University of Oum El Bouaghi

Faculty of Economic Sciences, Commercial Sciences and Management Sciences

First year, common trunk

Academic year : 2023-2024

<u>Mathematics 2 Module</u> Series 01 (Ordinary Differential Equations).

Exercise 01.1) Prove in each case that the given function is a solution of the accompanying equation : a) $y' + y = e^{-x}$, $f(x) = xe^{-x}$ b) y' = 1 - y, $g(x) = \frac{1}{h(x)}$, $h(x) \neq 0$, such that h(x) is the solution of : $y' = y - y^{-2}$. 2) Find the value of the number a, b, c so that the function $p(x) = ax^2 + bx + c$ is a solution of the

2) Find the value of the number a, b, c so that the function $p(x) = ax^2 + bx + c$ is a solution of the given ODE : $y' + y - x^2$

$$y + y - x$$
.

Exercise 02. Find the general solution by separation of variables:

1) y' = xy , 2) $y' = x^2y$, 3) $y' = (2x + 3x^2)(1 + y)$

4) $y' = \ln(x)y$, 5) $y' = \sin(x)\cos(x)y$

Exercise 03. Solve each of the following or the solution satisfying the given initial condition. 1) $xy' \ln(x) = (3 \ln(x) + 1)y$, y(2) = 3.

2)
$$(1 + e^x)y y' = e^x$$
, $y(0) = 1$.

3) $y'(x^2-1)-2xy=0$.

Exercise 04. Solve the following second-order ODE :

1.
$$y''(x) - 5y'(x) + 6y(x) = 0$$

2. $y''(x) - y'(x) = 0$
3. $y''(x) + 4y'(x) + 4y(x) = 0$

 $4)y'' + 3y' = 0, \quad y(0) = 0, \quad y(1) = 1$

Exercise 05. Find the solution of the following ODE :

1) $y'' - 3y' + 2y = x^2 - 3x$. 2) $y'' - 3y' + 2y = x^3$. 3) y'' - 3y' = 2.

------ Revision exercises------

A) Solve :

 $1)y'' + 2y' + y = 0, \quad y(0) = 1, \quad y'(0) = 0$

2. $y''(x) + 2y'(x) + y(x) = 4x e^x$

3) $y'' + y = 2cos^2(x)$.

B) Find the ODE for which the function $y = c sin(x), c \in IR$, is a solution.

