + —— +—Arctan(2x — 1) + C.
x+1 2

1.5.2 Integration of the type [ R(sinx, cosx) dx:
Where R(sinx, cosx) is a rational fraction in the variables x and y.

This integral can be converted to a rational fractional integral using the change in the

variable t = tan z where:

20



1—t? 2t 2

_  siny = . dx = dt.
cosx = 5 5 sinx=- -y ; dy=_—gdt

. cos*x
Example 1 Calculate the integral | = f5_4sinx
by putting ¢ = tan? we get

1 - t 2
2 -1
j= j 1+t ( 2) dt = 20— 1) 5 dt.
2t \\1+¢ (5t* =8t +5)(t* + 1)

1 + t2

we put
2(62 = 1)2 _at+b o ct+d et+f

(5t2—8t+5)(t2+1)2_t2+1+(t2+1)2+5t2—8t+5'
on obtaina =0, bzg, c=1,d=0, e=0,f=—§.
So
_9

5
8 ~3 5 1 f 8
dt = —Arctant — dt.
/= j i1t (@ +1)2 sZ—st+5 r gt o Tyt s —8r+5
1

Calculate the integral I:

Since 5t* —8t+5—5( ())2+())Weputt=§+§yso

3 1 3 3 5 4
I =—- dy=——Arctanyz——Arctan(—t——).
8) y2 +1 8 8 3 3

And

—5A tant ! 3A t <5t 4)
]—8 rctan 202+ D) 8rcan3 3)

Substituting t = tang we get

5 1 x 3A X (St X 4>+C
]—16x 2cos2 8rcan3an2 3 .

1.5.3 Integration of the type fR(x, (a“b)%, (a“b)s, ...... , (‘z::f) dx

cx+d cx+d

Where R(x,y, ... ... ,z) is a rational fraction in the variables x, y, ... ... ,z and
%,g, ...... E are rational numbers.To calculate this type of integration, we use a
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1

)E, where k is the Least Common Multiple (LCM) of

. B b
change in the variable t = (“’”
cx+d

the numbers n,q, ... ... ... ,S.

1+vVx+1

Vit dx.

Example 1 calculate the integral I = [

We put t = (x + 1) and from it x = ¢t® — 1 and dx = 6t°dt so

1+¢t3 6 3
1=f 6t5dt=6ft6+t3dt=—t7+—t4+C.
t2 7 2

So

6 7 3 4
I=;(x+1)€+§(x+1)E+C.

Example 2 calculate the integral | = [ x /:—1dx.

2

_ [x=1 O S 4t
We put t = <51 andfromitx = 71 and dx = _(t2—1)2dt SO
—t?2 -1 4t —4(t* + t?)
J=—7 t— At = | —5 <3 dx
t2—1 (t*-1) (t*—1)
We put
—4(t* + t%) _a b c d e f

(t*—1)3 t—1+(t—1)2+(t—1)3+t+1+(t+1)2+(t+1)3

we get
az—l, b=—§, c=-1, d=—-, e=—§, f=1
2 2
SO
]:ft—1+(t—1)2+(t—1)3+t+1+(t+1)2+(t+1)3dt

3 1 +1l|t+1|+ 3 ! +
7 26+ 1 2(t+ 1)2

1
= —=In|t - 1] C.

2 Toa—D T 2= 12

. . x—1
Substituting t = /m we get
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x—1
j=ln _Jm“+(1xz_1x_1) =1, .
2 x—1 2 2 x+1

x+1
1.5.4 Integration of the type [ Vax? + bx + cdx

After writing the trinomial ax? + bx + ¢ in canonical form, this integral takes one of
the following forms:

j\/(x—a)z+ﬁ2dx,f\/(x—a)2—,82dxand J\/ﬁz—(x—a)zdx.

To calculate the integral [ /(x — @)% + B2 dx, we use a change in the variable x —
a = Bsinht.

To calculate the integral f\/(x — a)? — B? dx, we use a change in the variable x —
a = 1 cosh t.( According to the interval of integration ).

To calculate the integral f\/ﬁz — (x — @)? dx, we use a change in the variable x —
a=fcost.(orx —a = fFsint).

Example 1 Calculate the integral L = [vx2 + 4x + 3 dx.

We have x? + 4x + 3 = (x + 2)? — 1 and from there

lfx+2<-1(i.e.ifx €]—o,—3])we putx+2 = —coshtwheret € [0, +oo.
lfx+2=>1(ie.ifx€e[—1,+o[)we putx+ 2 = cosht wheret € [0,+x].
For x € |—o,—3]U[—1,+oo[ then x + 2 = F cosh t and dx = F sinh t dt.

So

L= f\/ cosh?t — 1 (¥ sinh t)dt = f\/ sinh?t (¥ sinh t)dt = f Fsinh?t dt

=

_ _/ 1. 1 _/ 1 _ 1
=§f+(—cosh2t+1)dt—+<—Zsmh2t+§t> —+<—§coshtsmht+§t)

1 1 —
= ?E[i(x +2)J(x+2)2 - 1] ?EArgcoshH(x + 2)]
1 1
=E(x+2)\/x2 +4x+3 izln|+(x+ 2) +/x% +4x + 3| + C.

1 1
=§(x+2)\/x2 +4x+ 3 —§1n|x+2 ++/x2 +4x+3| + C.
( Note that —%ln|(x+ 2) +Vx2+4x + 3| = %ln|—(x+ 2) +Vx2+4x + 3|).
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