Duration: 90 minutes

It's strictly prohibited to use the calculator. For exercise 3, question 4, answer directly on the provided exam document.

Exercise 1

In this exercise, numbers will be represented in 8 bits.

1. Code the decimal numbers in binary: **32** and **122**. (1pt)

2. Code the integers (+122) and (-32) in 1's complement and in 2's complement. (2pt)

3. Calculate, in binary, the addition of the two decimal numbers 122 and (- 32). (1pt)

4. Can the result of adding the two numbers (-122) and (-32) be represented in sign and absolute value using 8 bits? If so, why? If not, what are the limitations ? (1pt)

Exercise 2

The coding of a real number in floating point is done according to the IEEE 754 -32 standard:

$$(-1)^{S} \times (1, M_n) \times 2^{E}$$

- S: the sign bit.

- E: the exponent represented in 8-bit (coded with excess 127).

- M_n: the mantissa normalized to 23 bits.

1. What are the smallest and largest decimal values for the exponent ? (1pt)

2. Code the following real numbers according to the IEEE standard 754-32: (-17,75) and (+21,05) (2pt)

3. Convert to decimal the binary number (1 10000100 1001010000000000000000) representing a sequence of bits coded according to the IEEE 754-32 standard. (2pt)

Exercise 3

1. Simplify algebraically the following equation E = (a+c+d)(b+c+d) and give its circuit with

minimum of gates. (2pt)

2. Express a [⊕] b in the second canonical form. (1pt)

3. When does $(a \oplus b \oplus c) + (a \oplus c) = 0?$ (1pt)

4. Provide the simplified function while clearly showing the grouping in the Karnaugh table:(2pt)

Student ID	Full Name	Group

cd ab	00	10	11	01	ab cd	00	10	11	01
00	0	0	0	0	00	1	0	1	1
10	1	1	1	1	10	0	0	0	0
11	0	1	1	0	11	0	0	0	0
01	0	1	1	0	01	1	1	0	1
$E(\mathbf{a} \mathbf{b} \mathbf{a} \mathbf{d})$	_					_			
$F_1(a,b,c,d) = cd$	= 00	10	11	01	F ₂ (a,b,c,d)	00	10	11	01
F ₁ (a,b,c,d) = ab 00	00	10	11	01 0	F ₂ (a,b,c,d) ab 00	00	10	11	01
F ₁ (a,b,c,d) = ab 00 10	= 00 0 0	10 0 1	11 1 1	01 0 0	F ₂ (a,b,c,d)	00 1 1	10 1 0	11 1 1	01 0 0
F ₁ (a,b,c,d) = cd ab 00 10 11	00 0 0 0 0 0 0 0 0	10 0 1 1	11 1 1 1	01 0 0 0	F ₂ (a,b,c,d)	00 1 1 1 1	10 1 0 0	11 1 1 1	01 0 0 0
F ₁ (a,b,c,d) = cd ab 00 10 11 01	<pre> 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</pre>	10 0 1 1 1	11 1 1 1 0	01 0 0 0 1	F ₂ (a,b,c,d)	00 1 1 1 1 1 1	10 1 1 0 0 0	11 1 1 1 1	01 0 0 0 1

Exercice 4 (4pts)

Create a logic circuit to check whether a four-digit (a,b,c and d) binary number is prime .

Good Luck